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Background: Public health policy researchers face a persistent challenge in

identifying and integrating relevant data, particularly in the context of the U.S.

opioid crisis, where a comprehensive approach is crucial.

Purpose: To meet this new workforce demand health policy and health

economics programs are increasingly introducing data analysis and data

visualization skills. Such skills facilitate data integration and discovery by linking

multiple resources. Common linking strategies include individual or aggregate

level linking (e.g., patient identifiers) in primary clinical data and conceptual

linking (e.g., healthcare workforce, state funding, burnout rates) in secondary

data. Often, the combination of primary and secondary datasets is sought,

requiring additional skills, for example, understandingmetadata and constructing

interlinkages.

Methods: To help improve those skills, we developed a 2-step process using a

scopingmethod to discover data and network visualization to interlinkmetadata.

Results: We show how these new skills enable the discovery of relationships

among data sources pertinent to public policy research related to the opioid

overdose crisis and facilitate inquiry across heterogeneous data resources.

In addition, our interactive network visualization introduces (1) a conceptual

approach, drawing from recent systematic review studies and linked by the

publications, and (2) an aggregate approach, constructed using publicly available

datasets and linked through crosswalks.

Conclusions: These novel metadata visualization techniques can be used as a

teaching tool or a discovery method and can also be extended to other public

policy domains.

KEYWORDS

public health policy, network visualization, data exploration, data linkage, data

visualization, skills

1 Introduction

The U.S. opioid epidemic is a major national concern. As of April 2023, the 12-

month counts of reported deaths from drug overdose have increased by an estimated

6.5% compared with the year 2021—rising from 99,782 to 106,275 deaths (Ahmad et al.,

2023). Particularly, the overdose involving synthetic opioids increased from 17 to 21.8%
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from 2020 through 2021, according to the National Center for

Statistics (Spencer et al., 2022). Furthermore, among the 40.7

million people with a substance use disorder, only 1.1% (447,000)

received treatment, 2.1% (837,000) felt the need but did not get

treatment, and 96.8% felt no need for treatment (Substance Abuse

and Mental Health Services Administration (SAMHSA), 2022).

Some of the commonly reported reasons for not seeking treatment

were (1) no health coverage, (2) not finding the program, (3) the

perception of negative effects on their jobs, and (4) not knowing

where to go.

To address the current opioid crisis, the Department of

Health and Human Service (HHS)’s strategic priorities includes

improvements in (1) pain management, (2) prevention, treatment,

and recovery, (3) data and research related to the opioid crisis, and

(4) overdose-reversing drugs (Price, 2017). It is crucial to integrate

a holistic approach across multiple data resources, covering drug

policy, pharmacy claims, treatment workforce, and opioid-related

harms, among other research topics. Identifying trends and insights

in this complex data presents a challenge and requires data analysis

skills. Network visualization has been shown as a useful technique

for analyzing complex relations in medical care services, clinical

data, and physician network (Niyirora and Aragones, 2020). Many

network models have included co-occurrences of records (e.g.,

patient diagnoses), chronological sequential occurrences (patient’s

admissions or discharge), and source and target occurrences

(e.g., patient transfers). A recent study has extended network

visualization to opioid prescription data, providing insights for

healthcare professionals on the inappropriate use of drugs (Hu

et al., 2020). While data analytical skills have been increasingly

introduced to health policy programs, there is still a gap in learning

network analysis skills (Payán, 2021).

Similarly, there is a growing body of systematic reviews and

scientometric meta-analyses focusing on relationships between

opioid use disorder and various factors, such as chronic pain,

intervention, mitigation strategies, and policies (Chou et al.,

2021; Gamage et al., 2023). Furthermore, a systematic meta-

analysis of datasets unveils additional insights into available

resources and their interlinkages. Stakeholders and practitioners

are often challenged by the large number, complexity, and

peculiarities of the existing data. Researchers may also not

be aware of available resources as they are provided by

many different organizations and have varying data quality

and coverage. Some datasets are freely available, while others

require the signing of legal documents or payment of fees for

additional fields. Furthermore, some datasets are massive in size,

requiring database expertise to run queries; others exist only as

textual data in a PDF format and require pre-processing skills

before usage. Providing data meta-analysis has become a new

“informational asset” transforming how we observe and analyze

data (Weber et al., 2014). In addition, linking resources together

(or crosswalks) allows researchers and stakeholders to identify new

areas for public or health interventions and provide evidence-

based guidelines for practitioners and patients (Smart et al.,

2018).

There is a growing need for metadata skills to help develop data

strategies for identifying and linking resources. We propose a two-

step framework to facilitate metadata discovery and relationships

between datasets using metadata network visualization. In the first

step, we show how to gather relevant metadata using the modified

systematic review method. In the second step, we use a network

design to represent linked datasets that communicate temporal,

geospatial, and topical coverage via metadata nodes. This metadata

visualization provides an alternative way to identify and integrate

opioid-related datasets.

2 Background

The causes, consequences, and manifestations of the

U.S. opioid crisis have been studied from many different

angles, including prevention, treatment, drug prescription, law

enforcement, criminal justice, and overdose reversal. Treatment

expansions and prescription reductions are two essential steps

in reducing mortality and improving safety for patients with

chronic pain. Monitoring and regulatory policies play an equally

important role in balancing between harms, cost, availability, and

benefits of opioid use, as seen in policies such as prescription drug

monitoring programs (PDMPs), health insurance expansions,

and comprehensive federal legislation (e.g., the Comprehensive

Addiction and Care Act) (Poitras, 2018; Scrivner et al., 2020).

These efforts have led to a decrease in the overall U.S. drug

prescription rate, from 81.3 per 100 people in 2012 to 46.7

in 2019 (CDC, 2019). But while the U.S. has had success in

implementing these preventative measures, there has been an

increase in harm from illicit drug sources, and there has been

a challenge in improving treatment access for those suffering

from addiction disorders. A major gap remains between service

demand and supply: 94% of people aged 12 or older with a

substance use disorder did not receive any treatment, according

to the 2021 National Survey on Drug Use and Health data

(NSDUH). The 2020 report on admissions to substance use

treatment facilities (TEDs) has also reported a decrease in opioid-

related admissions (381,040), as compared to 677,296 admissions

in 2018. In terms of the number of facilities, only 1,754 out

of 16,066 treatment facilities are Opioid Treatment Program

(OTP) certified (Substance Abuse and Mental Health Services

Administration, 2021). The 2021 County Business Patterns

data (CBP) identifies 14,461 Substance Use Disorder Treatment

(SUDT) outpatient centers, 44,731 Residential SUDT facilities,

and 795 SUDT hospitals (API link—https://data.census.gov/table?

q=CBP2021.CB2100CBP&n=62142:6222:6232&tid=CBP2021.CB2

100CBP). Despite the high priority for training expressed by the

U.S. Department for Health and Human Service and high job

demand, the historical behavioral health (integrated mental and

substance use disorder) workforce shortage has been a major

roadblock (Skillman et al., 2016; McNeely et al., 2021).

The interdependence of these social, health, economic, and

public policy factors calls for an interdisciplinary holistic and

systematic approach where researchers and practitioners can zoom

out and examine the problem as a whole and then zoom in

to solve the most pressing issues that have the highest positive

impact on improving health and services while decreasing crime

and addictions-related disorders. One of the approaches is to

provide a systematic review of opioid-related studies along with the

secondary data relevant to the research (Leece et al., 2019; Maclean

et al., 2020; Smart et al., 2020). This perspective enables researchers
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to discover data, identify new connections (linkages) between

existing data, and learn about data accessibility and coverage.

These systematic review studies also offer various perspectives on

grouping datasets. From the economic perspective, data can be

classified into several data categories relevant to understanding

the opioid crisis: (1) pharmaceutical industries and medication

prescriptions, (2) healthcare providers and labor market, (3) harms

and crime, and (4) policies (Maclean et al., 2020). From the

treatment perspective, data can be grouped by (1) intervention

variables (e.g., prevention, treatment, and harm reductions) and (2)

enabling variables (e.g., surveillance and stigma) (Leece et al., 2019).

From the strategic perspective, data can be categorized according to

the Health and Human Service strategic priorities: (1) better pain

management, (2) addiction prevention, treatment, and recovery

service, and (3) better targeting of overdose-reversing drugs (Smart

et al., 2018, 2020). In addition, data can be classified based

on type and format: national surveys, electronic health records

(EHR), claims data, mortality records, prescription monitoring

data, contextual and policy data, and others (national, state,

local) (Smart et al., 2018, 2020).

In recent years, it also became common to share data with

metadata, including data description, coverage, and attributes (Wu

et al., 2023). As each dataset provides its unique identifier (e.g.,

geographical units, drug names, occupation, or billing codes), it

is essential to (1) identify a crosswalk, an identifier that can link

records to other datasets; (2) data coverage, such as number of

records, frequency of updates, and data interval or data units (e.g.,

monthly and quarterly); and (3) data accessibility (e.g., open data

or contract data). Understanding linkages and metadata becomes

even more critical as many new datasets are released (Shlomo,

2018; Blanco et al., 2021). There are various ways to represent

metadata, e.g., a tabular format or a dictionary schema. This

representation, however, does not include the assessment of data

coverage, its weaknesses, or its strengths. Novel solutions are

offered by recent systematic dataset overviews: (1) each variable is

provided with its relative frequency of occurrence in the reviewed

literature (Leece et al., 2019); (2) a plus/minus sign is used to

indicate strengths and weaknesses for each dataset (Smart et al.,

2020); and (3) a “probabilistic linkage”, focusing on a visual

representation of potential biomedical sources and the values of

their linkages (Weber et al., 2014). The latter approach involves

the use of a tabular form with sizes, shapes, colors, and positions

to indicate data quality, data linkage, types of data (e.g., pharma,

claims, EHR, and non-clinical data), data coverage, and even the

probabilities for obtaining new data or linking existing data.

Furthermore, recent work on data integration and federation

demonstrates advances in ontology and knowledge graph-based

approaches allowing for integration, querying, analysis, and

visualization across heterogeneous data sources (Sima et al., 2019;

SN SciGraph, 2019; Cox et al., 2020; Amer-Yahia et al., 2021; Morris

et al., 2023). For example, SPOKE (Morris et al., 2023) and Springer

Nature SciGraph (SN SciGraph, 2019) use a knowledge graph (KG)

to interlink and query different datasets. The SPOKE KG interlinks

more than 30 publicly available biomedical databases, whereas

SciGraph interlinks funders, projects, publications, citations, and

scholarly metadata in support of data exploration. In addition,

a natural language querying and visualization tool for biological

knowledge is implemented for heterogeneous data sources (Sima

et al., 2019). The INODE project (Amer-Yahia et al., 2021)

incorporates machine learning techniques in support of guided,

natural language querying and visualization of semantically

integrated data sources in bio-medicine, astrophysics, and public

policy.

Therefore, the deployment of visualization techniques emerges

as a powerful data discovery tool and can be used to communicate

metadata (data coverage, quality, and linkage). In addition,

the graph representation not only facilitates a more intuitive

understanding of complex datasets but also provides a unique

resource to illustrate interlinkages between heterogeneous datasets,

offering a more insightful perspective for data analysis than

traditional data repositories.

3 Methods

To build metadata network visualization, we designed a two-

step process enabling data discovery and synthesis in the first

step and network graph implementation in the second step. This

methodical process is not only reproducible but also adaptable,

allowing for its application across various datasets and topics,

thereby extending its utility and scope in diverse research contexts.

3.1 Data collection

Several recent systematic reviews on opioid-related studies

include primary and secondary data. To collect metadata,

we applied the modified scoping method by extracting and

filtering studies from these systematic reviews. To represent a

diverse collection of existing datasets, we included the following

perspectives: (1) an economic systematic reviewwith opioid-related

datasets (Maclean et al., 2020), (2) pain management (Phillips

et al., 2017), and (3) data sources for research and evaluation to

address the Department of Health and Human Services (HHS)

strategy combating opioid crisis (Smart et al., 2018, 2020). In

addition, we parsed the scoping review references describing over

100major economic studies on theU.S. opioid crisis (Maclean et al.,

2020).

Using the scoping review protocol (Arksey and O’Malley,

2005), we identified 176 cited papers (see Figure 1). Specifically, we

established the following pipeline: (1) Importing—we imported the

176 cited articles ranging from 1986 to 2020 to the bibliographical

software Mendeley. (2) Scanning—each article was scanned for

datasets mentioned in themethodology section and articles without

datasets were discarded. (3) Tagging—the remaining set (107

articles) was tagged with dataset names as they were used in

the studies. As a result, we identified 283 unique name tags.

Across the 107 studies, there were many inconsistencies in naming

and spelling, for instance, “nvss,” “nvss multiple cause of death,”

and “nvss multiple cause-of-death mortality” all referred to the

U.S. mortality data from death certificates, produced by the

National Center for Health Statistics. We normalized labels using

OpenRefine and the Nearest Neighbor algorithm with Prediction

by Partial Matching (PPM) distance (Stephens, 2018). The
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FIGURE 1

PRISMA flow diagram of the reference review process to identify datasets and data synthesis. Green labels are review studies, and blue labels are data

collection steps.

algorithm detected 61 clusters that were merged, resulting in 230

normalized labels. We manually inspected all labels and removed

datasets that did not fit our eligibility criteria. The following

filters were applied: (1) organization/agency sources without a

reference to data (e.g., Bureau of Labor Statistics) [10 datasets

removed], (2) only local data sources (e.g., Massachusetts All-Payer

Claims Database) [21 datasets removed], (3) duplicate sources (e.g.,

Center for Disease Control and Prevention WONDER Multiple

Cause of Death and National Vital Statistics System Multiple-

Cause-of-Death files) [two datasets removed]. We classified the

obtained datasets into the following categories as suggested by

the policymakers experts we consulted: (1) pharmaceutical data–

related to opioid prescription, (2) policy data–related to state

drug laws, (3) opioid overdose data–related to treatment and

treatment results, and (4) employment data–related to training and

hiring in the substance use disorder treatment industry (SUDT).

These datasets were then combined with the sources provided

in Phillips et al. (2017) and Smart et al. (2020) summary tables.

As a result, we identified 121 unique datasets extracted from prior

scoping reviews for synthesis and data linkage exploration (see

Table 1).

3.2 Data synthesis

The data synthesis stage included gathering specific

information from each identified dataset: (1) data description

(dictionary, availability, category, and format) and (2) publication

linkages. For each dataset, we assigned a format type, namely,

national surveys, contextual data, and claims (Smart et al., 2018).

National surveys are datasets that come from surveys conducted

on a national sample. Contextual and policy data are datasets

collected to analyze policy and policy changes. Claims and EHRs

are datasets that include information on patient-level claims data

for reimbursement and patients’ health records. All remaining

categories were grouped into others. The second taxonomy was the

category, which is based on whether the dataset contains policy,

pharmaceutical, opioid, or job-related data (see Tables 1, 2).

In addition, for each dataset, we searched for a data download

link and a dictionary, which provides valuable information about

data content and format. For some datasets, one or both of the

URLs were not available. As a result, we provide at least one URL

for 113 datasets and both URLs for only 33 of the 121 datasets.

We were also unable to compile the crosswalks between all 121
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TABLE 1 Dataset format and category by availability.

Public Non-public Totals

Panel 1: dataset format

National surveys 17 (74%) 6 (26%) 23

Contextual and policy data 15 (94%) 1 (6%) 16

Claims and EHRs 8 (38%) 13 (62%) 21

Other 36 (59%) 25 (41%) 61

Totals 76 (63%) 45 (37%) 121

Panel 2: dataset category

Harms 29 (62%) 18 (38%) 47

Jobs 22 (71%) 9 (29%) 31

Pharma 11 (41%) 16 (59%) 27

Policy 14 (88%) 2 (12%) 16

Totals 76 (63%) 45 (37%) 121

The non-public category includes private and data available by request.

TABLE 2 Dataset category aggregated by three authors.

Dataset category Smart Maclean Bonnie Totals

Harms 28 (39%) 31 (44%) 12 (17%) 71

Jobs 5 (15%) 29 (85%) 0 (0%) 34

Pharma 18 (51%) 14 (40%) 3 (9%) 35

Policy 11 (48%) 11 (48%) 1 (4%) 23

Totals 62 (38%) 85 (52%) 16 (10%) 163

datasets as some data are not available publicly. As a result, we

manually assigned the following attributes to datasets: (1) data

description (dictionary, size, category, and time coverage), (2) data

linkages, and (3) scholarly metadata (relevant publications). Size

was determined as the number of records based on the most

recent year and split into three commonly used set sizes: (1) small

(<10,000), (2) medium-sized (between 10,000 and 1,000,000), and

(3) large (1,000,000 or greater). Note that the choice of the split

threshold was arbitrary and based on the row number instead of

the storage size as we did not have access to physical copies for

each dataset. Time coverage provides information on the year when

the dataset became available and the most recent data available for

download. Several data attributes are used to identify data linkages:

geographical units (e.g., state and county) and standard crosswalks

[e.g., the North American Industry Classification System (NAICS),

Drug Name]. Finally, for each dataset, we identified three recent

publications using the Web of Science to illustrate research results

derived from that data—this is not meant to be exhaustive

but rather to show a starting point for a researcher looking

into a new dataset. In total, 16 variables are provided for each

dataset: common abbreviation, full name, data description, dataset

category, source URL, dictionary URL, the number of records per

year (most recent), size, time coverage (year-start and year-end),

size, geo units, crosswalks, and three publications. Given the data

accessibility restrictions, we were unable to assign these attributes

to private or restricted datasets. As a result and after consulting with

TABLE 3 Datasets to support research on the opioid crisis.

Dataset Description Category

CDC mortality CDC Opioid Overdose Rate Harms

TEDS-A Treatment Episode Dataset:

Admissions

Harms

NHIS National Health Interview Survey Harms

NSDUH National Survey on Drug Use and

Health

Harms

NAMCS National Ambulatory Medical Care

Survey

Harms

AHRF Area Health Resources Files Jobs

N-SSATs National Survey of Substance

Abuse Treatment Services

Jobs

QCEW Quarterly Census of Employment

and Wages

Jobs

CPS Current Population Survey Jobs

CBP County Business Patterns Jobs

ACS American Community Survey Jobs

MEPS Medical Expenditure Panel Survey Pharma

Sunshine Act Open Payments Pharma

SDUD (Medicaid) State Drug Utilization Data Pharma

Medicare* Medicare Part D Prescription Drug

Event

Pharma

ARCOS* Automated Reports and

Consolidated Ordering System

Pharma

CDC Prescription CDC Drug Prescription Pharma

PDMP Prescription Drug Monitoring

Program

Pharma

PDAPS Prescription Drug Abuse Policy

System

Policy

NAMSDL National Alliance for Model State

Drug Laws

Policy

Twenty datasets are extracted from the review study (Maclean et al., 2020) datasets marked

with * require a request submission prior to download.

health policy experts, we created a subset providing all 16 variables

for each dataset (see Table 3).

3.3 Network visualization

Network visualizations are widely used to capture the

relationship between entities (e.g., co-authorship networks or gene-

disease networks). These visualizations represent entities as nodes

and their connections as edges, arranged in layouts that depict

the overall connectivity structure and clusters while minimizing

edge crossings. Networks can be derived from tabular data, such as

the creation of a co-author network from a dataset containing the

information on papers and the respective authors per paper. Co-

author links connect all authors who appear together in a paper,

creating an undirected weighted network (Emmert-Streib et al.,

2018). Furthermore, nodes and edges within these networks can be

enriched with additional visual cues, such as color or size coding, to
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TABLE 4 Nodelist used in the presented network visualization,

partial—only four of 13 attributes are shown.

ID Format Category Availability

ACS National surveys Jobs Public

Maclean2020 Author Author (blank)

Smart2020 Author Author (blank)

TABLE 5 Edgelist used in the presented network visualization.

Source Target Network type ID Weight

Maclean2020 ACS Undirected 17 1

Smart2020 ACS Undirected 82 1

highlight supplementary attributes. This can include characteristics

such as the number of papers, the number of citations, the year of

first publication, publication sources, and thematic categorization,

enhancing the information conveyed by the visualization.

We developed two network visualization prototypes offering

various metadata discovery perspectives: (1) citation network,

offering potential insights into the frequency of data usage, and

(2) conceptual network, providing insights into data relevancy. The

design included the following pipeline: (1) data transformation,

(2) network layout, and (3) interactive deployment. First, we

transformed the CSV file with 121 datasets (rows) and 13 attributes

(columns) into two distinct files: a “nodelist” and an “edgelist.” The

nodelist included an additional identifier for each dataset, which

was utilized in the edgelist to illustrate the connections between

datasets. For instance, the ACS dataset was assigned the ID “ACS,”

while the papers were labeled “Maclean2020” and “Smart2020”

(refer to Table 4 for details). Since the ACS dataset was referenced

in both papers, we established linkages from ACS (as the source) to

Maclean2020 (as the target) and vice versa. Similarly, we established

linkages from ACS (as the source) to Smart2020 (as the target)

and vice versa, given that the network is an undirected graph.

The resulting network consisted of 125 nodes categorized into five

distinct groups and featured 203 edges (the example is outlined in

Table 5).

Next, we used the Force Atlas 2 algorithm in Gephi (Bastian

et al., 2009) (see Figure 2). Datasets were then grouped by paper

and category with the 34 datasets mentioned in more than one

paper being grouped in the middle. Datasets are also color-coded

to visually render five categories: harms, jobs, prescription, policy,

and author name. The workflow for creating this network in

Gephi is available at GitHub (https://github.com/cns/iu/agc2/jobs).

The interactive visualization was created using JavaScript GEXF

viewer package (Velt, 2019). The Gephi network was exported

from Gephi into a gexf format (.gexf), a native XML format

suitable for JavaScript (js) interactive visualization frameworks.

Then, the gefx.js code was updated and uploaded to GitHub.

The interactive network is available at https://cns/iu.github.io/agc2/

jobs/all_opioid_datasets/main/index.html and it supports search,

filter, and details on demand (Shneiderman, 1996), as illustrated in

Figure 3.

The second network prototype represents a conceptual linkage,

following similar steps to create nodes and edges using geolocation

and standard crosswalks as linkages. For instance, the CDC

Mortality and TEDS share the same linkage attribute “State.” Thus,

we can build their linkage from CDC Mortality with the ID “0”

(source) to TEDs admission with the ID “1” (target) and vice versa

since the network is undirected (see Tables 6, 7). The resulting

network has 20 nodes of four categories and 146 edges of nine

different types.

The second network is also color-coded to visually render four

categories: harms, jobs, pharmaceuticals, and policy (see Figure 4).

The workflow for creating this network in Gephi is available

at GitHub (https://github.com/cns-iu/agc2-jobs). We followed

the same steps as described earlier. The interactive network

is available at https://cns-iu.github.io/agc2-jobs/20_datasets-main/

index.html.

4 Discussion

The interactive visualization enables researchers to explore the

relationships between data sources in the diverse context of public

policy, economy, and treatment research related to the U.S. opioid

crisis. In addition, it has the potential to help with data strategies

and decision-making. For example, the user can search for a

dataset AMA Physician by typing the name of the dataset in the

search window or clicking directly on the node (see Figure 5). The

information panel on the left displays the metadata information,

showing that the dataset is private and related to the jobs category.

It also provides the full dataset name, link, and the citation source.

The researcher can also learn about other secondary datasets from

the same job category color-coded in yellow, such as the NPPES

dataset, which is publicly available. This information could help

the researcher to make an informed decision on which dataset to

use or to brainstorm new perspectives on opioid-related policy

research.

Furthermore, the network representation demonstrates

the potential for data discovery using metadata and data

interlinkage skills as well as the discovery of the scholarly

literature and case studies that use these datasets, which

can assist researchers in identifying publicly available

datasets, determining how these data can be combined

in analysis, and surfacing relevant information about the

provenance, availability, and definitions of data sources and

variables. Figure 6 illustrates the discovery of the dataset

ARCOS.

The node’s dark blue color specifies that this dataset belongs to

a pharmaceutical category. Clicking on the ARCOS node reveals

links to the data dictionary and data source. In addition, the

researcher is provided with a starter kit of the three most cited

publications with this dataset. The size of the dataset is another

useful attribute that allows the researcher to make decisions on

storage space. Furthermore, this dataset could be linked at the

state level with the CDC Mortality and TED Admissions data,

using the drug name it can be connected with Open Payment and

Medicare. This interactive network visualization of data relevant to

public policy analysis may also be used as an instructional tool to

help develop novel questions and assist in research. For example,
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FIGURE 2

Network representation of the 121 datasets with policy data (in light blue), pharmaceutical data (dark blue), harms (red), jobs (hiring/training) data

(orange), and authors (green). Transparency on the author nodes denotes the year of the publication (more transparency means a less recent year).

Circle size corresponds to the availability (public or non-public) of the dataset. Label color denotes the type of dataset with national surveys (green),

contextual and policy data (blue), claims and EHRs (maroon), and others (black).

FIGURE 3

Interactive network visualization with the legend in the top left explaining color and size coding; details on demand in the lower left; interactive

network layout on right.

by discovering the state linkage between ARCOS, CDC Mortality,

and TED Admissions, the new question could be what states have

the highest mortality rate as well as the highest pharmaceutical

sales.

5 Conclusion

In alignment with the key priority set forth by the Department

of Health and Human Services (HHS) to address the opioid
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TABLE 6 Nodelist, partial—only six of 16 attributes are shown.

ID Label Category Size Start End

0 CDC Opioid Mortality Harms S 1999 2018

1 Treatment Episode Dataset: Admissions Harms L 1992 2017

2 National Health Interview Survey Harms M 1963 2019

TABLE 7 Edgelist.

Source Target Network type ID Label Weight Relation type

0 1 Undirected 0 State 1 Geo unit

0 3 Undirected 1 County 1 Geo unit

0 5 Undirected 2 State 1 Geo unit

FIGURE 4

Network representation of the subset datasets with policy data (in light blue), pharmaceutical data (dark blue), opioid data (red), and jobs

(hiring/training) data (orange). Circle size corresponds to the size of the dataset. The edge color denotes the type of linkage.

crisis–enhancing information accessibility and promoting data-

driven policy-making– our efforts have centered on metadata

skills to discover and interconnect existing datasets. We developed

a two-step process showing how to collect datasets using

the scoping review method and transform data into network

graphs. We curated 121 datasets, drawing from recent systematic

reviews related to policy and opioid research. Furthermore,

we have designed innovative visualization tool prototypes to

assist researchers in data exploration. The interactive network

visualization allows potential data users to navigate each dataset via

data linkages, embedded data dictionaries, and recent publications

using the selected dataset. A dataset can be identified as a

complementary dataset to their current datasets to conduct relevant

health services research studies or policy evaluations. Another data

source can be used as an alternative dataset to validate their current

data analysis. In addition, we provided the protocol for metadata

collection and guidelines for network visualization and made it

available for researchers to develop their dataset linkage networks.

This study has several limitations. First, we included datasets

from four systematic review studies, potentially overlooking

less common datasets. Second, we designed the linkage network

between datasets only for 20 publicly available datasets, and
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FIGURE 5

Search filter and information panel: The AMA Physician dataset.

FIGURE 6

Interactive conceptual network visualization: the interlinkages for the ARCOS dataset.

we faced difficulties accessing metadata for non-publicly

available datasets. This study also focuses on linkages at the

concept level, rather than individual-level linking of data

across datasets. This is an area of future development as it

involves identifiable data and requires special data privacy

considerations. Going forward, the same methodology can be
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applied to individual-level linked data and non-public resources.

Another important area for future work is conducting user

studies to identify how to best improve the visualization for

different stakeholder groups and what additional datasets

should be added. Finally, due to the limitation of dataset

coverage, the current study assigned datasets only into four

categories (policy, pharmaceutical, opioid, and jobs/training),

excluding other important topics. Future research should use

a more comprehensive view based on the opioid ecosystem

approach (Stein et al., 2023).
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