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In recent years, with the rapid development of deep learning technology,

great progress has been made in computer vision, image recognition, pattern

recognition, and speech signal processing. However, due to the black-box nature

of deep neural networks (DNNs), one cannot explain the parameters in the deep

network and why it can perfectly perform the assigned tasks. The interpretability

of neural networks has now become a research hotspot in the field of deep

learning. It covers a wide range of topics in speech and text signal processing,

image processing, di�erential equation solving, and other fields. There are subtle

di�erences in the definition of interpretability in di�erent fields. This paper divides

interpretable neural network (INN) methods into the following two directions:

model decomposition neural networks, and semantic INNs. The former mainly

constructs an INN by converting the analytical model of a conventional method

into di�erent layers of neural networks and combining the interpretability of the

conventional model-based method with the powerful learning capability of the

neural network. This type of INNs is further classified into di�erent subtypes

depending on which type of models they are derived from, i.e., mathematical

models, physical models, and other models. The second type is the interpretable

network with visual semantic information for user understanding. Its basic idea is

to use the visualization of thewhole or partial network structure to assign semantic

information to the network structure, which further includes convolutional layer

output visualization, decision tree extraction, semantic graph, etc. This type of

method mainly uses human visual logic to explain the structure of a black-box

neural network. So it is a post-network-design method that tries to assign

interpretability to a black-box network structure afterward, as opposed to the

pre-network-design method of model-based INNs, which designs interpretable

network structure beforehand. This paper reviews recent progress in these areas

as well as various application scenarios of INNs and discusses existing problems

and future development directions.

KEYWORDS

model decomposition, semantic graph, interpretable neural networks, electromagnetic
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1. Introduction

Human natural intelligence arises from the evolutionary innate brain after empirical

learning. Human intelligence has invented computing technology, and now people hope to

use it to implement artificial intelligence (AI). With massive big data and high-performance

computing, the emergence of deep learning, that is, DNNs have led to the explosive

development of AI. However, DNNs are still essentially a function-fitting technique. They

are black-box methods lacking interpretability and have weak generalization ability when

the network doesn’t have enough high-quality training data. The ability to logically reason

is one of the basic characteristics of human intelligence. Getting inspiration from the
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process of human logical reasoning to realize explainable AI is one

of the directions of next-generation AI.

Human intelligence’s logical reasoning can be classified as either

deductive or inductive reasoning (Goswami, 2011). Deductive

reasoning starts with a clear premise, which often is a well-

known fact or truth. It can be used to construct a theoretical

model through principles, so it has a rigorous expression (Clark,

1969; Johnson-Laird, 1999). Inductive reasoning is similar to data

analysis, fitting, and clustering in that it draws on prior experience

to predict current or future events (Sternberg and Gardner, 1983;

Heit, 2000). As can be seen, existing deep learning (DL) approaches

are analogous to inductive reasoning, that is, inducing principles

from massive datasets. However, human inductive reasoning is

interpretable since the process of human induction follows a well-

defined semantic framework. Specifically, humans use eyes to

sense the world and then use inductive reasoning to infer the

type of a new thing and obtain semantic information from prior

knowledge. Hence, by learning from the nature of human inductive

reasoning, existing DL methods can accomplish semantic INN. On

the contrary, traditional non-machine learning methods are similar

to deductive reasoning, which refers to the process of developing

theoretical models based on domain knowledge by specialists.

Then the appropriate algorithms are developed to solve these

problems by utilizing the theoretical models. Thus, interpretability

can obviously be achieved by drawing inspiration from theoretical

model decomposition.

As shown in Figure 1, this paper reviews and analyzes the

existing INN research according to these two ideas. Model

decomposition alternative INN learns from traditional theoretical

models, that is, the combination of DL models and theoretical

models to realize INN with the domain knowledge embedded in

the network designing. On the contrary, semantic INN is closer

to human semantic interpretation, and it is the combination of

DL with the process of semantic inductive reasoning, which adds

clear semantic information to neural networks (NNs) afterward.

These two approaches can help mitigate issues of current data-

driven approaches such as weak generalizability, inexplicability,

and low fidelity. The principles of defining and implementing

INN are mainly discussed in this paper. This section discusses

the origin of INN along with the development and limitations of

DL, and finally gives its definition and development as well as the

practical applications.

1.1. Demands and challenges of INN

The rapid development of DNN has benefited from big data,

improved algorithms, and high-efficiency computing. However,

the current DL methods are completely data-driven, which means

that very large-scale annotated data are required for training to

get ideal results (McCulloch and Pitts, 1943; Deng et al., 2009;

Dahl et al., 2011; He et al., 2015; Krizhevsky et al., 2017; Zhou

et al., 2017; Montavon et al., 2018). As a black-box approach, it

has serious drawbacks in terms of robustness and interpretability.

In many AI-powered application scenarios such as autonomous

driving, target recognition, etc., interpretability and robustness are

crucial aspects of AI technology. Gregor and LeCun (2010) were

the first people to put forward the theory of interpretability of

neural networks. They adopted the method of combining sparse

coding with traditional NNs so that DL inherited the model-

based method’s interpretability and the learning-based method’s

efficiency. According to the current research, we summarize the

existing approaches of constructing an INN as two groups, which

are the model decomposition alternative INN and the semantic

INN, based on the way to perform inference, as shown in Figure 2.

Conceptually, the common thread of delivering applications

based on the model decomposition alternative INN is related

to human deductive reasoning. While implementing the model

decomposition alternative INN, the investigator decomposes the

conventional algorithm based on the mathematical-physical model

into several calculation steps, which can be transformed into the

computation process of a NN. Similarly, the common thread of

explaining applications based on the semantic INN is relevant to

human inductive reasoning. The implementation of the semantic

INN is to construct the explanation graph with the assistance

of engineers, which in turn helps them determine whether

the network is working correctly. Following the above INN

construction principles, Sections 1.2, 1.3 describe the application

of two types of INN in detail.

1.2. Applications of model decomposition
alternative INN

The model decomposition alternative INN is based on the facts

of the real world. It decomposes a complex mathematical model or

physical model into several modules that are easier to handle. Then,

according to the prior knowledge, it transforms the computational

process of these modules into NNs’ hyper-parameters or hidden

layers so that the NNs are interpretable (Zhang et al., 2018;

Shlezinger et al., 2020). This kind of interpretable method is

equivalent to unfolding the “black box” of the original NNs and

using some artificial and controllable parameters and structures to

replace the weights without mathematical and physical meaning

in DNN. In order to extract these artificial and controllable

parameters and structures, the problem must have a theoretical

model. Applications of INNs based on mathematical models,

physical models, and some other models are given in Figure 2.

For example, the mathematical modeling problem solved by

convex optimization or non-convex optimization algorithms can

be used to guide the designing of the objective function. This

method can be used to solve common partial differential equation

(PDE) (Rudy et al., 2017; Zhang et al., 2019b; Rackauckas et al.,

2020) or image deblurring, super-resolution, and other tasks

(Daubechies et al., 2004; Wang et al., 2015; Li et al., 2020).

The role of the physical model in model decomposition

alternative INN is different from that of the mathematical

model. The computing process and parameters that have physical

meanings of standard algorithms solving physical models are

replaced by hidden layers and weights in NNs. In the field of

electromagnetic physics, Fan et al. combine the finite difference

time domain (FDTD) method to construct an recurrent neural

network (RNN) to model the propagation of the wave equation

and estimate the medium parameters (Hughes et al., 2019).
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FIGURE 1

Human intelligence and artificial intelligence.

Guo et al. (2021) use the method of moment (MOM) to construct

an INN, which computes the forward scattering field in a two-

dimensional plane and predicts the inverse scattering parameters

(Li et al., 2018; Wei and Chen, 2019; Xu et al., 2020). In the field of

fluid mechanics and dynamics, Fang et al. (2021) use data-driven

acceleration to deduce the speed and position of turbulent motion

and used a physics-informed neural network (PINN) to discover

the parameters of the higher-order nonlinear Schrodinger equation

(NLSE). There are also many pieces of research using PINN to

solve dynamic equations with a special INNmethod (Brunton et al.,

2016; Sirignano and Spiliopoulos, 2018; Kochkov et al., 2021).

Other models in Figure 2 include non-mathematical physical

models, such as problems in the field of biochemistry. By

dealing with fluorescent images, Belthangady and Royer (2019)

and Li et al. (2021) summarized applications of using DL

to achieve microwave fluorescence image reconstruction. In

ultrasound imaging, the intensity of clutter signals is usually

relatively large and the distribution range is relatively wide,

which seriously affects the accuracy of ultrasound imaging.

The INN combined with principal component analysis (PCA)

is proposed to achieve main beam extraction and clutter

removal in Chien and Lee (2017); Lohit et al. (2019); Solomon

et al. (2019). The performance of model decomposition INN

is closely related to the physical limitations of the specific

theoretical models.

1.3. Applications of semantic INN

Another direction is semantic INNs, and their interpretability

mainly comes from the perspective of the human brain to

realize the interpretable meaning of DNNs (Fan et al., 2021).

Obviously, this is closely related to semantics, which means

features or attributes described by people in language, and

it reflects the process of people’s understanding of the real

world. Furthermore, it includes three aspects, i.e. visualization of

convolution neural network (CNN), decision tree regularization,

and semantic knowledge graph.

Visualization CNN is an interpretable method for a trained

model. The basic idea is to display the output of each feature map

of the network in the form of a weight heat map to show what role

each layer played in accomplishing a given task (Wang et al., 2018a;

Zhang and Zhu, 2018). In other words, it can activate different

regions in the layers of NNs to distinguish the meaningful parts

of the input (Guidotti et al., 2018). Its interpretability is reflected in

the visualization, and the NN model itself is still a “black box.”

The methods based on decision trees are proposed to help

achieve the interpretability of NNs (Frosst and Hinton, 2017; Wu

et al., 2018). The decision tree is a directed graph composed of

parent nodes and child nodes. Its parent nodes and child nodes have

semantic information, and the directed connections of decision

trees make the path between the parent node and each child node

also meaningful. Combining the decision trees which are the prior

knowledge with layers of NNs can enhance the interpretability

and robustness of DNNs. According to the region where the

regularization acts, the interpretability method of decision tree

extraction is divided into three types, which are global, local,

and regional regularization decision trees, respectively (Lapuschkin

et al., 2019; Wu et al., 2020).

The third approach is an interpretable graph neural network

(GNN) that combines semantic graphs and DNNs, and its main

idea is to utilize the semantic information contained in graphs to

enhance the interpretability of DNNs. Zhang et al. (2017) use the

AND-OR structure to realize target recognition (Si and Zhu, 2013;

Akula et al., 2019), and the knowledge graph (KG) was mapped to

the convolutional layers and the pooling layers. George et al. (2017)

add side connections to form a recursive cortical network (RCN)

which realized the verification code images denoising. The recently

emerging zero-shot learning utilizes a mixture of KG, GNNs, and

DNNs, which are combined with KG to realize the function of

NNs inference learning, and multi-sample detection or recognition

(Lampert et al., 2009; Palatucci et al., 2009; Kipf and Welling, 2016;

Wang et al., 2018b; Chen et al., 2019; Lu et al., 2019; Yue et al.,
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FIGURE 2

The classification of INN.
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2021). In the field of integrated circuit (IC) design, Mirhoseini et al.

regard the circuit diagram as a GNN and used the semantic feature

extraction to complete efficient and accurate IC design (Mirhoseini

et al., 2021). Chen et al. (2021) use a GNN expansion to crop an

overlapped graph, extract the main parts of the graph, and realize

graph denoising.

1.4. Comparison of model decomposition
alternative INN and semantic INN

The research on interpretability is currently in the development

stage. A large body of literature describes the implementation of

explaining NNs and the construction of INNs. The above sections

introduce two types of INN techniques and list the applications of

INNs in signal processing, image classification, solving differential

equations, etc. To better comprehend the basic principles of INNs,

we emphasize that model decomposition alternative INN provides

the mapping between the mathematical-physical model and NN’s

parameters or structures, while the semantic INN extracts the

explanation graphs from NN by engineers using standard coding

methods. The former converts mathematical-physical models

that humans can understand into operators that computers can

recognize, while the latter transforms the output of computers into

semantics that humans understand.

Specifically, for the presented application of the model

decomposition INN method, such as solving differential equations

and image restoration, embedding a mathematical-physical model

into the NN enhances the robustness of network training

and convergence performance. However, those applications

mentioned here have no semantics, so they are not reasonable

for verifying network results with semantic INN analysis.

Similarly, considering image classification tasks using semantic

INN, extracting explanation graphs from pre-trained NNs assists

engineers in evaluating the training state of NNs and improving

their reliability. Still, the image classification task is hard to describe

as a mathematical-physical model, thus it is not realistic to modify

the network structure by embedding the traditional model. In other

words, those two types of INNs are suitable for different tasks, and

we need to choose the corresponding INN method according to

the requirements.

To sum up, INNs are widely used in various fields. People pay

great attention to the principles of high efficiency of NNs, and INN

can give a reasonable explanation that ensures the reliability and

security of network outputs. This paper focuses on the definition

of INN and how to use INNs. In the following sections, the model

decomposition alternative INNs and semantic INNs are introduced

in detail. Finally, we present the application of INNs to solve

practical electromagnetic problems and conclude with a summary.

2. Model decomposition alternative
INN

In this section, we will analyze the way to use mathematical,

physical, and other models of a given task to achieve model

decomposition alternative INNs from the perspective of

different models. Figure 3, presents the alternative approaches

of implementing model decomposition alternative INNs and the

interpretable regions of the NNs.

2.1. Mathematical model-decomposition
INN

First of all, the mathematical model has a very broad concept.

Almost all problems can be represented by a mathematical model.

Without losing the generality, the mathematical model in this

article can be expressed by the function f (x, θ), where x represents

the input variables, θ represents the parameters of the mapping

relationship of the function f (x, θ). Subsequently, the process of

network training is the process of recovering the parameters of the

mapping, holds that

ŷ = f (x1, x2, ..., xi, ..., xn; θ1, θ2, ..., θj, ..., θm), (1)

where the ŷ denotes the estimated output of the mathematical

model. The specific expression of the function f (x, θ) is not our

major concern here. It is decomposed as the optimized objective

of the INN for training. The next step is to define the optimized

objective or loss function according to the mapping function f .

Generally, the loss function is denoted by L(ŷ, y), as shown in

Equation (2).

L(ŷ, y) = Distance(ŷ− y), (2)

where y represents the true value of the solution, and L(ŷ, y)

refers to the “distance” between the true value and the model

output. In classification fields, “distance” can be expressed in terms

of probability, that is, they choose the cross-entropy loss as the

loss function. In regression tasks, “distance” is usually expressed

in terms of norms, and l1-norm and l2-norm are both common

choices. In image processing, “distance” reflects the reconstruction

performance between the real image and the processed image, and

the structural similarity index method (SSIM) is usually used as the

evaluation standard for images. Accordingly, it’s essential to choose

the most suitable loss function when dealing with different types

of problems.

The last step of the INN based on the mathematical model is to

decompose the optimized objective, and the alternating direction

method of multiplier (ADMM) (Boyd et al., 2011), half-quadratic

splitting (HQS) (Wang et al., 2008), and conjugate gradient (CG)

(Liu and Storey, 1991; Hager and Zhang, 2006) are widely used

in convex optimization problems. In addition, the Markov chain

Monte Carlo (MCMC) method (Geyer, 1992; Pereyra et al., 2020)

combined with Bayesian estimation is applied to solve non-convex

optimization problems. This subsection starts with the regression

problem of solving PDE and the image processing problem of

image deblurring. It then expands the basic principle of INN based

on a mathematical model and gives its general pipeline in Figure 4.

2.1.1. Universal partial di�erential equations
The mesh-based techniques are widely used in solving

differential equations. The basic idea of it is to mesh the differential
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FIGURE 3

Model decomposition alternative INN.

FIGURE 4

Mathematical model-decomposition INN.

equations into grids according to the small amount1t of each step,

and then the relationship f (tk; tk+1) between the previous moment

and the next moment is written with the unit small amount 1t.

Finally, by using iterative processes, the relationship between the

start time and the end time will be found. However, due to the

exponential growth in the number of mesh points with the number

of dimensions, it is impossible to solve high-dimensional PDEs with

mesh-based techniques. In contrast, the data-driven approach of

machine learning (ML) can be more flexible and allows one to drop

the simplifying assumptions that are needed to derive theoretical

models from the data. Therefore, many scholars consider using ML

to solve differential equations, and Rudy et al. (2017) found the

terms of the controlling PDE that most properly described the data

from a wide library of probable candidate functions using data-

driven sparse regression techniques. The basic idea is to use the

value of f (x, y) at a space-time sampling grid to infer the PDEwhich

is satisfied by the system. First, they assume that the PDE can be

represented by a series of functions:

ft = N(f , fx, fxx, ..., x,µ), (3)

where the subscript represents the differential of the function f

in time or space, N(·) is the uncertain parts in PDEs, and µ

represents other parameters that may be related to configuration.
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Rudy et al. (2017) replace the combination of multiple functions

with F, and replace other influencing parameters with P. Then, the

PDE of this system can be written as:

Ft = 2(F, P)ξ . (4)

The dictionary 2 contains all possible entries in the PDE for a

given system. ξ is a sparse vector, and each non-zero item of it

indicates that there is a corresponding entry of the dictionary 2

in the controlled PDE of the system. Each entry of F is a specific

candidate term for a certain point in space at a certain moment, and

each entry of P represents the influenced input of the system, which

is also assigned to each point and moment. Using sparse regression

to find the controlled PDE of a given system without searching

for all possible components can effectively reduce the calculation

complexity. However, there are still problems with a large number

of matrix calculations and the lack of scientific principles in data-

driven models. In Rackauckas et al. (2020), Rackauckas proposed

an ML method that combines domain scientific knowledge and

called this combined model the universal differential equation

(UDE). The scientific knowledge is incorporated into theNNswhile

achieving two goals: reducing the size of the NN structure and

speeding up the solution of differential equations.

Let’s consider a quadratic ordinary differential equation (ODE)

problem. Assuming that there is a natural ecosystem that consists

of prey and predators. The variation of prey ẋ is related to its birth

rate and capture probability, while the increase of predators ẏ is

also related to its birth rate and capture influence. In particular, the

capture effect of the prey and predators is mutual, and the variance

of both prey and predators can be written as an ODE, namely

ẋ = ax− bxy, (5)

ẏ = cy− dxy, (6)

where a and c are the birth rates of the prey x and predators y,

and the b and d are the mutual influence rate of the prey and

predator, respectively. In this case, the mutual influence rates of

both targets need to be estimated. To address this problem in a

standard method, it is necessary to mesh y and x into data points

and then extract the correlation coefficients b and d by data fitting.

Finally, according to the initial ODE, the value of data points at the

next moment can be deduced as follows:

xk − xk−1

t
= axk−1 − bxk−1yk−1, (7)

yk − yk−1

t
= cyk−1 − dxkyk−1, (8)

xk = (at + 1)xk−1 − btyk−1xk−1, (9)

yk = (ct + 1)yk−1 − dtxkyk−1. (10)

The traditional method for deriving the solutions of ODEs

is only suitable for the case of low order and low dimension.

In the mathematical model-decomposition INN, DL approaches

are used to learn unknown interactions between x and y, which

means that the second parts in Equations (5, 6) correspond

to NNs.

As shown in Figure 5, combined with the iterative processes

for solving ODEs, a universal ordinary differential equation

(UODE)-based symbolic regression is constructed, and scientific

knowledge and prior conditions are integrated into the process

of discovering and solving ODEs, which reduces the number of

trials and errors of the network (Li et al., 2020). And due to the

prior conditions of a realistic system, it is no longer essential to

construct a dictionary matrix containing each derivative term of

the independent variable when applying a UODE-based symbolic

regression to discover and solve ODEs, and only the finite term

polynomial coefficients need to be estimated. Therefore, using the

mathematical model-decomposition INN can greatly reduce its

computational complexity.

2.1.2. Image deblurring
In the area of image processing, traditional model-based

algorithms include image erosion and expansion, edge gradient

extraction, Fourier transform, wavelet transform, and matched

filtering (Ramella and Sanniti di Baja, 2007; Danielyan et al.,

2011; Burger et al., 2012). Due to the domain transformation

and matrix inversion procedures in traditional image processing,

the edge shadow and ringing effect may happen in the image

deblurring. Then, the DL approach has become popular over

time, and many researchers employ ResNet for target recognition,

UNet for image segmentation, VGGNet for target detection,

and generative adversarial network (GAN) for image deblurring

(Nah et al., 2017; Kupyn et al., 2018; Tao et al., 2018).

However, there are still difficulties for DNNs in realizing

image processing with a small sample size, which motivates

the development of INNs. These three types of methods and

their advantages and disadvantages are compared in Table 1.

This subsection mainly introduces how to build an INN for

single-image deblurring.

According to the flowchart given in Figure 4, the first step

in realizing a mathematical model-decomposition INN for image

processing is to establish a general mapping function. Combined

with the properties of the image degradation model, it is assumed

that the mapping function can be written as

y = Wx, (11)

whereW represents the blurred kernel, x is the original image, and

y is the blurred image, which is also the input of the INN. It’s defined

as an inverse problem, and the final output is the recovered x. Then,

by adopting the optimization algorithm of the iterative shrinkage

and thresholding algorithm (ISTA), the objective function can be

expressed as:

x = argmin
x

‖y−Wx‖22 + λ‖x‖1, (12)

where λ is the regularization parameter, which is used to ensure

the sparsity of the results. According to the ISTA, the optimization

problem of Equation (12) can be transformed into iterative

solutions, where each iteration computes one step of x. Then x can
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FIGURE 5

The pipeline of mathematical model-decomposition INN solving UDE.

TABLE 1 Companion of various image deblurring methods.

Methods Advantages Disadvantages

Matched filters It can be used to process

pictures of unknown blurred

kernels with interpretability.

Matched filters require a

transform domain,

potentially causing

ringing and loss of

resolution.

Purely DL It’s efficient in real-time with

low computational

complexity.

DL cannot handle

images of types of images

that are unknown in the

training set.

INN It can reconstruct pictures of

unknown blurred kernels with

high efficiency,

interpretability, and low

computational complexity.

Designing and training

INN are complicated

techniques.

be estimated as Beck and Teboulle (2009)

xk+1 = Sλ

(
xk − 2tkW

T
(
Wxk − y

))
, (13)

where Sλ is a shrinkage operator that updates x by performing a

soft threshold operation on the outputs. The update formula is

as follows

Sλ = sign(x) ·max{|x| − λ, 0}. (14)

In order to better represent the updated x in each iteration,

Beck and Teboulle (2009) separate the input variable y and output

variable x of each iteration in Equation (13), and the suitable step

size of gradient descent is replaced by µk = 1/2tk. Then, it can be

recast as

xk+1 = Sλ

{(
1−

1

µk
WTW

)
xk +

1

µk
WTy

}
. (15)

Based on the Equation (15), (Li et al., 2020) proposed to unfold

the iterative processes into the learnable module. They transfer

the parameters in the iteration to the network at the same time

and use the method of minimizing the training loss function to

continuously estimate the NN’s parameters to achieve adjusting
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the network structure. At this point, the mathematical model-

decomposition INNs require fewer iterations than the model-based

method, the parameters calculated in the NN have mathematical

meanings, and the training of INNs no longer relies on large-

scale datasets. Zhang et al. (2020) proposed an INN based on the

image degradation model to achieve single image super-resolution

(SISR) (Daubechies et al., 2004), the specific process is shown in

Figure 6. First, the image degradation as shown in Equation (16)

is constructed.

y = k ∗ x+ n, (16)

where k is the kernel, x is the sharp image, y is the blurred image,

and n is the additive white Gaussian noise (AWGN). In order to

achieve the SISR, the energy function in the form of Equation (12)

is constructed. The goal of deblurring is to minimize the energy

function, and its expression is as follows:

E(x) =
1

2σ 2
‖y− (k ∗ x)‖2 + λ8(x), (17)

where λ is used to control the weight of the prior term 8(x) on the

deblurring process, and σ represents the noise coefficient. They use

HQS to separate the prior term and the data term of Equation (17),

and apply the ISTA method aforementioned to complete SISR. The

decoupled data term and prior term are expressed as Monga et al.

(2021)

zk = argmin
z

‖y− (k ∗ z)‖2 + µσ 2
∥∥z − xk−1

∥∥2 , (18)

xk = argmin
x

µ

2
‖zk − x‖2 + λ8(x), (19)

where µ is the step size.

The pseudo-inverse algorithm is used to directly calculate the

value of z in the data part. Nevertheless, the pseudo-inverse bias

matrix is a large filter kernel, which can be solved by cascading

into multiple smaller kernels. For the SISR problems, the prior

term is considered an image denoising process of z, which can be

replaced by the form of a ResNet. Following the method given in

Daubechies et al. (2004), this subsection implements the deblurring

on the DIV2K dataset (Timofte et al., 2018), and Figure 7 shows the

deblurring results of the INN when the images are degraded with

different blurred kernels.

2.2. Physical model-decomposition INN

Physical model-decomposition INNs are primarily concerned

with issues in physical electromagnetism and dynamics. Actually,

the term “model” here not only refers to physical models described

by a formula but also includes constraints and principles in physics.

Compared with the mathematical model-decomposition INNs, the

basic idea of this approach is to convert the domain knowledge

contained in the physical model into NN parameters and replace

the calculation processes in the physical model with the layers of the

NNs, as shown in Figure 8. Starting with an electromagnetic model,

the tasks of wave dynamics prediction and forward and inverse

scattering predictions are described in detail and the turbulent

motion prediction is introduced briefly.

2.2.1. Wave equation prediction
The electromagnetic wave radiates outward with a specific

pattern in free space, and its fluctuation mode is determined by

the exciting source and medium characteristics. The propagating

direction and fluctuation state at each point in the wave

propagation are related to the previous moment, implying that

wave propagation is the same as the continuous time series.

This subsection introduces a continuous physical model for wave

propagation in free space. Assuming that the exciting source f (r, t)

emits spherical waves, and Equation (20) shows the time domain

wave-based dynamics of the scalar electric field u in free space.

∂2u

∂t2
− c2∇2u = f (r, t), (20)

where c and t represent the speed of light and time steps,

respectively. Compared with solving PDEs with mathematical

model-decomposition INN, the formula (20) is discretized by finite

difference to obtain the form of the wave equation related to the

temporal step 1t, as formulated:

ut+1 − 2ut + ut−1

1t2
− c2∇2ut = ft(r, t), (21)

where the subscript t is the value of a scale electric field at the

given time. Fan et al. (2021) built a mapping between the physical

parameters in the discrete wave equation and the neurons in the

RNN (Hughes et al., 2019), as shown in Figure 9.

In an iterative process, the state vector ht is defined as the

combination of scalar field’s values within a temporal step 1t,

which is a column vector connected to sampling time and can be

expressed as Equation (22). Then, they substitute it into Equation

(21) to obtain the state vector of the scalar field, as shown:

ht =

[
ut+1

ut

]
, (22)

ht =

[
2+ 1t2c2∇2 −1

1 0

]
ht−1 + 1t2

[
ft(r, t)

0

]
. (23)

Considering the wave equation prediction, the process of

calculating the state vector of the scalar electric field is converted

into a layer of RNN. Then, the hierarchical model of the RNN can

be written as

ht = σ (h)
(
W(h) · ht−1 +W(x) · xt

)
, (24)

yt = σ (y)
(
W(y) · ht

)
, (25)

where W(h), W(x), W(y) are the trainable parameters in the RNN,

σ (h), σ (y) are nonlinear activation functions. Combining Equations

(23, 24), the mapping between the physical parameters of the

discrete wave equation and the weight parameters of the RNN state

equation can be constructed. They are shown as:

W(h) =

[
2+ 1t2c2∇2 −1

1 0

]
, (26)
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FIGURE 6

Single image super-resolution based on INN.

FIGURE 7

Examples of SISR with di�erent blurred kernels. The first row includes three low-resolution images, and the images in the second row correspond to

the super-resolution results of the low-resolution images in the first row. The images from left to right are distinguished by di�erent blurred kernels,

which are homogeneous Gaussian kernels, anisotropic Gaussian kernels, and motion-blurred kernels, respectively.
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FIGURE 8

Physical model-decomposition INN.

W(x) = 1t2. (27)

The input parameters xt of the wave-based RNN are

determined by the exciting source ft(r, t) in free space, and the

trainable weights of the RNN are related to the speed and scope

of wave propagation. This means that the structure of the RNN

is reasonably mapped to a physical model, and the parameters

of the NNs have clear physical meanings. The wave-based RNN

combined with FDTD to achieve wave equation prediction has

certain interpretability. Furthermore, assuming that there is a

medium in space, it’s achievable to obtain the mode of wave

propagation in the medium with the backward of the state matrix

and estimate the dielectric constant of the dielectric layer and some

other dielectric parameters from the correspondence between the

trainable weight matrixW(h) and the propagation velocity.

2.2.2. Electromagnetic scattered field estimation
The numerical calculation method for the electromagnetic

scattering problem can be adaptive to estimate the scattering field

of various shapes of the medium, but it is faced with obstacles of

high computation complexity in complicated models. Using the DL

method to accelerate the numerical calculation of electromagnetic

scattering problems is a new direction in this field, which combines

the parallel computing ability and high efficiency of NNs with

the generalization ability and stability of numerical calculation

methods. The concept of this type of INN accelerating numerical

calculation can help us address more electromagnetic scattering

issues in the future.

This subsection mainly discusses how to use physical

model decomposition INNs to solve the forward scattering

problem of dielectric layers as shown in Figure 10. Starting with

converting the continuous forward scattering equation into a

discrete scattered field model and then combining it with the

conventional electromagnetic calculation algorithm to solve the

discrete scattered field problem, it is ultimately replaced with a NN.

Considering a lossy dielectric scatterer in two-dimensional free

space. The position of this scatterer is denoted as r = (rx, ry). It is

assumed that the electromagnetic wave emitted by the transmitting

antenna is a transverse electromagnetic wave in the z direction.

Then the permeability of the scatterer remains consistent with

free space, and the complex permittivity varies with distance and

frequency, which can be expressed as

ε(r) = ε0εr(r)−
jσ (r)

ω
, (28)

where ε0 is the permittivity in free space, εr is the relative

permittivity, σ is the conductivity, and ω is the angular frequency

of the incident electromagnetic wave. For any direction incident

field Einc(r), the computation principle of scattering in the far

field is consistent with the electric field integral equation (EFIE).

Therefore, the total electric field Etot(r) can be measured with the

incident electric field plus the scattered electric field obtained by

the secondary radiation on the surface of the scatterer, as shown

in (29):

Etot(r) = Einc(r)+ k2b

∫

D
G

(
r − r′

)
χ

(
r′
)
Etot

(
r′
)
dr′, (29)

where kb represents the wave number. In the two-dimensional case,

Green’s function of free space in cylindrical coordinates is denoted

by G(r − r′). The contrast of permittivity is χ(r) and Esca(rR) is the

scattered field at the distance rR. The scattered electric field can be
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FIGURE 9

Wave equation prediction based on INN.

regarded as the secondary radiation of the induced current J, which

can be written as

J(r) = χ(r)Etot(r). (30)

In this subsection, the impulse function is used as the basis

function, and the discretized matrix equation is constructed by

the point test function. The scattered region D is divided into M

sub-regions, and in them-th subregion, its EFIE can be written as

Etotm +
j

4
k2b

M∑

s=1

χEt,ots

∫

DS

H
(2)
0

(
kb

∣∣rm − r′s
∣∣) dr′s = Eincm . (31)

Then the matrix equation for all regions of interest can be

formulated as

(I + Zχ)Etot = Einc. (32)

The conjugate CG, which is a hybrid of the steepest descent

algorithm and the Newton iterative approach, is used to solve

the EFIE problem. Moreover, it is also one of the most efficient

algorithms for addressing nonlinear optimization problems and

solving sparse systems of linear equations. The CGmethod was first

proposed by Hestenes and Stiefel (1952), and its essential point is

that in the computation process, each search direction is conjugated

to each other, and these search directions are calculated by the

negative gradient and the search direction in the previous step.

Wei and Chen (2019) replaced the process of updating the gradient
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FIGURE 10

INN accelerating electromagnetic calculation.

direction and the total electric field Etot with two cascaded NNs,

respectively. In the first replacement, NN is used to predict the

gradient direction of the next stage, and the step size and weight

automatically assigned by the network are used for updating. The

input of the network includes the residuals of the previous two

moments, denoted by prk and rk−1, and the gradient direction of

the previous moment, denoted by pk. Then, the process of updating

the gradient direction can be consequently expressed as

pk+1 = f
(
pk, rk, rk−1, θ

p

k

)
, (33)

where θ
p

k
is the weight in NNs. Similarly, the process of computing

the total electric field based on the CG algorithm is replaced

with several cascaded NNs, while the step size and weights are

automatically updated by NNs’ back-propagation. The process of

finally computing the total electric field Etot is shown as:

Etotk+1 = Etotk + fp

(
pk, rk, rk−1, θ

p

k

)
, (34)

where fp(·) is the optimized NN of the total electric field. The NN

replaces the standard gradient descent approach in the forward

scattered field computation. In conventional electromagnetic

calculation methods, each iterative update requires calculations

of the gradient direction and selections of step size. Only by

selecting the appropriate step size, the forward scattered field can

be estimated quickly and accurately. In comparison to the pure

data-driven technique, the whole network structure of theINN

incorporates some of the theoretical information. As a result, it does

not need a large amount of data to predict the mapping function,

allowing the capacity to minimize data dependency.

2.2.3. Turbulent motion prediction
Predicting the direction and speed of turbulence has crucial

uses. The motion of plasma turbulence, for example, can

interfere with satellite operations and space communications in

interplanetary space. The movement of atmospheric turbulence in

the atmosphere influences the trajectories of tornadoes, tsunamis,
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and cold waves. Therefore, being able to accurately predict the

trajectory of turbulence is one of the most essential research

in the field of fluid dynamics. According to the principle of

Figure 3, turbulence motion prediction can be regarded as a task of

solving PDEs. In the process of constructing PDEs, some physical

constraints are drawn into account to control the multiple-order

terms contained in the differential equations. Hence it is possible to

solve this prediction by employing an INN that is the same as PDEs.

This kind of physical model-decomposition INN for turbulence

prediction is finally divided into the following four steps (Kochkov

et al., 2021):

1. Constructing differential equations combined with physical

constraints.

According to dynamic principles, the velocity and

trajectory of turbulent flow are only related to a few influencing

factors. As a result, the general model of turbulence motion is

sparse in space and can be composed of finite non-zero terms.

2. Time series discrete sampling

The constructed turbulence model is discretely sampled

according to 1t of each step, and the discrete model solved by

the iterative approach can be split into smaller components.

3. Discrete turbulence motion model combined with NNs.

The PDEs are decomposed into finite terms containing

certain parameters and unknown equation terms that are

related to known terms.

4. Training and testing the INN.

The decomposition of known and unknown terms from a

turbulence model is a critical step in building an INN. It not only

helps to reduce unknown parameters in NNs but also confines

the convergence of the loss function. Furthermore, the model

decomposition affects the ultimate accuracy and the difficulty of

network training. The known terms in the turbulence prediction

INN guarantee that the final prediction results are comparable in

overall trend to the precise solution. Simultaneously, the unknown

items related to the known items adjust the model at certain tiny

values, allowing the final outcome to satisfy our expectations.

2.3. Other model-decomposition INN

There are many challenges in the biochemistry area right now

that cannot be properly represented by a mathematical model,

yet they nonetheless include a wealth of domain knowledge in

processing. In this section, other models are used to generalize

such issues, and all the processes of using domain knowledge

to modify the input and output of DL are collectively referred

to as other model-decomposition INNs. Therefore, these INNs

focus on improving the front-end input data or correcting the

terminal output results. Its interpretability is mainly realized in data

processing and hyper-parameter configuration rather than in NN’s

layer design. Following the successful training of a “black box” NN,

the analysis of interpreting the network structure, results, datasets,

and so on is called “post-hoc interpretability,” which means that

post-hoc interpretability does not affect the NN before training. For

example, in fluorescence image reconstruction, the probability and

shape of the target appearing in a specific area are determined by a

theoretical model, and these theoretical models constrain the final

output through template matching. In ultrasound imaging, noise is

mixed with the input signal. Using PCA to process the ultrasound

will greatly improve imaging performance. For a complex value

classification network, dealing with the real and imaginary parts of a

complex separately cannot reflect the backward of complex values.

Redefining the forward calculation and backward propagation of

the complex value network makes the NN training more realistic

and increases the input information.

3. Semantic INN

Semantic INN is the interpretable analysis method designed

for the engineer. Its core concept is to explain the NNs from

the standpoint that the engineer enables to see visually, analyze

logically, and understand attributes. To this end, the first for the

engineer who works on the semantic INN is to evaluate results

visually and then analyze reasons logically, which are used to

explain the reason in an accessible way. In this section, semantic

INN designed for engineers is divided into three aspects which are

vision, logic, and attributes, respectively. As shown in Figure 11, it

illustrates the semantic INN structure and its interpretable regions

based on the three aspects.

Semantic INN starts with the visualization of convolutional

layers by plotting the heat map of each layer to reflect changes

during network training. Then, combining decision trees and DL

methods, logic calculations are drawn into the NNs so that there

is certain logic information in the network layers, and explainable

trees are extracted from NNs to explain the network structures. At

the same time, there are also many studies directly starting from the

attribute semantics of the target to build INNs.

3.1. Visualization of CNN

From a visual point of view, we hope to see the relationship

between each output result of the network during the training

process and the input data, especially in the classic image

recognition classification problem, and analyze how the network

recognizes the target from the input image. This method started

with AlexNet visualizing the convolution kernel of the first

layer, and then Zeiler and Fergus (2014) proposed a more

explicit visualization method to comprehend the visualization

results of convolutional layers, which was the pioneering work of

visualization research. Moreover, numerous scholars who analyze

and understand visualization results in image classification and

recognition (Yosinski et al., 2015). The core concept of CNN

visualization is to draw all the feature maps of each hidden layer

in the CNN and examine the activation values of feature maps in

the CNN. Finally, the visualization results are realized by extracting

the convolution kernels from the pre-trained network, which is a

process of deconvolution.

This section mainly discusses how to inversely map the feature

map to the original pixel image, and comprehend the function

between the feature map of each layer in CNN and the pixel image.

Firstly, the process of convolution calculation in a pixel image can

be divided into the following four steps:
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FIGURE 11

Semantic INN.

1. Convolution kernel

The process of convolution may be thought of as an

operation in the field of image filtering, and the size of the filter

is proportional to the size of the convolution kernels.

2. Normalization

Normalization is an equalization operation on each pixel

of the feature map, and not all convolutional layers need to

be normalized.

3. Activation function

The activation function ensures the threshold of each

feature map. Usually, the feature map of each layer is a positive

value, and the Rectified Linear Unit (ReLU) activation function

is widely used.

4. Pooling kernel

Pooling reduces the size of the feature map in the previous

step, which is an irreversible down-sampling process.

The fundamental aim of CNN visualization is to combine the

feature maps from layers to analyze the influence on input. The

feature map deconvolution procedure is the inverse of the pixel

image convolution calculation. To correlate to the convolution,

the deconvolution procedure is similarly separated into four steps

(Zeiler and Fergus, 2014):

1. Up pooling

The feature map needs to be up-sampled to the same size as

the original image of the previous layer, and the up-sampling

method is up-pooling. Its basic idea is to record the position

of the maximum activation value of the pooling output in the

original image, and then only activate this position, while the

other positions are zero.

2. Activation function

The pixel image still needs to keep the pixel value positive,

and the activation function in the deconvolution can be

consistent with the activation function in the convolution.

3. Denormalization.

Denormalization is the equalization processing of the

entire picture, which can be omitted or multiplied by a

fixed intensity.

FIGURE 12

Visualization of CNN.

4. Deconvolution

The deconvolution procedure is the core of CNN

visualization, and it is also a filter. It can be achieved

by multiplying the feature map with the transpose of the

convolution kernel.

As shown in Figure 12, the flowchart of performing a

convolution operation on a pixel image to obtain a feature

map performing a deconvolution operation with the feature map

to obtain an approximate pixel image is given. Through the

deconvolution procedure, the information of the particular feature

map corresponding to an input image can be visualized, which is

used to analyze the different functions between low-level layers and

high-level layers to extract pixel image characteristics. Yosinski et

al. focused on CNN visualization and pointed out the difference in

performance between shallow network and deep network in image

feature extraction (Yosinski et al., 2015).
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The convolution kernels of the lower layers can be drawn

by flattening, and they extract the edge, color, and other macro

characteristics of the pixel image. The contribution of shallow

structures to the image recognition task can be represented

by convolution kernel activated values. Meanwhile, the deep

convolution kernel can extract more complex characteristics of the

pixel image although the function of the deep structure cannot

be judged directly from the convolution kernel shapes and the

output of the convolution kernels. Hence, using CNN visualization

is one of the most suitable methods to map the output of the

deep layers’ kernels into the original pixel image, which reflects the

texture of the pixel image, and the deeper the feature map, the more

specific features are extracted. Besides, it’s known that convolution

is proposed based on the translation and scaling invariance of the

image. Owing to the linear transformation of the image, the edge,

and color retrieved by the low-level network will change, while the

abstract texture extracted by the high layers will not change. Finally,

the visualization of CNN can be applied to not only illustrate the

operations of the NN layers but also to verify the role of various

convolution kernels in accomplishing tasks. It can further modify

and improve the initial structure according to the outcomes of

feature map visualization and increase the performance of the NN.

Recently, verification and validation (V&V) of NN is well

accepted in the autonomous safety assessment. (Huang et al., 2020;

Rajabli et al., 2020). The pipeline of the autonomy system is to use

physical sensors to provide image information, and perceptrons

to provide image interpretation. As clarified in the standards for

autonomous systems (ANSI/UL 4600) (Koopman et al., 2019),

when verifying the correctness of classifiers, the classification result

can only be accepted if it has been obtained with the consistency

of human expectations. Furthermore, the autonomy system needs

to provide a mapping of the NN input of an ontology of the

operational design domain in addition to the classification result.

To this end, using the visualization of CNN to achieve V&V in

the autonomy system is reasonable, and the NN will provide a

transformation of the NN output of different layers to an activating

value of the original images. For example, a pre-trained CNN

presents the classification result of the autonomous system, and

the CNN visualization approach is used to convert the investigated

image to the correct ontology member.

3.2. Generation and extraction of decision
trees

From the perspective of human reasoning, it’s reasonable to

combine the DL methods with decision trees to achieve semantic

INN. The decision tree can assist engineers to perform classification

tasks by utilizing the meaning of their nodes and edges. In

particular, a decision tree contains parent nodes, child nodes, and

top-down edges. A parent node can connect to two or more child

nodes, and the message transfer on the adjacent edge can only be

from the previous parent node to its child nodes. In other words,

the decision tree is a top-down structure, which is widely used in

classification and regression problems with supervised datasets. For

a given dataset, the first step to extracting its decision tree is to

encode the labels of targets. For instance, considering a multi-class

classification shown in Figures 13, 14, the red color is coded as “0”

while the white denotes “1.” The sphere is coded as “3,” and the

cylinder is labeled as “4.” Assuming that the decision of the first

layer is color, and only the ball is red in the original dataset, the

decision from the parent node to the red child node must be a red

ball. Keep splitting down until all the decisions are made, and then

a standard binary decision tree will be constructed consequently.

There are many methods to establish decision trees, and their basic

idea is to split nodes from top to bottom, such as CART, ID3,

and C4.5 (Charbuty and Abdulazeez, 2021). Because of the logical

interpretability of decision trees, it’s a reasonable way to combine

the DLmethods with decision trees to achieve semantic INN, which

is the main topic in this section.

The approach of using decision trees to handle data

classification and regression issues is consistent with the agent’s

inductive interpretation and that the decision tree’s hierarchical

structure is similar to the network layers. Therefore, it is effective

to improve the interpretability of NNs by combining the inductive

judgment of decision trees. Frosst and Hinton (2017); Wu et al.

(2018, 2020) propose a strategy for increasing the interpretability

of the trainable network by adding decision tree regularization

to the regularized network which can be divided into a global

regularization, and a regional regularization network. The objective

of adding decision trees is to constrain the network training,

and local regularization can better adapt to data changes in

data classification issues. The process of combining the decision

tree to regularize the network is divided into the following

four steps:

1. Data grouping.

When grouping the input data, the linear segment can be

used as a data grouping method.

2. Decision tree extracting.

The ML method is used to classify each group of data, and

construct a decision tree for each group of data.

3. Decision tree regularization network constructing.

The decision tree is added to the network training as

the regularization part of NNs, and the trainable network is

constrained by the decision tree.

4. Training a semantic INN.

The decision tree isn’t differentiable in step (3), which can’t

be immediately put into the network training as a regularization

function. Hence, it is necessary to construct a map from the

decision tree to the trainable structure.

This non-derivable decision process can be achieved by

converting it into a layer of a linear transformation, as shown

in Figure 13. The strategy adopted by Wu et al. was to convert

the decisions in each layer of a decision tree into multi-layer

perceptrons (MLPs) (Wu et al., 2018). They use the fully connected

layer to realize each round decision, which means that the number

of layers in theMLP is consistent with the depth of the decision tree.

Then, using a pre-trained network, the decision tree is transformed

to the MLP in which the corresponding relationship between the

nodes is encoded in the activation values of feature maps. Consider

an input image as a parent node, which should be divided into

several child nodes at a given level. In the MLP, the comparable

procedure is that several feature maps are generated in the input

image via a fully connected layer, and these feature maps continue
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FIGURE 13

Regional decision trees generation.

to split downward as child nodes of the subsequent layer. In general,

to employ decision tree regularization to achieve semantic INN

combined with the logical level of the agent, it is important to define

or train a regularization network in advance.

In addition to constructing the map of decision trees to

trainable structures as aforementioned, there are scholars who

establish the map from NNs to the explanation graph. Sun et al.

(2020) demonstrate the way to use statistical fault location (SFL)

techniques from software engineering to provide a high-quality

interpretation of DNN’s output and propose an algorithm and

tool called DEEPCOVER. Their method uses SFL to synthesize

a ranking of input features and constructs explanations of DNN

decisions based on ranking. Zhang et al. (2017, 2019a) presented the

bottom-up technique of using an explanation graph in combination

with CNN visualization to extract the hidden semantics of pre-

trained CNNs. The essential idea of this technique is to consider

the activation peak value of each feature map as a child node,

and network layer connections as the edges between the child

node and the parent node. It consists mostly of the two phases

listed below:

1. Initial decision tree

Before explaining graph learning, the most crucial step is

to initialize the number of activation peaks of each feature

map in advance to form an initial decision tree. The shallower

layers contain more activation peaks, whereas the deeper

layers’ featuremaps have fewer activation peaks, indicating that

several child nodes are linked to a parent node.

2. Fusion nodes

The initial decision tree will be redundant, and the tree

needs to be pruned. That is, the activation peaks that lead

to the same result are fused into a single activation peak,

and the resulting decision tree is the explaining graph of the

pre-trained CNN, as illustrated in Figure 14.

Extracting an explanation graph from a pre-trained network is

a post-hoc interpretability method that does not have any impact on

the network structure.

3.3. Knowledge map aided zero-shot
learning

This section merely considers the convolution and

interpretability of the semantic map and briefly introduces

the structure and optimization method of graph convolution

network (GCN) in combination with node features and link

properties. It starts with the description of the general explanation

graph and subsequently presents the way of establishing the

semantic INN to achieve classify task. Firstly, the explanation

graph consists of nodes and adjacent edges, which are classified

as directed or undirected graphs based on the properties of the

adjacent edges. Secondly, according to the attributes contained in

nodes, explanation graphs can be divided into probability graphs

and semantic graphs. In the probability graph, each node represents

the probability of a presented attribute, and the connected nodes

represent a joint probability distribution between two different

attributes. In the semantic graph, each node represents a feature

vector or a kind of semantic message, and the connected nodes

indicate that two features or semantics are available in the whole

graph at the same time.

Since the semantic message can be a dense matrix or a sentence,

it’s crucial to convert this kind of semantic message into a feature

vector. For the convenience to separate the grid pixel image from

the undirected graph composed of edge nodes, the explanation

graph in the non-Euclidean space is collectively named the edge-

node graph. Considering an image classification task based on

edge-node GCN architecture, the input of GCN is usually a form

of word embedding (WE), as engineers always utilize a set of

words or phrases to describe the attributes of the feature. The

operation of the WE is to convert the words or phrases that are

semantic messages of the image into a set of feature vectors and

these feature vectors consist of the semantic space. Furthermore,

the semantic space contains two categories based on the methods

used to construct semantic space: engineering semantic space

and learning semantic space. The engineering semantic space is

artificially designed by engineers. They describe the target in a
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FIGURE 14

Explanation graph extraction.

unified form based on domain expertise, with multiple meanings

for each dimension in the semantic space. However, there are

several approaches to constructing the engineering semantic space,

and the most common method is the attribute semantic space

(Lampert et al., 2009; Palatucci et al., 2009). For example, we can

design a simple attribute semantic space for a tiger that consists

of ears, tails, fur, and forehead lines. Similarly, the animal “cat”

can be described by these attributes without forehead lines. Then,

the different attributes of an object can be converted into a vector,

where the object prototype has this attribute marked as 1, otherwise

marked as 0, as shown in Figure 15. On the contrary, there is also

learned semantic space that is obtained by ML methods, that is, it’s

unnecessary for engineers to manually designate features. However,

the semantic vector obtained by ML is no longer interpretable and

becomes abstract and incomprehensible to humans.

Following the WE, the next step is to perform convolution

on the edge-node graph. Since the manifold space of the edge-

node graph distribution does not belong to the Euclidean space,

the convolution operation in GCN is very different from that in

the pixel graph. The GCN is therefore turned into an operation

between the feature vectors in semantic space and the adjacency

matrix of the edge-node graph, as illustrated in Equation (35) (Kipf

and Welling, 2016).

Hl+1 = σ (D̃− 1
2 ÃD̃− 1

2HlW l), (35)

where σ (·) is the activation function, Hl and Hl+1 represent the

feature vectors of the l-th level and the l + 1 level, respectively.

The formula above indicates the message passing of nodes between

every two layers of an edge-node graph in multi-layers GCN.

Besides, the trainable weight matrix W is used to control the

intensity of nodes in each of the two layers, and D̃ is the degree

matrix of the special adjacency matrix Ã which can be expressed as

Ã = A+ I. (36)

The value in the adjacency matrix A indicates whether there is

a link between any two nodes in the edge-node graph. Considering

the case of the first-order neighbors of one node, the linked nodes

are labeled as 1, while the disconnected nodes are marked as 0.

Since there must be two nodes connected to the same edge, the

adjacency matrix is also a symmetric matrix. The degree matrix D

is a diagonal matrix, and the values on the diagonal represent the

degree of each node, which is determined by the number of edges

linking the node. Obviously, the GCN is the process of message

passing, and the upper layer feature vector Hl exchanges the

message with the deeper layer feature vectorHl+1 via the adjacency

matrix A, where the message is transmitted between specific

nodes. To incorporate the node’s effect on message transmission,

the adjacency matrix is transformed into the form specified by

Equation (36). Simultaneously, the trainable weight matrix W

is employed to manage the process of message transit between

two nodes. Following GCN’s message traveling through all nodes,

the resulting feature vector is denoted as ÃHlW l. Unfortunately,

the GCN faces several limitations when it comes to multi-layer

transformation. As the number of convolutional layers grows, the

output value increases rapidly as well. Thus, in GCN, in addition to

the convolution operation, an activation function consistent with

DNN is required, and the next level feature vector is denoted by

(35). After training the GCN, the linear transformation matrix

between layers tends toward a stable value, as shown in Figure 16.

Figure 16 shows the message transmission process of node “1.”

Its input graph contains 5 nodes and 5 adjacent edges. Nodes “1”

and “4” have three edges each, node “3” has two edges, and nodes

“2” and “5” have only one edge each. After the GCN operates on

the input graph, the resulting graph retains its structure as the input

graph, but the feature vectors and the weight matrix corresponding

to the information transmission on the edges have been altered.

Considering the input graph given in Figure 16, the adjacency

matricesA and Ã of the given edge-node graph, as well as the degree

matrix D̃, are represented in Table 2. Using the matrix parameters

in Table 2, the resulting feature vector after one time of message

transmission can be calculated.

GCN is commonly utilized in social networks, molecular

investigation, and natural language processing (NLP). At the

moment, the zero-shot learning (ZSL) target classification
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FIGURE 15

Binary attribute space.

FIGURE 16

The process of message passing in GCN.

technique for pixel images that combines CNN and GCN

is still under development. In this, ZSL is to solve the

classification problem of image objects without the training

data of available classes and only provide the description of

classes. In addition, it requires computers to be capable to

distinguish new objects by learning the way of humans reason

without ever seeing their categories. Its fundamental concept

is to utilize a pre-trained CNN to extract features from pixel

images, then remove the final classification layer and replace it

with a GCN to accomplish target classification, as illustrated in

Figure 17.

Before training a GCN, the task-based edge node graph

structure to be learned must be manually designed. The GCN

is then trained in a supervised way to generate the classifier

weight matrix, which will be used to replace the classifier in this

classification task. In order to add the interpretability of semantic

TABLE 2 Adjacency matrix and degree matrix examples.

A Ã D̃



0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 1

0 0 0 1 0







1 1 1 1 0

1 1 0 0 0

1 0 1 1 0

1 0 1 1 1

0 0 0 1 1







4 0 0 0 0

0 2 0 0 0

0 0 3 0 0

0 0 0 4 0

0 0 0 0 2




space, Wang et al. (2018b) add the KG to the GCN and combine

the semantic attribute space of the edge node graph with the

inference described in the KG to accomplish ZSL for unknown

category targets.
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FIGURE 17

CNN+GCN zero-shot learning solves target classification.

4. Electromagnetic neural networks

There has been considerable research on INN in the field

of electromagnetic physics, with the goal of balancing the

benefits of classical electromagnetic computing algorithms with

DL approaches. However, none of their suggested solutions

satisfies a real physical problem. Our objective is to apply

the previously mentioned physical model-decomposition INN

to solve real-world physical issues. This section introduces and

defines the electromagnetic neural network (EMNN), outlines

our technique for accomplishing actual electromagnetic physics

issues, and describes how the EMNN handles forward and inverse

electromagnetic problems.

4.1. Demand and challenge of EMNN

In recent decades, researchers have accomplished the forward

and inverse electromagnetic tasks by constructing electromagnetic

theoretical models. And, their common requirements and

challenges are high computational complexity and slow speed. To

overcome these obstacles, DL methods have been gradually used,

and they are first used in optical images and then transferred to

microwave images. However, the image processing algorithms in

the electromagnetic field are very different from those in the optical

field because of their different frequency properties, as shown in

Figure 18. Additionally, it is challenging to obtain high-quality

microwave pictures of objects, and the time cost of data acquisition

will be greater than for optical images. Therefore, we propose

EMNN to address these issues by embedding electromagnetic

scattering models within NNs. Finally, our aim is to achieve

fast computation, low complexity, high generalization, and

interpretability in EMNN. Furthermore, the NNs can be used to

accelerate electromagnetic calculations, and the electromagnetic

scattering model is used to enhance the generalization of NNs. As

a result, EMNN exhibits the result of rigorous logical reasoning

and interpretability.

4.2. Definition of EMNN

In comparison to the processing methods of optical

images, the electromagnetic neuron theoretical model based

on microwave images is developed, which incorporates four

critical electromagnetic properties of time, frequency, phase, and

polarization. Time is utilized to indicate the time delay T of the

echo, and different time delays are used to represent the different

relative positions of the neuron in space. The relative positions in

the multi-dimensional neuron theoretical model can help to relieve

the signal oscillation. Frequency-phase-polarization is the element

of the signal emission model that describe the electromagnetic

properties of the emitted wave, including the signal frequency f ,

the initial phase P, and the polarization direction p. The specific

form is as follows:

Eneurons = [T, P, f , p]. (37)

Multidimensional neurons regarded as an observation matrix

can depict a complex electromagnetic environment, which implies

that the transmitter at distinct positions can release polarized

electromagnetic waves with a special frequency and phase in space.

Similarly, the targets in the scene with varying positions, sizes,

and materials in the space will stimulate varying responses in this

electromagnetic environment. That is, the echo received by the

radar contains the electromagnetic scattering of all the targets in

the scene, which can be considered as the measurement matrix of

the radar.

Furthermore, the growth of neuron models with

electromagnetic characteristics involves the implementation

of a novel neural information flow transmission method. In

Frontiers in Artificial Intelligence 20 frontiersin.org

https://doi.org/10.3389/frai.2023.974295
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Liu and Xu 10.3389/frai.2023.974295

FIGURE 18

The first picture is the optical image of a tank, and the second is four SAR images of a tank in di�erent orientations (Keydel et al., 1996).

comparison to the propagation of electromagnetic waves in

free space, the wave function is the fundamental element in

the NN’s forward propagation process, so Green’s function in

free space is regarded as the basic solution of the EMNN. By

combining it with the expression form of Green’s function, the

expression of EMNN forward propagation and the gradient

descent technique of backward updating can be redefined.

Especially compared to standard DL approaches, EMNN can

obtain desirable electromagnetic fields or radiation patterns at a

faster speed with fewer data.

In this case, the operations of the network layers should

correspond to the calculations of the electromagnetic models.

For a stricter EMNN, the training parameters in the network

correspond to physical properties in the electromagnetic theoretical

models. Then, the next step is to decompose the electromagnetic

computational algorithm of this problem into iterative steps,

which are converted into layers of NNs. Basically, the general

electromagnetic model formula is presented as f (s, x̂i, x̂j) which is

exactly known, but some parameters of this formula are unknown.

Then, the iterative steps Fk(s, x̂i, x̂j) by solving this EM problem

need to be estimated because of the parameters’ indeterminacy.

These estimated steps can be carried out iteratively by M times

of addition, or iteratively by M times of multiplication, and the

specific expressions are shown as:

f (s, x̂i, x̂j) =

M∑

k=1

Fk(s, x̂i, x̂j), (38)

f (s, x̂i, x̂j) =

M∏

k=1

Fk(s, x̂i, x̂j). (39)

In the EMNN, it assumes that some iterative steps Fkg (s, x̂i, x̂j)

are known and others Fkn (s, x̂i, x̂j) are unknown, which are

related to their front steps Fkp (s, x̂i, x̂j). To replace the unknown

component of the solution, a special NN is manually designed to

fulfill the mapping between the two continuous steps or some layers

that can estimate the appropriate physical characteristics. They are

written as

Fkn
(
s, x̂i, x̂j

)
=

Mp∑

p=1

Np

(
Fkp

(
s, x̂i, x̂j

))
, (40)

Fkn
(
s, x̂i, x̂j

)
=

Mp∏

p=1

Np

(
Fkp

(
s, x̂i, x̂j

))
, (41)

where Mp is the number of front modules, Np is a NN whose

mathematical meaning is the mapping between the front part

Fkp (s, x̂i, x̂j) and the unknown part Fkn (s, x̂i, x̂j). It’s obvious that

getting precise front parts is vital for estimating unknown parts.

Then, the unknown modules and known parts are restored to

the EMNN basic expression, and through numerous iterations,

the iterative algorithm to solve the EMNN problems is derived

as follows:

f
(
s, x̂i, x̂j

)
=

Mg∑

g=1

Fkg
(
s, x̂i, x̂j

)
+

Mn∑

n=1

Mp∑

p=1

Np

(
Fkp

(
s, x̂i, x̂j

))
, (42)

f
(
s, x̂i, x̂j

)
=

Mg∏

g=1

Fkg
(
s, x̂i, x̂j

) Mn∏

n=1

Mp∏

p=1

Np

(
Fkp

(
s, x̂i, x̂j

))
. (43)

The formulae above provide the final expressions for iterative

addition and iterative multiplication algorithms, respectively. If the

final decomposed front moduleMp and the unknown itemMn have

a single item, the EMNN model defined by the iterative addition

algorithm can be condensed into the residual form, and the iterative

multiplication procedures can be turned into linear equations.
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FIGURE 19

The pipeline of calculating coding antenna array radiation pattern

prediction.

4.3. Applications of EMNN

The EMNN model is proposed to handle actual forward and

inverse electromagnetic issues, and it is appropriate for processing

electromagnetic signals because of its robustness, speed, and

interpretability (Li et al., 2022b; Liu and Xu, 2022; Zhang et al.,

2022). This section will explain how to set up an EMNN to

handle the problem of positive radiation pattern prediction using

coding antennas.

4.3.1. Coding antennas array radiation pattern
prediction based on EMNN

The first step of handling the coding antenna array radiation

pattern prediction (CARP) problem is to set up the EMNN

model, and the process of accomplishing CARP is shown in

Figure 19. In addition, the radiation pattern may be described

as the multiplicative EMNN model using the discrete dipole

approximation (DDA) method. Then it can be consequently

reduced to a linear model because there is only one unknown

component, which can be deduced as Liu et al. (2021); Li et al.

(2022a):

Etot = BAHinc. (44)

where B is replaced by the known part Fg(θ , xi, xj), and Hinc is

replaced by the front part. Then, the transferred matrix A, which

is the coupling effect between each two antenna elements can be

estimated by NNs. Based on the EMNNmodel, this CARP problem

is formulated as

f
(
θ , xi, xj

)
= Fg

(
θ , xi, xj

)
Fn

(
θ , xi, xj

)
. (45)

In this model, the calculation process of solving the total field

is replaced by NN layers, and the expression of the final radiation

pattern prediction based on EMNN is shown in Equation (46). This

means that it needs to get the incident field as input, and then use

some fully connected layers to obtain the total electric field. Finally,

the total electric field calculated by theNN is sent to theDDAmodel

to calculate the antenna radiation pattern. The calculation diagram

of the EMNN is illustrated in Figure 20.

Etot
(
θ , xi, xj

)
= BNp

(
Hinc

(
θ , xi, xj

))
. (46)

5. Discussion

In this review, we introduce how to build the EMNN and

provide applications for using INNs to solve real-world physical

problems. To begin, this paper discusses the limitations of DL

methods and model-based techniques in order to demonstrate

the significance and necessity of the emergence of INN. Then,

the INN is described in two parts, the model decomposition

alternative INN and the semantic INN. The former is to explain

the traditional models into NNs, which is achieved by transferring

reality constraints and formula constraints into layers of NNs. The

latter is mainly the “interpretation” of the agent, which builds and

analyzes NNs based on semantic features such as vision, logic,

and attributes. Finally, considering electromagnetic problems,

this paper introduces how to convert the parameters in the

electromagnetic model into the NNs’ parameters in detail. Below,

the strengths, limitations, and prospects of INNs are discussed.

5.1. The strengths of INNs

Nowadays, INNs still do not guarantee the reliability of

specific tasks, but they facilitate the determination of reliability

in the following two perspectives. Firstly, from the perspective

of constructing model decomposition alternative INN, combining

the traditional mathematical-physical model to build an INN can

reduce the network parameters and the network layer design.

Secondly, from the perspective of semantic INN, the realization of a

posteriori INN after pre-training can help engineers correct errors,

which means that engineers can find out from the explanation

graph where the network operates in classified tasks or other tasks.

To sum up, we compare the INNs with prior DL approaches:

1. Generalizability

INNs can extract information from the theoretical model

of the issue or from the laws governing objective facts and

incorporate it into the network’s architecture. Then, data

independence and the generalization performance of INN are

better than those of traditional methods.

2. Trustworthiness

The black box architecture will not inspire trust, but the

semantic INN can display the layers and feature maps of

the NNs. INN inductively obtains hidden information from

NNs and portrays it as a decision tree. Incorporating visual,

logical, and semantic descriptions of the agent’s attributes

into the decision tree aids in the comprehension of how the
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FIGURE 20

The EMNN structure of solving CARP problem.

network operates. Therefore, the trustworthiness of INNs can

be enhanced.

3. Interpretability

Either alternative INNs based on model decomposition or

semantic INNs, both emphasize “interpretability.” The former

interprets the theoretical model as a NN, while the latter

interprets the NN as a semantic model.

5.2. The limitations of INNs

INNs also have some shortcomings, which are closely related

to the way they are constructed. Here, the limitations of INNs are

divided into the following three points:

1. Model Limitations

Model decomposition alternative INNs are useful for

handling linear problems. When decomposing a theoretical

model, if it is linear, it implies that the network generated

by the model is also linear. For those issues that cannot

be immediately reduced to a linear model, they cannot be

transferred into model decomposition alternative INNs.

2. Semantic library limitations

Implementing an INN by extracting or constructing

decision trees can only be applied to relatively common issues

and tasks that can disentangle between nodes. And, in order

to effectively use the semantic information in the network, it is

required to build a massive semantic library, which demands

a significant amount of personnel to manually design an

expert system.

3. Interpretable Definition

It’s unknown whether the layers or elements can

be assigned to physical facts and semantics one-to-one.

Furthermore, not all intermediary portions are confirmed

using ground truth, making the evaluation of the network’s

interpretable parameters unfeasible.

5.3. The development prospects of INNs

Currently, there is no strict definition of INNs. In this paper,

a novel definition of INN is proposed based on a summary of

the current research on INNs. A consistent and unambiguous

definition may emerge in the future, and the process of creating

an INN will be developed progressively. Based on the strengths

and limitations of INNs, some future directions are discussed

and suggested.

1. Model function expansion

Constructing a theoretical model that can be represented

uniformly. The function of the layer in the NN meets the

requirements of the theoretical model calculation while their

parameters are unequal.

2. Nonlinear problems expansion

To decompose the nonlinear issues, this expansion

approach starts with standard methods used to address linear

problems. The nonlinear model is reduced to these linear

formulas that may be substituted by NNs.

3. Semantic extraction expansion

NNs can automatically extract semantic information from

images and generate a semantic library, and the labels

associated with these semantic libraries are all visual images

that are directly tied to the decision tree. Applying this form

of semantic information to INNs will help experts establish a

semantic library.
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