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The paper uses a graph model to examine the e�ects of financial market

regulations on systemic risk. Focusing on central clearing, wemodel the financial

system as a multigraph of trade and risk relations among banks. We then study

the impact of central clearing by a priori estimates in the model, stylized case

studies, and a simulation case study. These case studies identify the drivers of

regulatory policies on risk reduction at the firm and systemic levels. The analysis

shows that the e�ect of central clearing on systemic risk is ambiguous, with

potential positive and negative outcomes, depending on the credit quality of

the clearing house, netting benefits and losses, and concentration risks. These

computational findings align with empirical studies, yet do not require intensive

collection of proprietary data. In addition, our approach enables us to disentangle

various competing e�ects. The approach thus provides policymakers andmarket

practitioners with tools to study the impact of a regulation at each level, enabling

decision-makers to anticipate and evaluate the potential impact of regulatory

interventions in various scenarios before their implementation.

KEYWORDS

systemic risk, financial regulation, central clearing, artificial intelligence, credit risk,
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1 Introduction

In the aftermath of the financial crisis, governments introduced a vast array of financial

market regulations to mitigate the excessive risk-taking that, by many accounts, led to the

collapse of the economic system. Central clearing has had mixed results, reducing default

risk in some cases while increasing the incentive of market participants to take on more

risks in others. Despite these regulations’ uncertain effects, Former Federal Reserve Chair

Janet Yellen asserted that “a lack of complete certainty about potential outcomes is not a

justification for inaction,” see Yellen (2013).1

This raises the question on how to evaluate the impact of a financial regulation

even before implementation. Relying on expert judgment alone to estimate the effect of

regulations on financial markets is problematic as a consensus rarely arises, and reliable

economic data is only available years after implementation. When discussing the potential

impact of regulations, policymakers usually lack the tools and the data to assess policy

alternatives, as when the G20 agreed to central clearing during the 2009 Pittsburgh summit,

see G20 (2009). Todaymany excellent empirical studies, see e.g., Duffie and Zhu (2011) and

Ghamami and Glasserman (2017), provide invaluable reviews of the impact of regulations

on financial stability and risk reduction. These studies, however, depend on observational

data, invariably confounding many correlated effects. Accordingly, isolating the impact of

regulation by empirical analysis alone can be difficult and imprecise.

1 See O’Halloran and Groll (2019) for a review of government responses to the 2008–2009

financial crisis.
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In order to fill this gap, we employ a graph model to predict

and calculate cost (loss) functions, enabling us to evaluate the

impact of different regulations on risk mitigation at both the

firm and system levels. By mathematical analysis of that model,

stylized and simulation case studies, we go beyond traditional

expert judgment and empirical analyses, offering decision-makers

a powerful tool to anticipate the economic effects of regulatory

policies before implementation.

We apply our graph model approach to central counterparty

clearing (CCP). Our analysis reveals that while central clearing

can double the total levels of risk exposure in the cleared financial

system, it also brings efficiency gains by automatically unwinding

complex “daisy chains” of hedges. Moreover, our analysis uncovers

the intricate interplay of netting benefits, gains and losses, the credit

quality of clearing houses, and concentration risks, highlighting the

multifaceted nature of risk dynamics at all levels of aggregation. By

quantifying these offsetting forces individually, we can accurately

predict the costs and benefits of various regulatory interventions in

various case studies.

The remainder of the paper is organized as follows: we review

the relevant literature in Section 2 placing our approach outlined

in Section 3 into context. In Sections 3, 4, and 5 we present a

theoretical study of the graph model illustrating the drivers of

impact of the clearing regulation. We then apply this framework

to stylized case studies in Section 6 and finally to a simulation case

study in Sections 7 and 8. Finally, we summarize our findings, offer

conclusions, and propose future research directions in Section 9.

2 Central clearing and systemic risk
regulation

2.1 State of the art and review of literature

Despite its limitations, expert judgment-based research still

remains useful as it can identify a wide range of possible effects.

A good overview can be found in the aforementioned speech by

the Former Federal Reserve Chair, Janet Yellen, see Yellen (2013).

Of course, expert judgment cannot only be used beforehand, but

also after a regulation has been phased in. For the impact of central

clearing on systemic risk in particular, such qualitative approaches

can be found in Kenyon and Green (2013).

Of course there are much more approaches to systemic risk

through—in fact the literature on systemic risk in general is vast. A

summary can be found in e.g., Silva et al. (2017) and an excellent

comprehensive survey of systemic risk metrics can be found in

Bisias et al. (2011). A key theme of both, the literature and the

metrics, is default contagion, the risk that the default of one bank

spreads to another. The study of how defaults spread is closely

related to correlations of risk in the system and has been studied

extensively, see e.g., Caccioli et al. (2015), Detering et al. (2016),

and Pastorino and Uberti (2023).

The role of Central Counterparties (CCPs) in mitigating

systemic risk in financial markets, particularly through the

central clearing of over-the-counter (OTC) derivatives like credit

default swaps, has become increasingly significant. CCPs act

as intermediaries to manage default risk, using collateral and

margin requirements to enhance financial stability. This process

aims to diminish interconnectedness among market participants

and bolster transparency. However, it also introduces potential

risks, such as market concentration and increased transactional

complexity. Key to this discourse is the impacts of CCPs on netting

efficiency and collateral management. For a comprehensive review

of this discourse see Berndsen (2021).

One of the most influential approaches, see e.g., Duffie and Zhu

(2011) and Ghamami and Glasserman (2017), is to quantify ex-

post the impact of the regulation after it has been implemented.

This requires the collection of empirical risk data, which is then

organized in a risk graph model, and some high-level distributional

assumptions. These studies find that the intended positive impacts

of central clearing are hampered by the fact that in practice,

derivatives are not cleared through one central counterparty,

but in fact through many different clearing houses. Obviously,

empirical approaches yield interesting insights into the current

state of the financial system, but cannot be used to evaluate

future regulations. Another drawback of that approach is that

empirical data is confounded by multiple effects. Even the clearing

regulation itself does not only have the effect of introducing a

central counterparty, but also introducing the requirement to post

collateral, to contribute to the CCP default fund etc. And of

course, the empirical data about the financial system collected after

the financial crisis is also impacted by many other changes than

just the introduction of clearing regulation, for example, liquidity

buffer regulations.

2.2 Our approach: risk graphs computed
from trade relation graphs

In theory, one could compute the impact of a regulation such as

central clearing on the financial system, if one could obtain all the

trade data of all the banks in a consistent format and then simulate

the impact in one risk engine. In practice, this is, of course, not

feasible as the trade data is proprietary, each bank stores this data

in a different format and processes it through a different engine.

Nonetheless, it is possible to mathematically describe how a

risk graph arises from a graph of trade relations between banks.

The use of such an extended graph model facilitates the analysis

of case studies, providing researchers with the ability to control

trade relation data. This approach enables us to study the impact

of a regulation like central clearing from the micro-economic bank

level to the macro-economic aggregates in the financial system as

a whole. And while even the most complex case study might not

capture all details of the real financial system, this approach has

various advantages: (i) it identifies the key drivers impacting a

regulation; (ii) it enables analysis of various case studies; and (iii)

it provides a tool to study the impact of the regulation before it is

implemented providing policy makers with a meaningful insights.2

2 From a financial economics perspective, one can alternatively think of

this hypothesis testing as being derived from an agent-based model, where

the agent is the regulator. This agent is risk-adverse and thus tries tominimize

the firm exposures and the aggregate levels of risk in the system by changing

financial regulation under the constraint that the cashflows of all trades

remain constant.
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3 A graph model of systemic risk

This section introduces a graph model to describe trade

relations in a financial system and the risks these trades induce.

The basic idea is first to formalize the financial system FS as an

undirected graph (B,L), in which the nodes B represent all the

banks, and the linksL represent all the trade relations. To each link

ℓ ∈ L between any two banks b1 and b2, we then attach their trade

portfolio τ (ℓ) as additional data, see Figure 2A for an example. In a

second step, we associate to this trade relation graph FS a risk graph

RG, which is a weighted directed graph (B,A,w). It contains the

same banks as nodes B, but each trade relation ℓ between any two

banks b1 and b2 is replaced by two arrows a12, a21 ∈ A pointing in

opposite directions. These arrows represent the risk induced from

b1 onto b2 and vice versa due to their trades; see Figure 2B for an

example. The weights w12 and w21 on these arrows quantify the

risks in a chosen risk metric. In the third step, we aggregate the

risks from the links to the nodes and the nodes to the entire system

by computing weighted degrees—a pure graph theoretical method.

We summarize the three steps in the following subsections. We

assume the reader to be familiar with basic notions of graph theory;

see the Supplementary Appendix A.1 for essential definitions and

notation. A purely mathematical formulation of the graph model

can also be found in Supplementary Appendix A.2.

This graph model has three key features, making it particularly

suited for our analysis: first, notice that the risk relations are

not sourced from empirical data and given as an input to the

model; the risk graph is an output from the model. Second, the

input to the model is the underlying graph of trade relations,

which is not stylized or simplified but fully specified in detail

using an XML format, which a simulation engine can transparently

process. Third, the formalism by which we describe the input trade

relations mathematically is an abstraction of those concrete XML

representations, which describe the input technically. Thus, this

approach has the advantage that the mathematical theory and the

technical implementation are closely aligned.

3.1 Financial systems as trade relations
graphs

We model a financial system FS as an undirected multigraph

of trade relations,3 see Figure 2A for an example. More precisely,

a financial system is a tuple FS = (B,L, τ ,β), where the set B

represents all the banks in the system. For every trade relation

between any two banks b1, b2 ∈ B, there is precisely one

link ℓ = {b1, b2} ∈ L. The collection L of all these trade

relations is a multiset, i.e., we allow banks to have multiple parallel

trade relations; thus (B,L) is an undirected multigraph. We used

undirected graphs for this model because the property of being in

a trade relation is symmetric. We then assign to each trade relation

link ℓ a netting set τ (ℓ) = {y1, . . . , yk} of trades, where each trade is

an element in some trade data space Y . Thus, mathematically τ is a

3 In a multigraph, any two nodes might be connected with more than one

link. Consequently, the links between two nodes might be a multiset rather

than a set.

function τ :L → [Y], ℓ 7→ τ (ℓ), where Y is a space representing

all the possible trades in the financial system and [Y] denotes the

set of finite subsets of Y . This space is discussed in more detail

in Section 3.2 below. Optionally, we can also define a node data

function β :B → X, which assigns to each bank b ∈ B additional

data β(b) (for instance, core capital) in some node data space X (no

node data function exists in Figure 2A).

From a risk perspective, having more than one trade

relationship is never beneficial for either counterparty. Still, valid

economic and operational reasons exist for two banks to have more

than one netting set of trades.

3.2 The trade relation space

Modeling the trade data space Y in a precise yet tractable

fashion is a difficult task every bank in the derivatives business

faces. On the one hand, the space Y needs to be rich enough to

accurately represent every OTC derivative the bank might want to

trade. On the other hand, it still needs to be technically tractable to

process all the derivatives traded through the bank’s IT systems. In

practice, this problem is usually solved using an internal proprietary

standard, which is not available for academic research.

One possible alternative is the use of open source formats, for

example ORE XML, which is compatible with an open source risk

engine, see ORE XML and ORE. Thus, for this article, particularly

the simulations described in Section 7, the space Y is the space of

all valid trade representations in ORE XML format. An example of

such a representation is shown in Figure 8.

Our study of central clearing rests on theoretical considerations

and numerical simulation. In numerical simulations, the XML

representation of the trades can be processed directly. For

theoretical considerations, adding the entire content of an ORE

XML file to a graphical representation such as Figure 2A or

mathematically formalizing this XML format in all details is

theoretically perfectly possible but quite cumbersome. Also, most

trade details are not needed for most of the mathematical

derivations in central clearing. For the analysis in Section 4, we only

need a formalism to describe which counterparty has which side of

the deal.

Notation convention: to that end, we assume that all trades

in a financial system FS are enumerated, and we denote them

by T1,T2, . . .. We consider two trades, T and T′, equivalent if

their only difference is the counterparty entry, i.e., which bank in

the system is long and which is short. We also assume that the

equivalence classes of trades, the trade templates, are enumerated

as well and are denoted by T1,T2, . . .. For any two banks b1, b2
in the system, we then denote by T1〈b1, b2〉 the trade, in which b1
is inserted into T1 as the first counterparty and b2 as the second.

Notice that this template notation extends canonically to a netting

set by defining

{T1,T2, . . .}〈b1, b2〉 : = {T1〈b1, b2〉,T2〈b1, b2〉, . . .}. (1)

An example of this notation is shown in Figure 2A. This

notation allows us to illustrate neatly which counterparty

is on which side of a deal but does not require any
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formalism around any of the other trade details.4

Another critical advantage of this convention is that it

creates a strong link between mathematical theory and

practical implementation.

3.3 Risk metrics

We have modeled a financial system FS as a trade relation

graph FS = (B,L, τ ,β). Next, we want to model the various

risks in that system. To that end, we need to specify appropriate

risk metrics. Even if we only consider two banks b1, b2 ∈ B in a

trade relation ℓ = {b1, b2} ∈ L with netting set s = τ (ℓ), the

problem of assigning a single number w(s) ∈ R≥0 to this netting

set that accurately reflects its risks is a non-trivial task. How to

choose w?

First, one should remark that there are different types of

risk, for example, market, credit, liquidity, operational, etc. For

each type of risk, practitioners use many micro-prudential risk

metrics. Because regulators need to treat banks fairly, metrics,

which need to be reported to the regulator, are standardized. In

this article, we will focus on counterparty credit risk, and we

will use two regulatory standard metrics: (i) EEPE, the effectivized

expected positive exposure and (ii) CVA, the unilateral credit value

adjustment. The counterparty credit risk to bank b1 in a trade

relation ℓ = {b1, b2} is the risk that b2 defaults before it has

met all its obligations resulting from the derivative trades τ (ℓ) to

b1. The metric EEPE is a measure of exposure; it roughly states

the dollar amount lost over the next year if the counterparty

defaults but does not consider the default probability. The CVA

integrates the exposure against the probability of default PD

of the counterparty and can thus be considered an expected

loss. The precise implementation of EEPE and CVA used in

the simulation can be found in the ORE user guide,5 see ORE,

Supplementary Appendix A.3.

The range of metrics in that model can easily be extended

to capture more exposure metrics. In fact, under mild

technical conditions, one can think of any function which

assigns a number to each netting set as a risk metric; see

Supplementary Appendix A.3 for a precise technical formulation.

A fundamental property of exposure, though, is that it only

depends on the trades in the netting set and not the counterparties,

where CVA also depends on the counterparty.

4 Notice that this formalism can be easily modified and extended by

changing the equivalence relation to incorporate other features of the deal,

for instance, the notional or the currency (we do neither need nor use this in

the present study though).

5 In summary, these metrics are defined as follows: if V(t) denotes the

simulated portfolio value at t (possibly net of collateral), then we first define

the Expected Positive Exposure EPE(t) : = E[V(t)+]. This value is then first

e�ectivized via EEE(t) : = max0≤s≤t EPE(s) and finally integrated to EEPE : =

1
T′

∫ T′

0 EEE(s)ds, where T′ = min(T, 1Y) is the maturity of the portfolio capped

at 1Y . The CVA is defined by CVA : =
∫ T

0 E[D(s)V(s)+] PD(s)ds, where PD is the

probability of default of the counterparty and D denotes the discount factor.

3.4 Risk graph

Given a financial system FS = (B,L, τ ,β) and a risk metric w,

we can organize all the risks of all the trades in the system in a new

graph, called the risk graph RG = RG(FS).

More precisely, the risk graph of FS for the metric w is a tuple

RG = (B,A,w), where the nodes B are again the banks. For each

link ℓ = {b1, b2} ∈ L in the trade relation graph, there are two

arrows a12 = (b1, b2), a21 = (b2, b1) ∈ A pointing in opposite

directions in the risk graph. These arrows represent the risk the

banks are inducing on each other due to their trades. Finally, on

each arrow a12 we attach the risk w12 in τ ({b1, b2}) induced from

b1 onto b2 measured in metric w and vice versa. By slight abuse of

notation, we now also think of w as a function w :A → R≥0.

For example, the risk graph resulting from the trade relation

graph in Figure 2A is shown in Figure 2B. The key difference in

shape is that each link is replaced by two arrows pointing in

opposite directions. In case two banks bi and bj have multiple

trade relations, we denote by w
(k)
ij the weight attached to the

arrow (bi, bj)k ∈ A resulting from the trades attached to the k-th

link {bi, bj}k ∈ L.

Notice that weights w
(k)
ij and w

(k)
ji attached to two opposing

arrows (bi, bk)j, (bj, bi)k ∈ A might be very different even though

they result from the same trades τ ({bi, bj}k). That is because the

two sides of the deals can induce very different amounts of risk

measured in the risk metric w: an interest rate swap, for example, is

a two-sided derivative, which induces (different amounts of) credit

risk on both sides. In a one-sided trade like an option, the issuer of

the option is not exposed to any credit risk. In contrast, the buyer

of the option is fully exposed to potentially significant credit risk.

3.5 Aggregation

The risk graph RG = (B,A,w) contains all risk data

measured in metric w attached to the links. This micro-prudential

information has the advantage that it is very rich. In the next step,

we want to aggregate this information to a macro-prudential level.

To that end, we apply a pure graph theoretic method, called the

weighted degree, to aggregate the risk metrics from the arrows to

the nodes and then from the nodes to the system.

For any node b ∈ B, we define

w±(b) : =
∑

a∈A
±
(b)

w(a), (2)

where A
±(b) are all the arrows that start/end at b. Thus, w±(b) is

the total risk induced/received by the bank b. We define

wtot : = w(RG) : =
∑

b∈B

w±(b) =
∑

a∈A

w(a) (3)

as the total amount of risk in the system. This in itself constitutes

a metric of systemic risk and also allows us to define the relative

node metrics

ρ±(b) : =
w±(b)

wtot
. (4)
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FIGURE 1

Aspects of clearing.

These express the risk induced/received by b as a fraction of the

total and are thus suitable to detect the concentration of risk.

3.6 Correlation

While using wtot as a metric of systemic risk, i.e., defining

systemic risk as the sum of all risks in the system, is a

straightforward aggregation, it is certainly not without drawbacks

as this metric ignores the correlation structure in the risks. Even

for a single bank, the aggregation of the risks from the links

to the nodes by summation ignores the correlation structure of

the various netting sets of trades on its links. This implicitly

assumes that all risks correlate +1, i.e., no risks ever offset each

other.6 We are choosing this convention because this assumption is

conservative and a standard business practice in risk management

accepted by regulators.

Mathematically, it is perfectly possible to estimate a correlation

matrix between the risks stemming from the netting sets on the

links and then aggregate the results to the nodes by weighing

the risk weights with that correlation matrix. Analogously, one

can aggregate the risks from the nodes to the system. However,

obtaining a reasonable estimate for those correlations is a non-

trivial matter. The study of correlations of risks is nevertheless an

active and exciting field of research in its own right and particularly

relevant for the study of default contagion, see for example Cont

et al. (2013), Detering et al. (2016), and the overview in Bisias et al.

(2011).

4 Clearing and trade relations

This section will formalize central clearing using the graph

model developed in Section 3. Starting with a trade relation graph

of a given bilateral financial system FS = (B,L, τ ,β), we first

define clearing as an operator on that graph. As clearing is quite

6 This has counter-intuitive consequences in cases where the correlation

is −1. This case occurs when a bank b hedges a netting set s1 of deals with

a bank b1 with a netting set s2 with a bank b2. While both counterparties b1

and b2 can default separately or simultaneously, it cannot happen that both

default and both netting sets are in the money. Nevertheless, w(b) is the sum

of the risks in s1 and s2.

a complex operation, we describe this clearing operator in three

steps called repartitioning, pre-clearing, and compression. All steps

are visualized in an example, see Figure 2, and explained in the

following subsections. A purely mathematical formalization is

given in Supplementary Appendix A.4.

Clearing houses have more aspects than simply centralizing

trades; see Figure 1 for an overview. Modeling all of these aspects

simultaneously is not only formally cumbersome, but it is also

not insightful since, ideally, we would also like to understand the

effect of every aspect separately. Sticking to the first three has the

advantage that this is the minimum scope required to gain insight

into the key ideas of clearing, prominently discussed in Yellen

(2013), without diluting the result by aspects that conceptually have

nothing to do with clearing. For example, collateralization can also

be implemented in a bilateral system without clearing the trades

first; see O’Halloran and Nowaczyk (2019) for our earlier studies

on that. In our model, neither the bilateral nor the cleared system

is collateralized, as we aim to understand the effect of clearing in

isolation from all other effects.

The key idea of central clearing is as follows: let FS =

(B,L, τ ,β) be a financial system; see, for example, Figure 2A.

Assume that a bank b1 has a bilateral derivative contract T〈b1, b2〉

with a bank b2. Then clearing this trade through a clearing house c,

often called Central Counterparty (CCP), means that the derivative

is broken up into two contracts: one contract T〈b1, c〉 between b1
and c and another contract T〈c, b2〉 between c and b2. From the

perspective of both b1 and b2, the new contract has the same terms

and conditions and cash flows. The only difference is that they no

longer face each other but the CCP. In the bilateral setting, if b2
defaults, then b1 suffers a loss. In the cleared setting, if b2 defaults,

then b1 still has its contract with the CCP and suffers no direct loss.

The CCP might suffer a loss from its deal with b2, though.

4.1 Repartitioning

The problemwith that idea is that it cannot be put into practice:

in reality, no truly central counterparty exists. After all, which

country would host and regulate an institution that takes one side in

all derivative trades worldwide? The clearing business is partitioned

by geographic location, currency, and asset class. The empirical

study Ghamami and Glasserman (2017) finds that five of the ten

largest US banks use 17 CCPs. Thus, in practice, central clearing is

multi clearing.

To make things worse, one must consider that the bilateral

trade relations between banks usually involve netting agreements,

i.e., the agreement to net outstanding debit and credit of a

whole portfolio of derivatives in case of a default. The structure

of these netting agreements is generally incompatible with

the structure of the clearing house market. For instance, two

banks might have a netting set with multiple asset classes, e.g.,

interest rate derivatives and credit derivatives, and thus, may net

their bilateral exposures stemming from all of these trades. As

clearinghouses typically only clear one asset class, it cannot be

cleared directly.

The solution to this problem is that first, the two banks

have to repartition their netting sets per asset class. This can be
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FIGURE 2

Multi clearing (colors indicate asset class). (A) FS: trade relation graph (bilateral). (B) RG: risk graph (bilateral). (C) F̌S
(2)
: trade relation graph

(repartitioned). (D) ŘG
(2)
: risk graph (repartitioned). (E) F̂S

(2)
: trade relation graph (multi pre-cleared). (F) R̂G

(2)
: risk graph (multi pre-cleared). (G) FS

(2)
:

trade relation graph (multi cleared). (H) RG
(2)
: risk graph (multi cleared).

formalized as follows: let Ŵ = {γ1, . . . , γm} be a set of asset

classes and α :Y → Ŵ be a function that assigns each trade

y its asset class γ (y). In the example shown in Figure 2A, we

assume that there are m = 2 types of asset classes, say IR/FX

(interest rate and foreign exchange) and EQ (equities), which is

shown in blue and red in the trade relation graph Figure 2A.

Now, repartitioning a netting set with respect to the asset classes

assigned by α means to break up the existing netting set of

trades and instead form a new netting set for each asset class

γ ∈ Ŵ. We formalize this as an operator RPα : FS 7→ F̌S,

which applies this repartitioning to every netting set in the system

and thus transforms the initial system FS into a repartitioned

system F̌S. As exemplified in Figure 2C, the result is a financial

system in which every netting set comprises of precisely one

asset class. Notice that this process creates many parallel links in

the system.

4.2 Preclearing

In a second step, which we call pre-clearing, the banks can now

break up each such netting set and clear it through precisely one

CCP. In our model, we assume that there is a fixed set of m asset

classes Ŵ = {γ1, . . . , γm} and that for each asset class γµ, there

is precisely one CCP cµ, which clears all trades of asset class γµ.

Applying this to every netting set in the system defines an operator

M̂C : F̌S 7→ F̂S. An example of the result is shown in Figure 2E: as

there arem = 2 asset classes, we can seem = 2 CCPs.
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4.3 Compression

The system resulting from the pre-clearing is usually a system

with many parallel links, i.e., the banks have multiple netting sets

with the same clearing house resulting from its (formally bilateral)

business withmultiple counterparties. As this is unfavorable to both

the bank and the clearing house, these netting sets get compressed

into one netting set in a third step. The legal process of breaking up

a netting set of deals (potentially of mixed asset classes) and clearing

them through (potentially multiple) central counterparties, and

then compressing them into one netting set is also called novation

and is a non-trivial matter.

Formally, the compression can also be seen as an operator

CMP : F̌S 7→ FS, which removes all parallel links between any

two counterparties and compresses all the trades attached to these

parallel links into one big netting set. The compression of the

example in Figure 2E is shown in Figure 2G. The resulting system

then has no parallel links anymore.7

Finally, we define clearing as the composition

MC : = CMP ◦M̂C ◦RPα : FS 7→ FS

of these three operators.

Notice that while in themulti-cleared system in Figure 2G, each

bank still has two netting sets with multiple trades, they are now

netted in the other combination as in the bilateral system. In the

cleared system, realized netting benefits across asset classes within

the same netting set are now lost, but netting benefits within the

same asset class across different counterparties are gained.

While the number m will always be much bigger than one in

practice, the case m = 1 is still mathematically and conceptually

insightful as it reflects precisely the original idea of clearing

as considered in, e.g., Yellen (2013). This case has a different

flavor as repartitioning is not necessary. This case is visualized

in the Supplementary Figure 18. The centrally cleared system

Supplementary Figure 18e has the property that each bank b still

has the same trades as before. Still, instead of having them in

multiple netting sets with multiple counterparties, it now has them

compressed into a single netting set with the CCP. This yields a

drastically different netting structure in the cleared system, which

benefits the bank.

4.4 Other aspects

We summarize the remaining aspects of clearing from Figure 1

and the reasoning behind them even though they are not part of

the model: after clearing in the above sense, the member banks of

a clearing house are now no longer exposed to any other member,

but the CCP is exposed to the default to all of them. To mitigate

this risk, the CCP will call its members for collateral in the form of

variation and initial margin. Notice that collateralization is a second

regulation that has also been introduced since the 07/08 crisis for

both cleared and uncleared derivatives.

In case of a clearing member default, the CCP can liquidate

that member’s collateral. However, even if a clearing member is

well over-collateralized at default, the collateral might still not

7 Mathematically, this means that the trade relation graph is simple.

be sufficient to cover the losses. To that end, all clearing house

members must pay into a default fund, which can be used to absorb

those losses. The CCP must also pay into a so-called skin-in-the-

game fund, which absorbs further losses. The purpose of that fund

is to incentivize the CCP to call for enough collateral to avoid

suffering its losses. All remaining clearing members can save the

distressed CCP with their remaining funds if this is still insufficient.

The CCPs and the banks set the precise terms and conditions of this

default waterfall which vary between CCPs.

Finally, it should be highlighted that only the big banks are

usually direct members of the clearing house. If two smaller banks

enter a derivative deal, they can each nominate a big clearing

member bank to clear the derivative on their behalf, complicating

the clearing process further.

5 Clearing and risk graphs

Starting from a bilateral system of trade relations, we have

described how to construct its clearing as the composition of three

operators: repartitioning, pre-clearing, and compression. All these

operators change the trade relation graph of the financial system.

We now want to study the impact of these changes on the risk

graph associated with the trade relation graph. We first stick to

counterparty credit risk exposures (EEPE) and then discuss CVA.

These effects are visualized in the right column of Figure 2.

Before we derive the quantitative a priori estimates of

the clearing operators in this section, we describe the impact

qualitatively; see the summary in Figure 3: the repartitioning always

increases exposures. This is because breaking up an existing netting

set always results in a loss of netting benefits. At worst, this loss

can be arbitrarily large, and at best, it is zero, but it will always

be a loss. This crude a priori estimate cannot be improved upon

without detailed knowledge of the trade data of the netting set. The

only exception is m = 1, i.e., if everything is cleared through one

central counterparty. In this case, this operator has no effect and

can be ignored.

The impact of pre-clearing, however, can be given precisely a

priori: the pre-clearing operator splits every netting set into two

and inserts a CCP in the middle. Thus, after pre-clearing, every

bank in the system has the same risk exposures as before but is

now facing the CCP. As the new players, The CCPs face the banks

and, in total, have the same exposures as them. Therefore, the total

amount of exposure in the system has doubled. This can also be

seen graphically by comparing Figure 2E with Figure 2D: we can

see that the number of arrows has doubled, and one can show that

every risk weight now occurs twice.

After pre-clearing, the banks typically have many netting sets

with the clearing house. The compression operator compresses all

of these into a single netting set. This yields netting benefit gains

and thus reduces the risk in the system again. The precise amount

of reduction also cannot be given a priori as it depends on the trade

and netting details.

5.1 Total levels of exposure

Formally, these insights can be summarized in the

following Theorem.
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FIGURE 3

E�ect of operators.

Theorem 1 (effect of clearing on total risk levels). Let

FS = (B,L, τ ) be a bilateral trade relation graph and assume

that FS has already been repartitioned. Then the total levels of

exposure8 wbil
tot, w

pre
tot , w

cleared
tot in the bilateral system, the pre-cleared

system, and cleared system are related by

0 ≤ wcleared
tot ≤ w

pre
tot = 2wbil

tot. (5)

Both estimates are sharp.

A Supplementary Appendix provides a slightly more general

version of that theorem with more technical details and a formal

proof; see Supplementary Theorem A.21.

The interpretation of Equation (5) is as follows: at worst, the

compression operator does not unleash any netting benefits. In this

case, the pre-clearing simply doubles all the exposures, and the

cleared system has twice as much risk as the bilateral system. At

best, the compression operator unleashes so many netting benefits

that all risks in the system net each other out, and the cleared system

has no risk anymore. In general, some risks will net out while others

do not. We will present examples for all three cases in the case

studies in Section 6, which proves that these estimates are sharp.

The result depends on the chosen metric w and its aggregation.

It holds for exposure but not for CVA, as CVA also depends

on the counterparty’s credit quality. The result also depends on

the aggregation logic, recall Equation (3), and thus on maximally

conservative assumptions on the correlation of risks. If one chooses

a systemic risk metric considering the correlation structure, the

situation would be even more subtle.

Notice that for m > 1, the results of Theorem 1 only hold if

we assume that the system is already repartitioned. As for m > 1,

this is usually not the case. Whether or not a multi-cleared system

is safer depends subtly on the ratio of the loss in cross-asset netting

benefits resulting from the repartitioning vs. the cross-counterparty

netting benefits gains from the compression. We study this effect in

our numerical simulation, see Section 8.

5.2 Netting benefits and transparency

Of course, the relationship Equation (5) is not what one would

intuitively hope for. What we would like to know is if

0 ≤ wcleared
tot < wbil

tot, (6)

i.e., if the cleared system has less risk than the bilateral system (and

not just less than twice the bilateral system).

8 recall the definition Equation (3).

We already know this question cannot be answered a

priori because the bounds in Equation (5) are sharp. However,

one can make precise the notion of netting benefits and

work out a criterion to check this equation that is a bit

more accessible.

To that end, we define for any bank b ∈ B its netting benefit

1±
w (b) : = w±(b)− w̄±(b), (7)

= ŵ±(b)− w̄±(b) (8)

i.e., the difference between the risk w±(b) induced/received by b in

the bilateral system and the risk w̄±(b) induced/received in cleared

system. Because we are assuming that the system is repartitioned

(in particular for m = 1), we have w±(b) = ŵ±(b), i.e., the

risks ŵ±(b) for b in the pre-cleared system are the same as in the

bilateral system, which justifies the second equation, Equation (8).

This formulation has the advantage that it is meaningful for the

banks and the CCPs.

Using this notion, we obtain:

Theorem 2 (netting benefits). Under the same hypothesis as in

Theorem 1, the cleared system has less risk than the bilateral system

if and only if the netting benefits of all banks are bigger than the risk

introduced by all CCPs, i.e., Equation (6) holds if and only if

∑

b∈B

1±
w (b) >

m∑

µ=1

w̄±(cµ). (9)

Some further characterizations of this equivalence are in the

Supplementary Theorem A.24.

Whether or not the cleared system has less exposure than

the bilateral system depends subtly on the topology of the

trade relation graph, the netting structure, the bilateral risk

metric w, and its aggregation logic. Thus, this is a global

property, and it is hard to decide whether or not it holds. The

characterization Equation (9) is useful as it breaks this global

property down into local aggregations. Computing the netting

benefits of each bank allows us to understand at what points in

the system we see a reduction in exposure and at which points we

do not.

Who could verify Equation (9) in practice? While each

bank b ∈ B can compute its netting benefits 1±
w (b), it

cannot know the netting benefits of any other counterparties

in the system. The key insight into netting benefits is that

they are symmetric, i.e., the total netting benefits gained by

all banks are equal to the total netting benefits gained by all

the CCPs.
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Theorem 3 (netting benefit symmetries). Under the hypothesis

of Theorem 1, it holds that

∑

b∈B

1±
w (b) =

m∑

µ=1

1±
w (cµ). (10)

Technical proofs are given in the

Supplementary Corollary A.26.

If we combine the result Equations (9), (10), we obtain

the following:

Corollary 4 (transparency). Under the hypothesis of Theorem 1,

Equation (11) holds if and only if

m∑

µ=1

1±
w (cµ) >

m∑

µ=1

w̄±(cµ). (11)

The Equation (11) is a good example of the transparency

argument made by proponents of clearing: the information about

the system required to answer a question, in this case, whether or

not Equation (6) holds, is available in the CCPs already and does

not need to be aggregated from individual bank data. However, this

is also a good example of how this argument becomes weaker the

more CCPs are used in the system. Only if all trades are cleared

through one central clearing house, this CCP is indeed also a single

point of knowledge.

5.3 Netting benefits and concentration risk

On the other hand, opponents of central clearing argue that

a central clearinghouse creates a single point of failure for the

financial system. Even when multiple clearing houses are used, the

CCPs can become very big entities in the financial system.

Howmuch exposure is concentrated in the CCPs after clearing?

The exposure concentration in the pre-cleared system can be easily

stated: by definition of the pre-clearing operator, all CCPs mirror

the netting sets of the banks and thus, the percentage share of the

risks ŵ±(cµ) of the various CCPs is given by

ρ̂±(c1, . . . , cm) : =

∑m
µ=1 ŵ

±(cµ)

w
pre
tot

=
1

2
.

The situation appears more subtle in the cleared system as the

compression unleashes netting benefit gains for the banks and the

CCPs. However, by Equation (10), these gains are symmetric. Thus,

in the cleared system, this equation holds too:

Corollary 5 (concentration risk). Let FS be a financial system.

Then the exposures w̄±(cµ) of all the CCPs constitute half of the

risk in that system after clearing, i.e.,

ρ̄±(c1, . . . , cm) : =

∑m
µ=1 w̄

±(cµ)

wcleared
tot

=
1

2
.

The Supplementary Appendix discusses these technicalities; see

Equation (49) in Supplementary Appendix.

The interpretation is that form = 1, half of the exposure in the

system is concentrated in the CCP, which confirms the argument

that a clearing house results in a high concentration of exposures.

5.4 E�ect on CVA

Notice that the hypothesis of Theorem 1 requires w to be a

bilateral exposure metric like EPE(t) or EEPE. It does not hold for

CVA as CVA is defined as an average trade exposure weighted by the

probability of default (PD) of the counterparty and thus depends

on the counterparty. Thus, this theorem is not directly applicable.

Exposure metrics like EEPE only consider a loss-given default but

no probability of default. But obviously, the probability of default is

a key quantity in credit risk. Thus, measuring the impact of central

clearing on a financial system in terms of CVA is very interesting.

However, this poses a difficult methodological challenge: How to

compute a clearing house’s default probability?

The usual method, see for example Brigo and Mercurio (2006),

Chan-Lau (2006), and Lichters et al. (2015), of stripping the PD of a

counterparty from CDS quotes requires a liquid market of actively

traded CDS for that counterparty. However, there are no credit

default swaps on CCPs, and thus, no market to estimate its default

probability, PD. While before the 2007/08 crisis, the AAA-rated

bank was the entity in the financial system of which we assumed

it could not default, in the cleared world one might be under the

impression that the CCP is now assumed to be theoretically unable

to default. If we take that seriously, then the PD of the CCP is zero.

Consequently, the CVA of all banks in the system is also zero. The

CCP would still be exposed to non-trivial CVA, but if it cannot

default no matter what, why should one be bothered about its risks?

There are historical examples of defaulted clearing houses; thus,

it cannot be assumed that CCP’s default probability is zero. There

is currently a vivid debate about how one should compute it,

and regulators seem to take the view that a clearing house can

default even though the probability of this event is very low, see

for example, the discussions in Sherif (2016), Arnsdorf (2019), and

Ryder (2019).

Since settling these questions is beyond the scope of this text,

we restrict our scope to exploring the impact of the PD of the CCP

on systemic CVA via a numerical simulation, see Section 8.

6 Stylized case studies

In this section, we discuss a few simple comprehensible

examples of financial systems, which illustrate the formalism

developed in Section 4 and give examples of systems where

the bounds given in Equation (5) are sharp. Some additional

examples of star-shaped, complete, and bipartite trade relation

graphs and their mathematical properties are discussed in

Supplementary Appendix A.5.

In all these examples, we will assume that w is a bilateral

exposure metric.We denote the risk of a bank b in the bilateral, pre-

cleared and cleared system by w±(b), ŵ±(b), respectively w̄±(b).

While the examples in the case studies are too small to be

realistic, they provide structural insight into the problem. This

technique has been used in earlier work to study the impact of

collateralization; see O’Halloran et al. (2017). We focus entirely on

the casem = 1, i.e., on central clearing.
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FIGURE 4

Two banks. (A) Trade relation graph (bilateral). (B) Risk graph (bilateral). (C) Trade relation graph (cleared) (D) Risk graph (cleared).

6.1 Two banks

The simplest example of a financial system FS = (B, L, τ )

is two banks in one trade relationship with a single trade, see

Figures 4A, B. The application of the central clearing operator

yields Figures 4C, D.We conclude thatw±(bi) = ŵ±(bi) = w̄±(bi),

i = 1, 2, i.e., both banks have the same risks in the bilateral, the pre-

cleared and the cleared system. Central clearing does not realize any

additional netting benefits for either of the two banks, but the CCP

induces new risk. Therefore,wcleared
tot = 2wbil

tot, i.e., this is an example

where the upper bound in Equation (5) is sharp.

6.2 The perfect hedge

We now add a third bank into the system and assume that b1,

which has the trade T〈b1, b2〉 with b2, now enters into a perfect

hedge9 T〈b3, b1〉 of that deal with b3. The bilateral trade relation

and risk graphs and their central clearing are shown in Figure 5. In

the cleared system, b1 can realize its netting benefits across the two

counterparties, which is impossible in the bilateral system. Because

the deals are perfect hedges of each other, the result is that they

cancel out. The netting set {T〈b1, b2〉,T〈b3, b2〉} is equivalent to the

empty netting set from the perspective of b1 (and by symmetry also

for the CCP). Thus, 0 = w̄±(b1) < ŵ±(b1) = w±(b1). For the other

banks b2 and b3, no netting benefits can be realized and we obtain

w̄±(bi) = ŵ±(bi) = w±(bi), i = 2, 3.

Notice that in the cleared system, from which we can effectively

remove b1, the remaining counterparties b3, c, and b2 are now

in the same logical trade relationship as b3, b2 and b1 in the

bilateral system, i.e., the risk graphs Figures 5B,D are isomorphic.

Therefore, wcleared
tot = wbil

tot, i.e., the total exposure in the system is

invariant under central clearing. Notice that the CCP cannot net

its trades on its two trade relations because these two are with two

different counterparties.

The perfect non-hedge: In case b1 does not hedge, its deal

T〈b1, b2〉 with b3, but enters into the same deal with b3, i.e., if it

buys T〈b1, b3〉 instead of T〈b3, b1〉, then the two deals do not cancel,

but add up. In that case, we obtain wcleared
tot = 2wbil

tot again. This

9 For this text, we assume that all derivatives are hedged with other

derivatives, which thus also need to be cleared.

illustrates that the risk in the cleared system depends on the trade

relation graph’s topology and the trades’ netting structure.

We conclude that by flipping the long/short flag of a single

trade in that system, the outcome of the central clearing regulation

produces a completely different result. This is problematic because

the impact of regulations should not depend on such subtleties but

should have the desired effect in all reasonable scenarios and even

be robust under unlikely scenarios.

6.3 The daisy chain

We now extend the example in Section 6.2 even further by

assuming that b2 and b3 both want to hedge their trade with b1 by

entering into the deal T〈b2, b3〉, thus inadvertently creating a daisy

chain, see Figures 6A, B.10 The three links in these financial systems

do not add any economic value and thus could be collapsed.

However, this knowledge is not available to any of the three banks

in the system as every one of them only has the full knowledge about

the trade data attached to the two links connecting it to the system,

but not about the third one.

Applying the central clearing operator has a remarkable result

shown in Figures 6C, D: all banks have one netting set of two trades,

which are perfect hedges of each other, and thus all trade relations

are equivalent to winding them down, thus w̄(bi) = w̄(c) = 0,

i = 1, 2, 3, which implies wcleared
tot = 0. This proves that the lower

bound in Equation (5) is sharp too.

Notice that in the bilateral system, all banks are perfectly

hedged, i.e., they all have zero market risk. However, their credit

risk is far from zero: any bank, say b1, faces the two other banks b2
and b3 and is exposed to both their defaults. A default of one of the

two would bring the hedge out of balance, and because it cannot

be determined a priori, one of the two defaults first exposes b1 to

the risk of losing the deal in the money. However, in the cleared

system, every bank faces only one counterparty, the CCP, and thus

this credit risk vanishes. No counterparty, including the CCP, is

exposed to any credit risk.

This example easily generalizes to arbitrary daisy chains, which

do not necessarily need to be closed.

10 See Gallagher et al. (2017) for a discussion on the optimal

bilateral derivatives.
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FIGURE 5

The perfect hedge. (A) Trade relation graph (bilateral). (B) Risk graph (bilateral). (C) Trade relation graph (cleared). (D) Risk graph (cleared).

Definition 1 (daisy chain). A financial system FS = (B, L, τ ) is

called a daisy chain if

(i) The trade relation graph (B, L) is simple and a path, i.e., of

the form

b1
ℓ1

// b2
ℓ2

// b3
ℓ3

// . . .
ℓn−1

// bn, (12)

where n = |B| and bi 6= bj for 2 ≤ i, j ≤ n− 1.

(ii) For each netting set of trades τ (ℓi), there exists a subset Ni such

that subsequent subnetting sets of trades are perfect hedges of

each other, i.e., Ni ∪ Ni+1 ∼ 0.

The daisy chain is closed if b1 = bn.

While a financial system that consists only of a single daisy

chain is, of course, a theoretical construct, the real financial

system does contain a lot of subgraphs, which are isomorphic

to a daisy chain in the sense of Definition 1, and that poses

very real practical problems. Daisy chains introduce economically

unnecessary amounts of counterparty risk into the system and thus

create unnecessary costs to the counterparties to mitigate that risk.

Removing daisy chains from a bilateral financial system is a non-

trivial problem. It has been observed in Gallagher et al. (2017) that

as no bank has the information necessary to detect the existence of a

daisy chain, a possible way to tackle this is to anonymously pool risk

sensitivities of the counterparties and then perform a constrained

optimization procedure to reduce the amount of initial margin

resulting from the daisy chains, but keeping the net sensitivities

fixed. We observe that the clearing house has all information

necessary to detect daisy chains, and the novation of the netting

sets as part of the clearing process automatically eliminates all the

daisy chains.

Daisy chains are just a particularly extreme case of hedges,

and the phenomena observed with daisy chains hold for all

perfect hedges.

7 Systemic risk simulation engine

The mathematical analysis carried out in the previous sections

provides important a priori estimates and conceptual insight into

the impact of clearing, and the case studies provide illustrations

and intuition of these. However, they do not always tell the full

quantitative story regarding larger financial systems. Therefore, we

now proceed to a case study of larger examples of financial systems

using numerical simulation.

The high-level concept of the simulation is as follows (see also

Figure 7): we first generate a sample set of simulated financial

systems, including the trades. Then, under a chosen baseline

regulation (bilateral in this case), we compute all the risks

generated by all the trades in the financial system and aggregate

the outcomes. Finally, we repeat that process for other regulations

and compare the results. This effectively tests for each regulation

the hypothesis that the regulation makes the system safer than the

baseline regulation.

The various steps are described in more detail in the

following sections.

7.1 Generation of trade relation graph
topology

As a first step, we need to generate random trade relation

graphs. While the precise trade relations of the actual financial
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FIGURE 6

Daisy chain. (A) Trade relation graph (bilateral). (B) Risk graph (bilateral). (C) Trade relation graph (cleared). (D) Risk graph (cleared).

FIGURE 7

Systemic risk simulation engine.
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system are confidential, empirical studies based on central bank

data on the topology of trade relations graphs are available. These

studies show that financial systems always have the property that,

on the one hand, there are a few banks at the periphery of the

graph that only have a few trade relations with the core. On the

other hand, a few banks in the core have many trade relationships,

particularly with each other. This core-periphery model can be

found, for instance, in Kley et al. (2014) and also in Craig and von

Peter (2010), which applies it to the German market. Similar results

have been obtained in Cont et al. (2013) for the Brazilian market

and in Boss et al. (2004) for the Austrian market—both study

the distribution of the node degree of the banks. Both conclude

that besides a periphery of banks, which do not have many trade

relations, in the core, banks have a Pareto distributed node degree,

i.e., there are a few banks with many connections and many banks

with fewer connections.

Therefore, for this simulation, we approximate this by assuming

that the financial systems have a Pareto distributed node degree

(meaning the periphery is a bit more connected and the core a bit

less than in the core-periphery model). Generating graphs such that

their degree sequence has a prescribed distribution is a non-trivial

problem in discrete mathematics. We use the erased configuration

model as implemented in the Python library networkx to

compute the graphs; see also Newman (2003), Britton et al. (2006),

and Bayati et al. (2007). The Pareto distributed degree sequences

are generated using the Python library numpy.random, see

Oliphant (2006). An example of a graph generated with this

technique is shown in Figure 10, where the Pareto parameters

xmin = 3 and exponent α = 2 are used.

7.2 Trade generation

Generating the trade data for the simulation is challenging

because the trade deals in the real financial system are strictly

confidential and thus cannot be used as an empirical baseline. There

are some high-level statistics available, though, for example, in the

data warehouse by the BIS11 or the annual statistical report by

ESMA, see Securities and Authority (2018). These sources provide

interesting insights into the financial system, but this data cannot be

used to calibrate our simulation because it is not granular enough.

The question of how many details about the financial system can

be recovered from publicly available data is compelling but also

difficult to answer. We plan to investigate this in further research.

For the simulation at hand, we will choose marginal priors of

the trade distributions, see Figure 9. While these distributions are

arbitrary, one can expect a typical trade in the real financial system

to be within their range. We then generate the trade data in two

steps: first, we create a repository of trades using the marginal

priors. Second, we assign these trades to trade relations in the

financial system by choosing a uniformly distributed number k

between a lower and an upper bound for each link in the system.

The trade list on that link is then filled by simply drawing from

the generated repository with replacement (for any given link),

where all trades are chosen with equal probability. The results are

11 See https://www.bis.org/statistics/dataportal/derivatives.htm.

FIGURE 8

Trade representation in ORE XML.

converted into ORE XML format, such as the example shown in

Figure 8 using the Python library lxml.

7.3 Counterparty risk simulation

In the next step, we need to compute the risks in every trade of

every netting set from the perspective of every bank under every

regulation. Even calculating the risks in one derivative from the

perspective of one bank is a non-trivial task, which typically falls

into the responsibility of a bank’s risk function. In theory, one could

use the risk management system of any bank for that purpose, but

the code of these proprietary systems is as confidential as the trade

data that flows through them. Consequently, these engines are not

available for academic research. Therefore, we use the Open Source

Risk Engine (ORE) instead, see ORE. The reason for this choice is

that its license allows the use for academic research, its design is of a

similar style as proprietary risk engines and due to the open source

model its calculations are transparent, which enables validation

and replication.

ORE consumes a derivatives portfolio with netting information,

market data, and various configuration files and computes the

risks in that portfolio from the perspective of a single bank. The

risks are calculated by first identifying and evolving the relevant

risk factors of a portfolio, such as interest and FX rates. ORE

then simulates these risk factors into the future with risk factor

evolution models calibrated to a current market data snapshot. The

cross-asset simulation rests on a 1-factor Hull-White model for the

interest rate and a geometric Brownian motion for the FX rate.

These models introduced in Hagan (2015), and Hull and White

(1990) have the advantage that they are very well established. The

evolved risk factors are then used to price the derivatives using risk-

neutral valuation and compute exposures and XVAs. Finally, the

results are aggregated into standard regulatory exposure metrics.

More background on the methodology can be found in Lichters

et al. (2015). Technically, ORE is implemented in C++ and rests on

QuantLib, see QuantLib. More details on ORE’s data flow and the

input/output formats can also be found in its user guide; see ORE

(2018).
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FIGURE 9

Marginal priors of trade repository generation.

7.4 Aggregation

A key output of the ORE simulation is a set of csv files

containing the risk metrics of the input trades. We use the

Python library pandas to parse these files and then compute

the risk graphs of all the trade relation graphs in the system

(including all the weights). We then aggregate this information to

the counterparty level and then to the systemic level. Finally, we

compute a comparison data frame to compare the results under

different regulatory regimes. Notice that this data flow mirrors the

level of aggregation when passing from a microeconomic view of a

financial system to a macroeconomic view—hence bridging the gap

between the two.

7.5 Validation

The inputs and outputs of a standard ORE configuration are

already quite complex. The configurations we used to model the

entire financial systems under multiple regulations and produce

input configurations and output files which are too big to be

human-readable and have a very complex structure. To validate the

intermediate and final results, we perform integrity and consistency

checks on the input XML files, the output csv files, and the

trade relationship and risk graphs. These checks include, for

example, that the NPV of every trade has the opposite sign for

the two counterparties, we check that the number and id of deals,

counterparties, and systems are consistent across the various files,

and we also check that the impacts guaranteed by Theorem 1

hold. Technically, we perform these tests using the Python library

FIGURE 10

Example of a trade relation graph, where the node degrees are

sampled from a Pareto distribution with xmin = 2, α = 2.

FIGURE 11

Average impacts across systems (EEPE).

unittest. Using unit tests to test data rather than code is a rather

novel technique dubbed TDDA (test-driven data analysis).12

7.6 Visualization

To inspect, understand and visualize the outputs, we use

a jupyter notebook to create various views on the data

using ipywidgets to produce interactive plots drawn using

matplotlib. This notebook has produced all the results shown

in Section 8, for example, Figure 11.

8 Simulation case study results

In this section, we present the results13 obtained by running the

systemic risk engine described in Section 7.

12 See http://www.tdda.info/ for a library implementing this specifically for

anomaly detection.

13 The underlying Jupyter notebook is available here: https://github.com/

niknow/systemic-risk.
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8.1 Simulation setup

We generate a repository of 10, 000 trades according to the

logic described in Figure 9 and 2 financial systems14 with 30

counterparties each. The trade links are created according to the

logic described in Section 7.1 with a minimum of xm = 3 and

a Pareto exponent of α = 2.15 The links are then populated by

randomly choosing a uniformly distributed number of 5–15 trades

from the trade repository. The systems have a total of 2, 988 trades

in 294 netting sets, see Figure 10 for a visualization of a trade

relation graph.

For the ORE simulations, we need to supply a full set of inputs,

which besides the trade and netting relations described above,

also need a market data snapshot that contains, in particular, the

implied volatilities and mean reversions for the interest rate model,

the implied volatilities for the FX model and the instantaneous

correlations between all these risk factors. Obtaining consistent

and up-to-date market data for such simulations is a non-trivial

and cost-intensive problem that most banks solve by entering into

suitable licensing agreements with their market data vendors. For

the purpose of this case study, we use the free market data snapshot

for 05/02/2016 that is supplied with the engine.16 For the curve

conventions and simulation settings, we use the standard config.17

The number of Monte Carlo paths is set to 1, 000.

We then define the six regulations corresponding to the

formalizations in Section 4, namelybilateral,pre_cleared,

cleared, repartitioned, multi_pre_cleared and

multi_cleared and study their impact measured in EEPE

and CVA. For central clearing, only m = 1 clearing house is used;

for multi-clearing, m = 2 clearing houses are used. The impact

measured in CVA depends on the rating of the CCPs. We avoid

the problems with determining the CVA of the CCP discussed in

Section 5.4 by mandating the rating of the CCPs: we use the three

fictitious ratings18 AA, AAA, and AAAA, which we arbitrarily

define by flat hazard rate of 2%, 1% and 0.5%. We assume that all

banks in the system have a rating of AAA. We then study the six

base regulations under three different ratings of the clearing house.

As bilateral and repartitioned do not depend on the

14 For a given e�ort of computation, one can either increase the number

of financial systems or the number of counterparties within each system.

Increasing the number of counterparties yields more interesting insights than

generating more financial systems sampled from the same distributions.

15 The reason for this choice of parameters is that these result in a good

trade-o�: on the one hand the resulting trade relation graphs still qualitatively

exhibit the core-periphery property as evident from Figure 10, i.e., the core

has many nodes that are connected to many other nodes in the core, but at

the periphery the node degree is lower. On the other hand, the total number

of nodes and links is small enough such that the total computational e�ort is

still manageable for us to run.

16 https://github.com/OpenSourceRisk/Engine/blob/v1.8.4.0/Examples/

Input/market_20160205_flat.txt

17 See https://github.com/OpenSourceRisk/Engine/blob/v1.8.4.0/

Examples/Input.

18 We only use these ratings as scenario labels. In particular, we do not

claim that any of the big rating agencies would assign these ratings given the

chosen hazard rates in practice.

rating, we obtain a total of 14 regulations, including bilateral,

which serves as our baseline.

8.2 Average impact of regulations

The average total impact of the regulations on the financial

systems measured in EEPE is shown in Figure 11. We find that

pre-clearing doubles the exposure while clearing then reduces it

again—in this case, to nearly the same level as before. Thus, central

clearing has almost no effect in this case. Multi-clearing through

m = 2 CCPs has an adverse effect as the repartitioning increases the

exposures further. Notice that these results align with the a priori

estimates Theorem 1.

When measuring the effect in CVA, the situation becomes

significantly more complex; see Figure 12. For the AAA rating,

the impact of clearing measured in CVA is qualitatively the same

as measured in EEPE because, in that case, all counterparties in

the system have the same PD, and all exposures are weighted

equally. The adverse effects of clearing are exacerbated when the

credit quality of the CCPs deteriorates, i.e., in the AA rating. For

the maximum rating AAAA, we can see that the centrally cleared

system is now finally safer than the bilateral system. But even when

both CCPs are AAAA-rated, the risk in the multi-cleared system is

still higher than in the bilateral system. For all regulations, the risk is

monotonously decreasing in the rating, i.e., the risk gets lower when

the rating for the CCPs improves, which is in line with intuition.

The conclusion is that the more CCPs are used for multi-clearing,

the lower their PD has to be to obtain a multi-cleared system, which

is safer than the bilateral one.

8.3 Impact on banks

We now drill into the first financial system (the impacts on the

other one are similar) and study the impact of the regulations on the

various banks. In Section 5, we identified the netting benefits as the

decisive factor for these. They cannot be determined a priori but can

be computed in the simulation; see Figure 13. In the case of central

clearing, see Figure 13A, all banks enjoy exposure netting benefits,

and thus, central clearing is unambiguously risk-reducing for the

banks (however, the sum of these netting benefits may or may not

outweigh the additional risks introduced by the clearing house). In

Figure 13B, we see that in the case of multi-clearing, the netting

benefit gains are accompanied by netting benefit losses. Thus the

total impact on a given bank may reduce or increase its exposures.

We conclude that it cannot be guaranteed that multi-clearing has

the desired effect.

In particular, for CVA, it is instructive to compute a histogram

of the relative impact of the regulations, sees Figure 14. We

observe two effects: first, for both central and multi-clearing, the

deteriorating credit quality of the CCPs makes the distribution of

impacts wider and more skewed toward risk increases. Second,

passing from central clearing, see Figure 14A, to multi-clearing,

see Figure 14B, has the same effect. This means that the more

CCPs are in use, the better their credit quality will be to have the

desired effect.
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FIGURE 12

Average impacts across systems (CVA): comparison of clearing regulations against bilateral baseline in low (AAAA), medium (AAA) and high (AA) risk

scenarios.

A B

FIGURE 13

Absolute netting benefits (EEPE). (A) Central clearing. (B) Multi-clearing.

8.4 Risk concentrations

We compute the concentration of risk exposures in the

system, recall Equation (4), for all counterparties, see Figure 15.

In line with Corollary 5, we find that exactly 50% of the

exposure is concentrated in the CCPs (indexed with −1 and

−2 here). The risk concentration of the original banks is

squeezed into the remaining 50%. In Figure 16, we can see

that this no longer holds for CVA+: when the credit quality

of the CCPs deteriorates, the risk is even more concentrated

in the CCPs. This illustrates how strongly the safety and

soundness of the system depend on the credit quality of

the CCPs.

9 Conclusion

We have presented an approach to analyze the impact of

regulation on systemic risk by enhancing the standard risk graph

model to include an underlying trade relation graph. This enables

three forms of analysis: (i) theoretically motivated a prioi estimates,

(ii) stylized case studies, and (iii) simulation case studies.

In the case of central clearing, we have shown how the a priori

analysis of the graph models yields insights into the total levels and

concentration of exposure and have identified the netting benefits

and losses as a key driver impacting systemic risk. The stylized case

studies of even very simplified financial systems provide a clear

illustration on how the a priori estimates can play out under various
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A B

FIGURE 14

Relative counterparty impacts (CVA−). (A) Central clearing. (B) Multi-clearing.

FIGURE 15

Relative impacts per counterparty in system (EEPE+).

scenarios. Finally, we have shown that it is technically feasible to

create a simulation environment for a much more sophisticated

case study via a systemic risk engine. While the proprietary trade

data of the real financial system is not available, we have shown

that this is sufficiently robust to deliver front-to-back analysis of

entire financial systems that have synthetic trade data. Even with

limited computational resources and hence limited samples size

of 10 financial systems, it yields detailed micro- to macro insights

on how the regulation plays out. Not only do we obtain the total

average impacts on exposure, CVA and concentration, but also

detailed visibility of the netting benefits and losses on a bank level.

The disentanglement of the competing effects driving the impact

of central clearing is summarized in Figure 17. Depending on the

various magnitudes, central clearing can either make a positive or

a negative impact on the risks in the system as a whole. The benefit

is that regulators or policymakers can now identify more precisely

potential points of failure of regulation and alter the regulation

accordingly. In this case, an example would be the concentration

risks and the adverse effects of too many clearing houses.

While the simulation case study is much more sophisticated

and realistic than the stylized case studies, it nevertheless cannot

capture all possible aspects. Nonetheless, the flexibility of our

method allows the analysis to expand in multiple directions:

Calibration: in the simulation described in Section 7, we generate

the trade distribution using the marginal priors summarized

in Figure 9. Publicly available statistics such as the ESMA

report, see Securities and Authority (2018), or the BIS website

(see text footnote 11) indicate that the marginal priors used

in our simulations capture typical trades. These priors can

be refined such that the distributions of trade features in
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FIGURE 16

Relative impacts per counterparty in system (CVA+).

FIGURE 17

Competing e�ects.

the simulated system match the analogous distributions in

empirical data more closely.

Robustness: it is neither possible to calibrate the simulation to

that empiric data uniquely nor is it advisable as the impact of

regulation should not be overly sensitive to the chosen trade

data. Our framework enables us to conduct robustness tests of

the underlying assumptions by varying the distributions that

generate the trade data.

Agent-based modeling: in the next step, one could remove the

marginal priors and instead use an agent-based modeling

approach on the nodes, for which the resulting trade

distributions are an output rather than an input to the

simulation. Agent-based modeling has been used in systemic

risk research, for example, in housing market studies, see

Geanakoplos et al. (2012).

Correlations: we have pointed out in Section 3.5 that the logic to

aggregate risks from the links to the nodes and the system

implicitly assumes a maximally adverse correlation structure

of the risks. This is a business practice and regulatory standard

for aggregating exposures, but this picture of the correlations

is inaccurate. We plan to estimate a correlation structure in

the simulation and incorporate it into the risk metrics.

Liquidity: the metrics in the risk graph can measure arbitrary

types of risk, yet we have only used EEPE and CVA to

measure counterparty credit risk. However, liquidity risk was

one of the most dangerous types of risk in the aftermath of

the financial crisis. Therefore, we plan to add liquidity risk

metrics to the simulation to analyze the impact along this

additional dimension.

Collateralization: the present paper studies the impact of

central clearing without collateralization, and we have

studied the impact of collateralization without clearing,

see O’Halloran and Nowaczyk (2019). We plan to study

the combined impacts, particularly the above-mentioned

liquidity risks.

Cloud: finally, we plan to scale up the magnitude of the simulation

by using cloud-based technology.
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