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The COVID-19 pandemic is already considered one of the biggest global health

crises. In Rio Grande do Norte, a Brazilian state, the RegulaRN platform was the

health information system used to regulate beds for patients with COVID-19. This

article explored machine learning and deep learning techniques with RegulaRN

data in order to identify the best models and parameters to predict the outcome

of a hospitalized patient. A total of 25,366 bed regulations for COVID-19 patients

were analyzed. The data analyzed comes from the RegulaRN Platform database

from April 2020 to August 2022. From these data, the nine most pertinent

characteristics were selected from the twenty available, and blank or inconclusive

datawere excluded. Thiswas followed by the following steps: data pre-processing,

database balancing, training, and test. The results showed better performance

in terms of accuracy (84.01%), precision (79.57%), and F1-score (81.00%) for the

Multilayer Perceptron model with Stochastic Gradient Descent optimizer. The

best results for recall (84.67%), specificity (84.67%), and ROC-AUC (91.6%) were

achieved by Root Mean Squared Propagation. This study compared di�erent

computational methods of machine and deep learning whose objective was

to classify bed regulation data for patients with COVID-19 from the RegulaRN

Platform. The results havemade it possible to identify the bestmodel to help health

professionals during the process of regulating beds for patients with COVID-19.

The scientific findings of this article demonstrate that the computational methods

used applied through a digital health solution, can assist in the decision-making of

medical regulators and government institutions in situations of public health crisis.
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machine learning, deep learning, computational methods, bed regulation, COVID-19,
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1 Introduction

The COVID-19 pandemic is already considered one of the

biggest global health crises of the century (Hu et al., 2021). The

first cases appeared in the city of Wuhan, China, and in December

2019, the disease quickly spread among the other continents of the

world, manifesting itself as a dry cough, fever, and fatigue (Huang

et al., 2020; Zhu et al., 2020; Dashboard, 2022). In Brazil, the first

confirmed cases appeared in February 2020 and, the following

month it was declared a pandemic situation (Aquino et al., 2020;

Bastos and Cajueiro, 2020; Costa et al., 2021; Valentim et al., 2021).

Statistical data indicate that about 82% of COVID-19 patients

have the mildest symptoms of the disease. However, the evolution

to the most serious phase causes severe acute respiratory syndrome,

pneumonia, and multiple organ failure, requiring hospitalization

inward or intensive care unit (ICU) beds (Ahsan et al., 2020; Sales-

Moioli et al., 2022). In Brazil, more than 60 thousand ICU beds

were made available to treat patients, however, there were still

more than 680 thousand deaths (Cotrim Junior and Cabral, 2020;

Dashboard, 2022). Thus, with the daily increase in case numbers,

several officials had difficulties in monitoring and providing access

to beds for patients (Perondi et al., 2021; Shahzad et al., 2022).

In addition, the Brazilian Northeast region faced another

aggravating factor, as it is historically one of the regions with the

lowest healthcare resources, and consequently presented the second

lowest proportion of bed availability per capita (Cotrim Junior

and Cabral, 2020; Lino et al., 2020). According to Valentim et al.

(2021), expectations of coping with COVID-19 for a state like

Rio Grande do Norte (RN) in the Northeast Region of Brazil,

were quite pessimistic. One of the support measures taken by the

federal government, specifically the Ministry of Health (MoH),

was the provision of financial resources to reduce the effects

of the pandemic. However, some states received less funding

regionally, with RN being one of the states that obtained the lowest

amount of resources per capita, as available at the transparency

portal of the federal government of Brazil itself (https://www.

portaltransparencia.gov.br/coronavirus?ano=2020).

In this context, considering the difficulty of monitoring and

regulating access to beds for COVID-19 patients, particularly

due to high pressure (demand for beds), the State Secretariat of

Public Health of Rio Grande do Norte (SESAP/RN) in Brazil,

through technical-scientific cooperation with the Laboratory for

Technological Innovation in Health (LAIS) developed a digital

health solution to mitigate these problems. This solution was

called RegulaRN Platform, whose objective was to monitor and

control access to clinical and intensive care unit (ICU) beds for

patients with COVID-19 in the State of RN/Brazil (Valentim

et al., 2021; Sales-Moioli et al., 2022). Furthermore, the RegulaRN

Platform acted as a tool for public transparency by publishing

online several indicators on COVID-19, daily data used by the

local press and the national press consortium to disseminate

the epidemiological scenarios of the State (Valentim et al.,

2021).

The bed regulation process is a critical sector in public health

management, as it acts directly in the management of sectors

that can impact the lives of patients, especially those who need

hospitalization in emergency cases (Maldonado et al., 2021).

Therefore, it is necessary to develop techniques that can contribute

to the continuous improvement of the work process of health

professionals working at this healthcare level.

In response to the challenges pointed out, the use of digital

health solutions based on intelligent computational methods

can help reduce impacts and enhance better decision-making

by public agencies, especially in situations of a public health

crisis, such as the COVID-19 pandemic (Shailaja et al., 2018;

Bian and Modave, 2020). Intelligent computational models, when

well applied and aligned with a good governance policy, can

contribute in a more effective way, to promote the reduction of

uncertainties, ambiguities, subjective gaps, and better support for

decision-making (Ghaderzadeh and Aria, 2021; Moulaei et al.,

2022). Moreover, these models are able to identify non-linear

relationships and interactions between variables, which enables

better performance of the systems where they are applied (Subudhi

et al., 2020).

Thus, the research presented in this article aimed, firstly, to

analyze a set of data from a bed regulation system, used during a

period of the COVID-19 pandemic. Secondly, select and compare

different machine learning and deep learning models, to elect the

most relevant classification model, which can predict with the best

accuracy, precision, recall, specificity, F1-score, and ROC-AUC

curve, themortality of patients with COVID-19 whowere regulated

to be hospitalized. Finally, to discuss the potential of this tool in the

decision-making of health professionals and public entities during

a public health crisis situation, such as the one seen during the

COVID-19 pandemic.

2 Materials and methods

The methodological procedure used in this study consisted of

analyzing the regulation data profile for data extraction, features

selection, classification of data, and cleaning data. Then the data

were analyzed and use of the data for application in computational

models which involved five steps: (1) definition of evaluation

metrics, (2) data balance, (3) segmentation of training and

validation data, (4) definition of data classification models, and (5)

definition of hyperparameters for training. In the following topics,

the data will be presented and discussed from the perspective of

using computational intelligence tools to support decision-making

in the health axis.

2.1 Data extraction and preprocessing

This study used the RegulaRN COVID-19 bed regulation

database, a system used to meet the regulatory flows of Rio Grande

do Norte (RN)/Brazil. The database was extracted on 08/02/2022,

when it contained 25,366 effective regulations, considering the two

health regions of the State:West andMetropolitan. The data sample

covered the period from April 30, 2020, to August 2, 2022.

The raw database (before preprocessing) had twenty

characteristics, of which nine were considered relevant for

data classification because they were data more correlated to the

patient’s clinical condition. Table 1 presents all the data present

in the database and their respective descriptions. Characteristics

that referred to: (a) request date, (b) patient’s municipality, (c)
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TABLE 1 Description of database.

Data description

Field Description

Request date Represents the date a bed request was registered.

Patient’s

municipality

Represents the patient’s municipality.

Patient’s federal unit Represents the patient’s federal unit.

Pregnant Represents whether the patient is pregnant.

Gestational age Describe how far along the pregnancy is, measured in

weeks.

Age Represents the patient’s age.

Case type Represents whether the patient was “suspected,”

“confirmed,” or “discarded” for COVID-19.

EUP score Represents the EUP score value.

OTI Represents whether or not the patient was in

orotracheal intubation when requesting a bed.

Requested bed type Represents the type of bed that was selected by the

regulation center for a patient.

Entrance date Represents the date that the patient was allocated in the

health unit (hospital).

Entrance bed type Represents the type of bed that the patient was allocated

in the health unit (hospital).

Output date Represents the date that the patient left the bed after the

outcome.

Output bed type Represents the type of bed the patient was in before the

outcome.

Length of stay Hospital length of stay, measured in days.

Outcome Represents the final outcome of the patient in bed.

Requesting unit Represents the unit health that solicits a bed for the

patient.

Municipality of the

requesting unit

Represents the municipality of the health unit that

solicits the bed.

Provider unit Represents the unit health that receives and internal the

patient in the bed.

Municipality of the

provider unit

Represents the municipality of the health unit that

receives and internal the patient in the bed.

patient’s federal unit, (d) if pregnancy, (e) gestational age, (f) date

of entry to the bed, (g) date of output from the bed, (h) requesting

hospital unit, (i) municipality of the requesting hospital unit, (j)

providing hospital unit, and (k) municipality of the providing

hospital, because they are not definitive for determining the

outcome and this could affect the results of the study. In this way,

the characteristics that were most related to the patient’s health

condition and the bed offered were considered, as follows: (a) age,

(b) case type, (c) Unified Prioritization Score (EUP score), (d) if

on orotracheal intubation (OTI), (e) type of bed requested, (f)

type of entrance bed, (g) type of output bed, (h) length of stay,

and (i) the outcome; because they are variables that have more

correspondence with the outcome (target).

The determination of the nine pivotal characteristics,

delineated as Feature Selection in Figure 1, was guided by insightful

consultations with clinical specialists, thereby categorizing our

feature selection approach as specialist-driven. It is imperative to

note that feature selection strategies are encompassed within the

overarching strategy known as dimensionality reduction, which

concurrently includes a subset of methodologies recognized in

academic literature as feature extraction (Jia et al., 2022). Our

methodology hinged on the exclusive employment of a feature

selection strategy, substantiated by its intrinsic ability to preserve

the clinical interpretability of the variables, thereby enhancing

the model’s explicability—a facet of paramount importance

in medical and public health applications. Although feature

extraction techniques like Principal Component Analysis (PCA)

are renowned for their adeptness in dimensionality reduction, they

also inherently possess a disadvantage, notably, the potential for

the newly derived features to lose their original clinical meaning

(Jia et al., 2022). This facet is not favorable for our application in

the clinical domain, where preserving the comprehensibility and

interpretability of variables is crucial.

In terms of preparing the dataset, to normalize and standardize

the data, lines in the database with blank data or with incorrectly

registered information were removed. In addition, the “outcome”

characteristic could assume three results: “discharge,” “death,” and

“transfer.” However, the outcome “transfer” indicates that the

patient was transferred from one hospital to another or from

one bed to another. Therefore, it is not a determining factor

as to whether the patient was discharged or died at the end of

hospitalization. Thus, lines with “Transfer” as the outcome were

removed, and the final definition was kept as a binary classification

(“discharge” or “death”). In the end, 74.37% of the data was kept,

representing 18,865 effective regulations (inpatients). To ensure

the reproducibility of the experiment, the database with all the

pre-processed information is available in the following repository

https://zenodo.org/record/8122564. According to Resolution 674,

2022 of the National Health Council (NHC) of the Ministry of

Health (MoH) this research is exempt from registration with

the Research Ethics Committee (CEP)/Brazil or the National

Research Ethics Commission (CONEP)/Brazil, as it works with

databases, whose information is gathered without the possibility of

individual identification.

Once the dataset elements had been defined, analyses were

carried out to evaluate and characterize them for use in the models

of the computational methods to be selected. Figure 1 shows

schematically how the procedures described were carried out.

2.2 Analysis and correlation between
dataset features

The data analyzed was the same as that selected for the

computer model applications so that it was divided into categories

and outcomes. During the analysis, a statistical evaluation was

carried out with a 99% confidence interval (p-value< 0.01) between

the selected characteristics and also segmented by the outcome.

A possible relation was found between two independent

variables, age, and length of stay, which do not have direct causality

with the outcome. For these two data, the chi-square statistical
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FIGURE 1

Pipeline for the use of RegulaRN data.

distribution was applied (CI 99%, (p < 0.01) and from this, we can

categorize the different risk criteria that are linked to the outcome.

To assess the correlation between the variables we used

the Phik correlation (https://phik.readthedocs.io/). The Phik

correlation is a variation of the Pearson hypothesis test with some

refinements, such as the correlational evaluation of categorical,

ordinal, and interval features. As 67% of the features in the

dataset use categorical (non-numerical) values, the Phik correlation

was selected for the correlational presentation of the data.

We used the pandas-profilereports library (https://github.com/

ydataai/ydata-profiling) to identify direct proportional correlations

between the selected variables. The correlation matrix obtained

was compared with the feature importances of the computational

models to analyze a relational convergence between the data used.

2.3 Evaluation metrics

The evaluation metrics used in this study were similar

to other research, which used machine learning and/or deep

learning, presented in the works of Sokolova and Lapalme (2009),

Ghaderzadeh et al. (2021b), and Endo et al. (2022), namely:

accuracy, precision, recall, F1-score, specificity, and ROC-AUC

curve. These metrics are formulated from the confusion matrix.

The confusionmatrix shows the relationship between the real event

and the prediction suggested by the model (Sokolova and Lapalme,

2009; Grandini et al., 2020). The composition of the confusion

matrix consists of true positive (TP)—when the event is positive

and themodel predicts positive; false positive (FP)—when the event

is negative and the model predicts positive; false negative (FN)—

when the event is positive and the model predicts negative; and true

negative (TN)—when the event is negative and the model predicts

negative. Figure 2 illustrates the confusion matrix.

In this respect, the accuracy of a model relates to the number

of data points that were predicted correctly, compared to the total

number of possibilities. Thus, it is calculated from the sum of TP

and TN, divided by the sum of possible events (Equation 1).

Accuracy = (TP + TN)/(TP + FP + FN + TN) (1)

Precision involves predicting the number of truly positive

classification data compared to what the model has judged to be

positive. It is calculated by dividing TP by the sum of TP and FP

(Equation 2).

Precision = TP/(TP + FP) (2)

Recall consists of predicting the number of truly positive rating

data compared to what the model has judged to be positive and

negative. It is calculated by dividing TP by the sum of TP and FN

(Equation 3).

Recall = TP/(TP + FN) (3)

Specificity refers to the correct prediction of truly negative

values from the database. It is calculated by dividing TN by the sum

of TN and FP (Equation 4).

Specificity = TN/(TN + FP) (4)

The F1-score is the harmonic mean of precision and recall.

For learning systems with greater vulnerability, to further optimize

the Recall and Precision values, the F1-score can be used (Lipton

et al., 2014; Endo et al., 2022). The formula involves the product of

precision and recall divided by the sum of these metrics, multiplied

by 2 (Equation 5).

F1Score = 2 ∗ (Precision ∗ Recall)/(Precision+ Recall) (5)

The ROC (Receiver Operating Characteristic) is obtained from

the ratio between the true positive rate (TP/TP+FN) and the

false positive rate (FP/FP+TN). Overall, it can be obtained by

dividing the recall value by the complement of the specificity

(Equation 6).

ROCAUC = Recall/(1− Specificity) (6)

2.4 Data balancing

One of the main problems when working with machine

learning is data imbalance. This phenomenon occurs when there

is a disproportionate categorization of data (Moulaei et al., 2022).

RegulaRN’s data composition is naturally unbalanced due to
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FIGURE 2

Structure of the confusion matrix.

the low lethality of COVID-19. Therefore, in the hospitalization

process, an asymmetry between the number of discharges and

deaths is to be expected. As for the data used, 72% of the outcomes

were classified as discharges and 28% as deaths. It should be

noted that all the data used in this experiment is from the real

world, i.e., from real patients who have been infected with the

SARS CoV-2 virus, who have developed the moderate or more

severe form of the COVID-19 disease and have needed to be

hospitalized for more appropriate care. Thus, it is not patient

data that has been previously selected for training the algorithms,

the database used was built organically, from bed regulations for

COVID-19 patients.

An imbalanced base may therefore have higher hits for

metrics in which the most representative class is more

dominant, which can be a negative aspect, as the algorithms

or computer models may act in a discriminatory way. To

reduce instability, the SMOTE (Synthetic Minority Over-

sampling) balancing method was used. The SMOTE consists

of increasing the sample of the minority class and minimizing

the majority class, producing an over-sample (Chawla et al.,

2002; Fernández et al., 2018). Thus, the SMOTE makes the

sample used in the experiment less asymmetrical concerning

the classes.

2.5 Training and test data

The separation process of training and validation data

in this study corroborates the methodological procedures

found in other similar studies with a significant volume of

data. The study by Endo et al. (2022) used around 11,382

data points with classifier models to make predictions

about the dissemination of information about COVID-19.

Meanwhile, Vaughan et al. (2023) used more than 10,849

wastewater samples from different European regions to

predict COVID-19 contamination. Yu et al. (2021) used 5,471

datas of patients with COVID-19 to predict mortality and

mechanical ventilation.

Thus, considering the large volume of data processed and the

scientific approach of separating the data in the model into 80%

for training and 20% for test, the same method was used in this

scientific study.

2.6 Definition of models for data
classification

At first, the process of selecting classification models involved

algorithms that according to the literature performed well with

a high volume of data (Charbuty and Abdulazeez, 2021; Yu

et al., 2021). Thus, two classical models of machine learning were

selected, the decision tree and random forest algorithms, and

the deep learning model with the multilayer perceptron (MLP)

algorithm. In MLP, to obtain better computational performance,

especially since there is a large volume of data times the number

of variables (this increases the dimensions in the hyperplane), it is

necessary to select optimizing algorithms during the training stage

(Sutskever et al., 2013; Yu et al., 2021). Optimizing algorithms are

used to improve time and accuracy in the data classification process.

Therefore, the following optimization algorithms were selected:

Stochastic Gradient Descent (SGD) (Zhang et al., 2018), Adam

(Kingma and Ba, 2014), Adagrad (Duchi et al., 2011), and Root

Mean Square Propagation (RMSprop) (Dauphin et al., 2015).

The selected models were applied to a training pipeline with

the aim of selecting the best hyperparameters and maximizing

the selected metrics, as well as evaluating the importance of the

variables for the model’s decision.

2.7 Hyperparameters for defining the best
model

In machine and deep learning, hyperparameters are variables

that help in the definition of classifiers during learning, they cannot

be altered during training (Yu et al., 2021). Table 2 shows the

hyperparameters used in each model and the range of values

adopted for the experiment. The highlighted values show the best-

performing combinations.

For the Decision Tree model—executed by

DecisionTreeClassifier from the sckitlearn python library

Pedregosa et al. (2011), the hyperparameters used were: criterion,

max depth of the tree, min samples leaf, and max features. As

for the criterion, the possibilities adopted were gini or entropy,

which are mathematical tools that calculate the possibility of

incorrect classification of a given characteristic. Depending on

the homogeneity of the data, there may be variations in the

final results. The max depth of the tree considers the number of
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TABLE 2 Hyperparameter segmentation by model.

Models Hyperarameter Levels

Machine learning

Decision tree Criterion Gini or entropy

Max depth of the tree [10, 50, 100]

Min samples leaf Range [1,2,3,4]

Max features [sqrt, log2]

Random forest Criterion Gini or entropy

Max depth of the tree [10, 50, 100]

Number estimators [100, 200, 400]

Max features [sqrt, log2]

Deep learning

SGD Number of neurons [5, 20, 100]

Dropout [0.5, 0.9]

Batch size [16, 32, 64]

Epochs [10, 50, 100]

Adam Number of neurons [5, 20, 100]

Dropout [0.5, 0.9]

Batch size [16, 32, 64]

Epochs [10, 50, 100]

RMSprop Number of neurons [5, 20, 100]

Dropout [0.5, 0.9]

Batch size [16, 32, 64]

Epochs [10, 50, 100]

Adagrad Number of neurons [5, 20, 100]

Dropout [0.5, 0.9]

Batch size [16, 32, 64]

Epochs [10, 50, 100]

In bold, the hyperparameter values that generated better average values for the metrics are

highlighted.

nodes from the root to the furthest element. The min samples leaf

considers the smallest possible number of samples for a node.

The max features take into account the number of features that

must be used in each operation. In the Random Forest model,

sckitlearn’s RandomForestClassifier library was used to select

the hyperparameters: criterion, max depth of the tree, number

estimators, and max features. The number estimator parameter

considers the number of forest trees.

For the models using the multilayer perceptron, the

python Keras library (https://keras.io/) was applied, and the

hyperparameters selected: number of neurons, dropout, batch size,

and epochs. The number of neurons represents the number of

neurons in each hidden layer of the perceptron. Dropout acts to

select the number of neurons that will indeed be active in a hidden

layer. Batch size involves the number of examples used to estimate

the error gradient before updating the model parameters. Epochs

means the number of complete passes through the data set before

the training process is terminated.

TABLE 3 Hyperparameter segmentation by model.

Features Values Outcome

Age (≥) 60 9,116 (48.3%) Discharge: 5,599

(61,4%)

Death: 3,517

(38,6%)

(<) 60 9,749 (51.7%) Discharge: 8,016

(82.2%)

Death: 1,733

(17.8%)

Type of case Confirmed 13,235 (70.2%) Discharge: 9,158

(69.1%),

Death: 4,077

(30.9%)

Suspect 5,150 (27.3%) Discharge: 4,100

(79.6%)

Death: 1,050

(20.4%)

Discarded 480 (2.5%) Discharge: 357

(74.4%)

Death: 123

(25.6%)

EUP score 2 9,100 (48.2%) Discharge: 7,259

(79.8%),

Death: 1,839

(20.2%)

3 4,138 (21.9%) Discharge: 3,088

(74.6%)

Death: 1,050

(25.4%)

4 2,554 (13.5%) Discharge: 1,698

(66.5%)

Death: 856

(33.5%)

5 2,056 (10.8%) Discharge: 1,118

(54.4%)

Death: 938

(45.6%)

6 781 (4.1%) Discharge: 359

(46%)

Death: 422

(54%)

7 190 (1%) Discharge: 72

(37.9%)

Death: 118

(62.1%)

8 46 (0.2%) Discharge: 20

(43.5%)

Death: 26

(56.5%)

IOT No 17,634 (93.4%) Discharge:

13,434 (76.2%),

Death: 4,202

(23.8%)

Yes 1,231 (6.5%) Discharge: 183

(14.9%)

Death: 1,048

(85.1%)

Requested bed Ward 11,289 (59.8%) Discharge:

10,064 (89.1%),

Death: 1,225

(10.9%)

(Continued)
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TABLE 3 (Continued)

Features Values Outcome

ICU 7,576 (40.2%) Discharge: 3,551

(46.9%)

Death: 4,025

(53.1%)

Entrance bed Ward 9,753 (51.7%) Discharge: 8,800

(90.2%),

Death: 953

(9.8%)

ICU 9,112 (48.3%) Discharge: 4,815

(52.8%)

Death: 4,297

(47.2%)

Output bed Ward 10,511 (55.7%) Discharge:

10,077 (95.9%),

Death: 434

(4.1%)

ICU 8,354 (44.3%) Discharge: 3,538

(42.4%)

Death: 4,816

(57.6%)

Length of stay (<) 7 11,852 (62.8%) Discharge: 9,293

(78.4%),

Death: 2,559

(21.6%)

7 (≤) LoS (≤)

14

5,038 (26.7%) Discharge: 3,365

(66.8%)

Death: 1,673

(33.2%)

(>) 14 1,975 (10.5%) Discharge: 957

(48.5%)

Death: 1,018

(51.5%)

Outcome Discharge 13,615 (72.1%)

Death 5,250 (27.9%)

For all themodels, the GridSearchCV tool, a Python library, was

used to explore all possible possibilities to find the best parameters

for the grid (Ensor and Glynn, 1997; Bergstra and Bengio, 2012).

In addition, the cross-validation method was used with a value of

10 (Moulaei et al., 2022), and the models were run five times, a

method used in other academic works, such as Ahsan et al. (2020),

to guarantee the selection of the best parameters even if there was

variation in any of them. For each run, we calculate the average

values and standard deviation of the metrics during the test stage.

3 Results

3.1 Results of data pre-processing and
characterization

As for the data profile, Table 3 shows the number of patients

classified by their outcome (divided into percentage and absolute

values) and divided by the main characteristics selected. According

to this exploration, it is possible to identify that the number of

deaths is proportionally higher in patients aged over 60, who had

a higher EUP score, who started the hospitalization process already

intubated, who used an ICU bed and required a hospital stay of

more than 7 days.

With regard to the statistical profile, when evaluating the data

as a whole, the average age of the patients who needed some kind

of hospitalization was 55.8 years, with a standard deviation of 23.7.

Themedian age was 59, which indicates that the average population

of RN needing hospitalization is an intermediate age group close

to the elderly. As for the EUP score, the mean value was 3 and

the median also had the same value. It can therefore be said that

patients who were regulated on the platform had lower EUP scores

and therefore fewer health complications. Concerning the length

of stay, the average length of stay was 6.87 days, with a standard

deviation of 7 days. Figure 3 shows a distribution of these data

in a boxplot.

The literature does not provide an accurate definition of the

expected length of stay for a patient with COVID who will need

hospitalization, because this determination depends on several

factors such as the patient’s current state of health, the assistance

capacity of the place of care, and socio-regional factors. However,

academic studies indicate a length of stay of between 5 and 29 days

(Rees et al., 2020; Vekaria et al., 2021). The RegulaRN data shows

some outliers in the length of stay (Figure 3) that can be evaluated

in future studies on the efficiency of care utilization.

As for the level of correlation between the variables

(Figure 4), evaluating the entire database (Figure 4A), the

pandas-profilereports function manages to identify directly

proportional correlations between the selected variables, so that

age, EUP score, orotracheal intubation, requested bed, entrance

bed, and output bed appear to be more relevant in defining the

outcome. When evaluating the dataset based on the outcome, it

can be seen that the behavior of the data when the final outcome is

“discharge” (Figure 4B) is similar to the complete data structure.

This result is to be expected given that the predominant volume

of data is from patients who had “discharge” outcomes. However,

when evaluating the structure of data whose outcome was “death”

(Figure 4C), it is possible to identify the existence of negative

correlations between the variables age, length of stay, and EUP

score. This information also points to expected narratives, given

that older patients tend to spend less time in the hospital (when

correlating age and length of stay), just as patients with more

fragile health, who score higher on the EUP score, are also more

likely to die in a shorter period.

Evaluating the data profile by discharge and death

(Table 4), non-survivors are older, have higher scores on the

EUP score, started hospitalization already under orotracheal

intubation have a higher indication for an ICU bed, and stay

for more than eight days in hospital on average. Survivors

are younger, have lower scores on the EUP score, started

hospitalization without orotracheal intubation, have a

higher indication for a ward bed, and stay less than 7 days

in hospital.

After applying the chi-square, we identified a strong correlation

between the independent variables age and length of hospital stay.

Bymaking a selection based on the average length of hospitalization

and age groups, it was able to establish risk criteria based on how

these variables present themselves and thus help decision-making

at the care level (Table 5). A patient who is over 80 years old and
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FIGURE 3

Boxplot representation of numerical data.

has been hospitalized for more than seven days has a 53% chance of

death, reaching the maximum risk criterion. In this way, they can

be relocated from an ICU bed to a palliative care bed.

3.2 Results of the application of
computational methods

In Table 2, displayed in the materials and methods section,

the selected hyperparameters and their respective defined values

are shown. The best hyperparameters have been highlighted in

bold so that it is possible to identify an equivalence between

similar parameters in the different models. The machine learning

models maintained better results with the same levels of criterion,

max depth of the tree, and max features, this correspondence

phenomenon also occurred among the deep learning models, in

which there was the same selection of the number of neurons,

dropout, and batch size among all the optimizers.

As for the evaluation metrics (Table 6), among the machine

learning models, Random Forest showed the best accuracy

(82.97%), precision (79.35%), recall (84.80%), F1-score (80.74%),

and specificity (84.79%) with the lowest standard deviation values.

In the deep learning models, the highest accuracy (84.01%),

precision (79.57%), and F1-score (81%) were achieved by SGD,

while RMSProp was responsible for the highest recall (84.67%)

and specificity (84.67%). A significant variation in the standard

deviation was found between the deep learning models.

When evaluating the features importances of the tree models

(Figure 5), there is a convergence of results. The characteristics of

output bed, age, and length of stay are among the most important

for model selection. The EUP score is also relevant between the

models, although the entrance bed and requested bed have a greater

influence on Random Forest. The type of case and whether the

patient was under orotracheal intubation during the request were

not very decisive for the models. In the MLP models (Figure 6), the

types requested bed entrance bed and output bed are among themost

relevant characteristics for RMSProp and Adagrad, while SGD and

Adam consider output bed, requested bed, and age to be the most

relevant ones. Among all the models, the type of case (discarded)

is the least important variable in determining the outcome. It was

noted that length of stay stands out more in Decision Tree and

Random Forest decision-making, while in the other classifiers, it

is a variable that is not highly valued.

Comparing our results with the correlation of variables from

the Phik model, the deep learning models selected the most

important features similarly to the correlations presented; output

bed, requested bed, and entrance bed are among the most relevant

in RMSProp and Adagrad; output bed and requested bed appear

among the most relevant for SGD and Adam. This correspondence

points to a relational convergence between Phik and the best

selection of variables to determine the outcome carried out by

MLP models.

ROC and AUC are efficient techniques for summarizing the

prediction accuracy of models. The ROC is obtained from the

ratio between the recall and the complement of specificity, while

the area under the curve varies from 0 to 1, indicating a totally

correct prediction or not (Shanbehzadeh et al., 2022). The machine

learning ROC-AUC models obtained similar results to each other.

Random Forest showed the best classification of true and false

positives with an AUC of 0.852, Decision Tree showed an AUC of

0.843, a result that was expected given that it had the lowest average

recall. Meanwhile, among the deep learning classifiers, Adagrad

had the lowest value (AUC = 0.912), followed by SGD (AUC =

0.913), Adam (AUC = 0.914), and RMSProp (0.916). All these

data are displayed in Figure 7. Overall, an AUC of 0.7 to 0.8 is

considered acceptable, 0.8 to 0.9 is considered excellent, and above

0.9 is considered outstanding (Shanbehzadeh et al., 2022).

3.3 Analysis of results

Investments in efficient health systems have been decisive for

the better performance of several regions in acquiring data for

decision-making in the midst of the pandemic. In addition, the use

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1290022
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Barreto et al. 10.3389/frai.2023.1290022

FIGURE 4

Correlation between dataset features. (A) Correlations between the characteristics of the dataset involving discharge and death results. (B)

Correlations between the characteristics of the dataset involving only the discharge results. (C) Correlations between the characteristics of the

dataset involving only the death results.

of artificial intelligence systems has been widely disseminated in

academic literature as an aid in various issues to combat COVID-

19, whether through patient health data (Debnath et al., 2020;

Moulaei et al., 2022; Shanbehzadeh et al., 2022), interventions with

radiological images (Ahsan et al., 2020; Ghaderzadeh et al., 2021a,

2022), dissemination of false information about COVID-19 (Endo

et al., 2022), forecast of the number of ICU beds in times of crisis

(Goic et al., 2021), predicting the time needed to transfer a patient

to an ICU bed (Cheng et al., 2020), among others.

Our results compared the performance of six different

computational methods in predicting patient mortality from bed

regulation data. As for the machine learning models, Random

Forest showed the best results in terms of accuracy (82.97%),

precision (79.35%), recall (84.80%), F1-score (80.74%), Specificity

(84.79%), and ROC-AUC (85.2%). The good performance of this

classifier is also highlighted in the work of Prakash et al. (2020),

Gupta et al. (2021), Endo et al. (2022), and several others in the

literature. As for the deep learning models, SGD showed the best

results in terms of accuracy (84.01%), precision (79.57%) and F1-

score (81.00%), and RMSprop showed the highest recall (84.67%),

specificity (84.67%), and ROC-AUC (91.6%). The selection of SGD

as the top optimizer for increasing accuracy also appears in the

work of Andrade et al. (2022), however, it does not converge

with the work of Ahsan et al. (2020), in which SGD was the

worst optimizer selected. Nevertheless, it should be noted that the

variability of the data model used to structure the neural network

can produce different results, so experimentation with different

classifiers is essential to determine the best one.

The MLP with SGD optimizer proved to be the best model

for determining the outcome of discharge and death and in terms

of assertiveness for predicting discharges. Therefore, if the health

professional’s goal is to determine whether that patient will have a
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TABLE 4 Patient data profile divided by discharge and death.

Discharge Death 99% CI (p-value < 0,01)

Discharge Death

Total 13,615 (72.3%) 5,250 (27.8%) - -

Age 51.69 (±24.43) 66.47 (±17.86) [51.142, 52.238] [65.835, 67.105]

Case type

Confirmed 9,158 (69.1%) 4077 (30.9%) [0.679, 0.703] [0.290, 0.328]

Suspect 4,100 (79.6%) 1050 (20.4%) [0.779, 0.812] [0.172, 0.236]

Discarded 357 (74.4%) 123 (25.6%) [0.685, 0.803] [0.155, 0.357]

EUP score

2 7,259 (79.8%) 1,839 (20.2%) [0.786, 0.810] [0.178, 0.226]

3 3,088 (74.6%) 1,050 (25.4%) [0.726, 0.766] [0.219, 0.289]

4 1,698 (66.5%) 856 (33.5%) [0.636, 0.694] [0.294, 0.376]

5 1,118 (54.4%) 938 (45.6%) [0.506, 0.582] [0.414, 0.498]

6 359 (46%) 422 (54%) [0.392, 0.528] [0.478, 0.602]

7 72 (37.9%) 118 (62.1%) [0.232, 0.526] [0.506, 0.736]

8 20 (43.5%) 26 (56.5%) [0.150, 0.720] [0.315, 0.815]

OTI

Yes 183 (14.9%) 1,048 (85.1%) [0.081, 0.217] [0.823, 0.880]

No 13,434 (76.2%) 4,202(23.8%) [0.752, 0.771] [0.221, 0.255]

Requested bed

Ward 10.064 (89.1%) 1,225 (10.9%) [0.883, 0.899] [0.086, 0.132]

UCI 3,551 (46.9%) 4,025 (53.1%) [0.447, 0.491] [0.511, 0.551]

Entrance bed

Ward 8,800 (90.2%) 953 (9.8%) [0.894, 0.910] [0.073, 0.123]

UCI 4,815(52.8%) 4,297 (47.2%) [0.510, 0.546] [0.452, 0.492]

Output bed

Ward 10,077 (95.9%) 434 (4.1%) [0.954, 0.964] [0.017, 0.065]

UCI 3,538 (42.4%) 4.816 (57.6%) [0.403, 0.445] [0.558, 0.594]

Length of stay 6,102 (±6,210) 8,789 (±8,583) [5.966, 6.240] [8.484, 9.094]

TABLE 5 Categorization of risk criteria based on age and length of stay

(LoS).

Discharge (%) Death (%) Risk
criterion

Age LoS ≤ 7 LoS (>) 7 LoS ≤ 7 LoS (>)7

≤49 89,64 73,54 10,35 26,45 1

50–59 81,44 61,74 18,55 38,25 2

60–69 74.59 54.04 25.40 45.95 3

70–79 68.65 51.56 31.34 48.43 4

≥80 58.53 46.68 41.47 53.31 5

positive outcome, the SGD is the most recommended optimizer.

Whereas, if the operator’s objective is to identify which of the

total samples selected were best classified, RMSProp is the most

recommended optimizer.

When it comes to decision-making, besides the model

assertively predicting the outcome, it is also interesting to minimize

the worst-case scenarios. In a pandemic scenario, where there is

great competition for the number of beds, it is important that the

model minimizes situations in which there would be a death and

the model classified it as a discharge (false negatives) because this

would ensure better management and efficiency of bed allocation

so that a patient who had a greater chance of a positive outcome

was referred. For this reason, besides having high accuracy and
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TABLE 6 Categorization of risk criteria based on age and length of stay (LoS).

Models Accuracy Precision Recall F1-score Specificity

Machine learning

Decision tree 82.06(± 0.29) 78.41 (± 0.21) 83.72(± 0.26) 79.73 (± 0.26) 84.38 (± 0.85)

Random forest 82.97(±0.11) 79.35 (±0.12) 84.80 (±0.16) 80.74 (±0.12) 84.79 (±0.19)

Deep learning

SGD 84.01 (±0.25) 79.57 (±0.46) 84.16 (+0.13) 81.00 (±0.49) 84.16 (+0.12)

Adam 82.84 (± 0.34) 79.20 (±0.20) 84.57(±0.22) 80.58(±0.24) 84.57(±0.23)

RMSprop 82.43(± 0.25) 78.97 (± 0.20) 84.67 (±0.18) 80.28 (±0.24) 84.67 (±0.18)

Adagrad 83.11 (±0.43) 79.38 (±0.29) 84.59 (±0.18) 80.80 (±0.35) 84.59(±0.18)

The highest values according to each metric are highlighted in bold.

FIGURE 5

Features importances of machine learning models. The figure initially shows decision tree and then Random Forest.

precision, recall and ROC-AUC should be maximized. Similarly, a

patient who would have been discharged and the tool classified as

death could lead the regulator to make the wrong decision, sending

a patient who had a chance of survival to palliative care. Thus,

we recommend a joint evaluation of the results of the SGD and

RMSProp for a definitive decision.

It is important to highlight that all the data used are real-

world data and the variables length of stay and output bed are not

controlled data. Therefore, we carried out new tests to ensure that

there would be no variability in our metrics, zeroing the length

of stay and keeping the output bed the same as the entrance bed.

And as expected, there were no significant changes in the metrics

of the models evaluated. This is because these models aim, based

on the patient’s clinical data, to evaluate whether the choice of bed

had a better outcome and, consequently, a better length of stay. In

other words, dwell time, and outcome are expected results of our

model. So, what actually happens is that the model looks at the

patient’s clinical parameters to analyze whether the choice of bed

was the most appropriate for a better outcome and shorter length

of stay.
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FIGURE 6

Features importances of multiperceptron layers models (deep learning). The figure shows the SGD optimizer, followed by Adam, RMSProp, and

Adagrad.

FIGURE 7

ROC curve and AUC value of all models.
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4 Discussion

The proposed models enhance the decision-making process of

the regulatory professional, to reduce the subjectivity of indicating

a patient who would have a better chance of survival for a given

hospital bed. Muhammad et al. (2021) also point to a reduction in

the burden on care operators and promote more effective care. It

must be emphasized that the medical appraisal should be sovereign

in all situations so that the models can only suggest the best course

of action. Moreover, models have the added benefit of being flexible

to changes, allowing for different forecasts (Subudhi et al., 2020).

That is, if during the regulation process, there is a need to adjust

some new information about the regulation process, the model is

able to suggest, in real time, a new forecast for that case.

In the context of global health to tackle COVID-19, widespread

investment in health sectors is essential. Brazil already experienced

bed overcrowding even before the health crisis (Soares, 2017), thus

a difficult performance in dealing with the pandemic was expected.

When comparing the situation in Europe, which began a policy

of reducing the number of active beds between 2010 and 2017

due to the low use of hospitalization services, Pecoraro, Luzi, and

Clemente (Pecoraro et al., 2021) showed an explicit relationship

between the increase in investment in the health area and its results

in the face of health crises. It was found that Germany invested

more in health policies, the number of professionals, and the

number of beds, and achieved a more significant performance in

minimizing the effects of the pandemic compared to Spain, France,

and Italy.

With regard to digital health, there has been pressure for

government entities to adopt efficient strategies by implementing

computerized systems that help obtain relevant information for

the population and assist decision-makers and health agents (Budd

et al., 2020; Valentim et al., 2021). For this to be possible,

maintaining transparency as well as a cyclical and incremental

evolution is fundamental to guaranteeing quality data, with the

aim of understanding the scenario in due course (Rasheed et al.,

2020; Valentim et al., 2021). The RegulaRN and other systems are

examples of this, so utilizing its data to strengthen future decision-

making in the bed regulation process corroborates the expectations

proposed by the academic, governmental, and social community.

This paper presents the results of an epidemiological

analysis of bed regulation data combined with a methodology

of computational models. Thus, aside from presenting new

information based on COVID-19, the main characteristics of the

inpatient outcome were identified. The data allowed us to present

mean and absolute values with statistical significance superior to

other studies (Baqui et al., 2021), besides making it possible to

suggest a risk criterion scale, including the independent variables

age and length of stay, which can be used by health units during the

hospitalization process. This scale may contribute to the process of

providing beds so that patients with the highest values on the scale

would be allocated to palliative care beds.

This work complies with the first three stages (data preparation,

model development, and model validation) suggested by the

review work proposed by de Hond et al. (2022) and is under

development to be integrated into RegulaRN, to ensure compliance

with the stages of software, evaluation, and implementation in daily

healthcare practice.

Furthermore, the use of computational methods can be of great

value in the regulatory management of patients with COVID-19.

The selected models showed good values for the main metrics

evaluated and could optimize the work of regulators and minimize

failures in terms of the real outcome of the patient or the

government’s costs in funding hospital articles and beds in an

expensive manner. It should be emphasized that the costs involved

in keeping a patient in an intensive care unit bed are substantially

higher than in a ward.Moreover, the results indicated by themodels

themselves may indirectly indicate the need for government action

to open or close new beds.

This model, presented in this article, was validated together

with the technical team of the Public Health Secretariat of the

State of Rio Grande do Norte. Therefore, it is incorporated

into RegulaRN with the aim of helping regulatory doctors make

decisions. According to the selected characteristics, the models can

be consulted by regulatory doctors at any stage of the regulation,

whether at the first indication (when the patient has not yet been

assigned to a bed), or also when the patient is already in a bed

(already hospitalized) to use the data generated to suggest a new

outcome prediction. It is noteworthy that in addition to the team of

regulatory doctors, this is an important tool for health managers, as

they now obtain timely information (on-time) for decision-making

and the formulation of public health policies that can guarantee

better access to health services.

Among the limitations of our study and the possibility of

future work, is to integrate and interoperate with the patients’

vaccination data, because Brazil started the vaccination process

against COVID-19 in January 2021. In this sense, even those who

may have been partially immunized and needed hospitalization

may contain enough antibodies to promote a different outcome

than a patient without any dose of vaccine (Sales-Moioli et al.,

2022). Furthermore, the database sent by the health department,

which was used in this research, did not have a breakdown of

patients by gender, so this analysis was not included in this first

work but has already been requested for future work. Finally,

another limitation of the article is to better work with censored

data on output bed and length of stay, considering that these

are variables that occur stochastically. Therefore, during the

initial regulation process, the output bed and length of stay are

information that is not yet completely defined, requiring some time

for the model to be able to present a good prediction quality.

5 Conclusions

This study used the RegulaRN database from April 2020 to

August 2022 to select computational models based on artificial

intelligence to predict the outcome of patients who were regulated

during the COVID-19 pandemic in the state of Rio Grande

do Norte. Among the selected models, the MLP with SGD

optimizer obtained the highest accuracy, precision, and f1 score for

predicting the outcome (discharge or death), selecting the output

bed, requested bed, and age as the most relevant. On the other

hand, RMSprop obtained higher scores in recall, specificity, and

ROC-AUC, selecting output bed, requested bed, and entry bed as

important variables for the outcome. In addition, we propose a scale
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of risk criteria that can be used by healthcare facilities to control and

make beds available.

The models can be used by the regulation center to assist

regulatory professionals during the indication for a bed, increasing

the assertiveness of the patient’s referral and minimizing the

impacts of mistaken regulation, i.e., directing a patient with a lower

chance of survival to an ICU bed when the best option would be

palliative care, or referring a patient who can be treated in a ward

bed to an ICU. In a pandemic situation, in addition to the effects

on human health, the computer model could help government

decisions on the costs involved with hospital beds.
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