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In recent years, the use of machine learning to predict stock market indices

has emerged as a vital concern in the FinTech domain. However, the inherent

nature of point estimation in traditional supervised machine learning models leads

to an almost negligible probability of achieving perfect predictions, significantly

constraining the applicability of machine learning prediction models. This study

employs 4 machine learning models, namely BPN, LSTM, RF, and ELM, to establish

predictive models for the Taiwan biotech index during the COVID-19 period.

Additionally, it integrates the Gaussian membership function MF from fuzzy theory

to develop 4 hybrid fuzzy interval-based machine learning models, evaluating

their predictive accuracy through empirical analysis and comparing them with

conventional point estimation models. The empirical data is sourced from the

financial time series of the “M1722 Listed Biotechnology and Medical Care Index”

compiled by the Taiwan Economic Journal during the outbreak of the COVID-19

pandemic, aiming to understand the e�ectiveness of machine learning models

in the face of significant disruptive factors like the pandemic. The findings

demonstrate that despite the influence of COVID-19, machine learning remains

e�ective. LSTM performs the best among the models, both in traditional mode

and after fuzzy interval enhancement, followed by the ELM and RF models.

The predictive results of these three models reach a certain level of accuracy

and all outperform the BPN model. Fuzzy-LSTM e�ectively predicts at a 68%

confidence level, while Fuzzy-ELM and Fuzzy-RF yield better results at a 95%

confidence level. Fuzzy-BPN exhibits the lowest predictive accuracy. Overall, the

fuzzy interval-based LSTM excels in time series prediction, suggesting its potential

application in forecasting time series data in financial markets to enhance the

e�cacy of investment analysis for investors.
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1 Introduction

Predictability studies of stock market indices have a long history within the field of

finance (Bacchetta et al., 2009; Chong et al., 2017). Researchers often analyze historical

financial data as time series and establish models such as linear regression methods,

Autoregressive (AR), Autoregressive Moving Average (ARMA), and Autoregressive

Integrated Moving Average (ARIMA) (Li et al., 2015; Zhang et al., 2016; Kiliç and

Ugur, 2018) to predict trends in stock market indices (Marszałek and Burczyński, 2014).
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However, due to the non-stationarity, nonlinearity, and extended

lag in the time series data of stock market indices, significant

patterns are often not precisely captured using conventional

methods (Bildirici and Ersin, 2014; Chong et al., 2017; He et al.,

2023). Consequently, in recent years, many researchers have sought

to employ AI machine learning models to discover more robust

predictive models for stock market indices (Sunny et al., 2020; Lim

and Zohren, 2021).

Machine learning is an algorithm that uses artificial neural

networks as its framework for data representation learning.

The primary logic involves transforming data into a structured

representation of a multi-layered neural network to facilitate

learning. This enables the extraction of complex features from the

data, allowing for prediction and interpretation. One advantage

is that it eliminates the need for significant human effort in

feature engineering and model design (Bengio et al., 2013),

and it has been widely applied in recent years for extracting

features from time series data. Among various machine learning

models, the Back-propagation Neural Network (BPN) introduced

by Rumelhart and McClelland (1986) can be considered one of the

most representative and commonly used models. BPN belongs to

the supervised learning framework, primarily built upon a multi-

layer perceptron structure and utilizing error backpropagation. It

is frequently applied in fields such as diagnostics and predictions

(Rumelhart and McClelland, 1986). Qu (2003) employed BPN

for infectious disease prediction, demonstrating that its predictive

performance outperformed traditional multiple regression models.

However, there are still studies pointing out that the effectiveness

of using BPN for time series data prediction is limited. The main

reason is that the learning objective of the BPNmodel is to establish

a mapping relationship between inputs and outputs, neglecting the

mutual influences among outputs. Moreover, BPN predictions are

based on a sample comparison approach, rather than truly learning

the relationships between time series data. Therefore, when there

are mutual influences among time series, the effectiveness of

computation becomes constrained (Chen et al., 2015).

Another commonly encountered machine learning model, the

Recurrent Neural Network (RNN), is regarded as one of the most

potent frameworks for processing temporal sequence data. The

principal drawback of RNN lies in its neglect of memory capability,

rendering it inadequate for capturing long-range dependencies

between nodes when sequences are distantly separated. Moreover,

the straightforward architecture of the RNN fails to address

challenges such as the vanishing gradient problem, wherein

gradients can vanish or explode due to the iterative recurrence

of weights, ultimately impeding effective training. Consequently,

practical instances wherein superior predictive outcomes are

solely achieved via the vanilla RNN model are relatively rare.

Literature frequently proposes remedies for the conventional

RNN model through the design of enhanced gradient descent

algorithms or the incorporation of superior activation functions

within neural units. In 1997, Hochreiter and Schmidhuber (1997)

introduced a groundbreaking enhancement to the RNN model

known as the Long Short-Term Memory Network (LSTM). LSTM

innovatively introduces memory mechanisms to augment long-

term dependencies, featuring three essential steps within its

neurons: forget, update, and output. This formulation substantially

bolsters long-term memory performance. Additionally, LSTM

partially mitigates the vanishing gradient issue encountered in

RNN. Over the years, LSTM has emerged as one of the most

commonly employed RNN variants. In the realm of financial

time series forecasting, Di Persio and Honchar (2016) explored

the suitability and effectiveness of LSTM. Selvin et al. (2017)

applied LSTM along with CNN-sliding window methods for stock

price prediction. Chen K. et al. (2015) highlighted the enhanced

accuracy of the LSTM model in comparison to other regression

models. Liu et al. (2018) specifically pointed out that LSTM-

based feature extraction for time series forecasting attains an

accuracy of approximately 72%, indicative of its commendable

performance. Nevertheless, there remains room for refinement

(Liu et al., 2018). Furthermore, LSTM encounters difficulty when

handling sequences with a magnitude of 1,000 or more, and the

presence of four fully connected layers (Multilayer Perceptron,

MLP) within each LSTM cell can lead to computational inefficiency

and time consumption as the LSTM spans longer temporal ranges

or deeper network configurations. To optimize the LSTM model,

scholars have proposed several enhancement strategies. Di Persio

and Honchar (2016) utilized a hybrid LSTM to enhance the

precision of time series predictions. Zhao et al. (2017) highlighted

the superior predictive accuracy of LSTM when incorporating a

time-weighted function, outperforming other deep learningmodels

in time series forecasting.

In recent years, the Random Forest (RF) model has also

been commonly employed for financial time series forecasting.

It is regarded as an ensemble learning technique based on

decision tree algorithms. RF employs a Bagging approach to

generate multiple decision trees and then combines the predictive

outcomes of these trees. The final prediction is determined

through a voting mechanism, where the most frequent class

is selected. However, in comparison to individual decision tree

algorithms, RF exhibits stronger generalization capabilities, can

handle a larger number of input variables, and is able to

assess the importance of each variable (Pal, 2005). Particularly

for datasets with imbalanced classes, RF can reduce errors

and is less prone to overfitting issues. Lee et al. (2019) have

reported an accuracy of 54.12% for stock market prediction

using RF. In the analysis of stock prices within a single

industry, RF demonstrates effectiveness in predicting stock prices

that possess inherent randomness, thus overcoming subjective

empirical judgments and the interference of emotional factors

(Khaidem et al., 2016; Nana and Jiangtao, 2018). In contrast to

other machine learning models, Basak et al. (2019) trained RF

and XGBoost using exponential smoothing data. The accuracy

of trend prediction for these two classifiers improved with an

extended time window. The experimentation suggests that RF

holds more advantages than XGBoost in this context. Leveraging

technical indicators from the stock market, Khaidem et al. (2016)

employed RF to predict stock trends. Their findings indicate that

RF outperforms Support Vector Machines (SVM) and Logistic

Regression (LR) in terms of obtaining more effective trend

prediction results.

In addition to the aforementioned models, Huang et al.

(2006) have introduced a Single-hidden Layer Feedforward Neural

Network (SLFNN) known as Extreme Learning Machine (ELM).
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ELM has been proven to possess high learning efficiency and

strong generalization capabilities, making it widely applicable

to problems such as classification, regression, clustering, and

feature learning (Cao et al., 2016). The number of neurons and

activation function in ELM must be regulated, as the input

weights and hidden layer biases are fixed during its application.

These characteristics contribute to ELM’s reputation for achieving

enhanced generalization performance with rapid learning. Cheng

et al. (2009) have elegantly demonstrated ELM’s superiority over

SVM in predicting petroleum reservoir permeability. Huang

et al. (2011) have successfully implemented ELM for regression

and classification tasks across various domains. Over the past

decade, ELM has consistently shown its advantages over traditional

techniques in the realm of stock market forecasting (Sun et al.,

2014; Li et al., 2016). Due to the fact that traditional feedforward

neural networks (such as BPN) require manual configuration of a

significant number of network training parameters, ELM stands out

for its simplicity and ease of use. Unlike BPN, ELM only requires

the setting of the network’s structure and doesn’t necessitate the

adjustment of other parameters. The weights from the input layer

to the hidden layer are determined in a single random iteration and

do not need further tuning during execution. Similarly, the weights

from the hidden layer to the output layer are determined by solving

a linear system of equations, generally contributing to improved

computational speed.

However, from a statistical perspective, if the predicted values of

the aforementioned supervised machine learning models are only

point estimates with binary outcomes (such as binary classification

or single-point prediction), it will lead to the problem of the

estimated probability of perfect correctness approaching zero.

This is due to the fact that in continuous random variables,

single points hold no probability value. Therefore, the point

estimation prediction method greatly restricts the usability of

machine learning models (Lowe and Zapart, 1999). In contrast to

point forecasting, probabilistic forecasting describes the variation

of the value by providing outputs in terms of probabilistic

density function, confidential intervals of the distribution. It can

better describe the uncertainty of values (Gan et al., 2017). In

reality, the best predictions should include estimated probability

distribution intervals for a future time period to better align

with real-world situations. In related studies, Quantile regression

is utilized in Liu et al. (2017) to generate multiple forecasting

results. In Yang et al. (2006), Liu et al. (2017), and Xie et al.

(2017) simulation of historical-error distribution was implemented

to convert point loads into intervals. Zadeh (1965) introduced

Fuzzy Logic in his publication “Information and Control,” aiming

to utilize fuzzy phenomena to address the reasoning model of

uncertainty in the real world. Fuzzy logic has since been widely

applied in artificial intelligence fields such as automatic control,

pattern recognition, and decision analysis. Whether fuzzy logic can

be applied to predictive models in machine learning is a topic

worth exploring. Ballings et al. (2015), in comparing traditional

models and integrated models in the machine learning domain,

demonstrated that integrated models perform better than single

models in predicting financial data based on time series. This study

will build upon the existing BPN, LSTM, RF, and ELM models,

which are commonly usedmachine learningmodels. Initially, point

estimation predictions for stock price indices will be computed.

Subsequently, by integrating the Gaussian membership function

(MF) of fuzzy theory, interval calculations will be performed to

develop a fuzzy interval-based machine learning model. Empirical

analysis will further investigate whether these models can achieve

more accurate predictions of stock price indices. It is anticipated

that the outcomes of this study will enhance the practicality

and predictive capabilities of machine learning models in real-

world scenarios.

In addition, due to the outbreak of the COVID-19 epidemic in

recent years, various countries have implemented city closures and

restricted crowd activities, which has had a significant impact on

the economy and financial markets. Frequent phenomena such as

stockmarket crashes, plummeting commodity prices, and declining

global demand have created greater uncertainty for investors.

Therefore, during the epidemic period, whether in the economic

field or social field, many linear or machine learning prediction

model-related research Generated in large quantities, for example:

Wu et al. (2022) once used a time series prediction model to predict

half-hourly electricity demand in Victoria. Zhao et al. (2023)

once constructed a deep learning framework, combining time

autocorrelation with Spatially correlated combination, reflecting

the impact of neighboring cities and historical data on air quality

during COVID-19. Cui et al. (2023) propose a deep learning

framework with a COVID-19 adjustment for electricity demand

forecasting. In summary, when the market is faced with the noise

and interference of the epidemic, what impact will the machine

learning model have on the forecast accuracy of the Taiwan stock

market index? It is also one of the topics that this study is interested

in exploring.

This study employs the highly representative dataset compiled

by the Taiwan Economic Journal (TEJ), specifically the “M1722

Listed Biotechnology andMedical Care Index” (hereinafter referred

to as the Taiwan TEJ Biotech Index), as empirical data to represent

the performance of Taiwan’s listed biotechnology and medical

care stock market industry. Furthermore, due to the severe stock

market fluctuations caused by the COVID-19 pandemic (Baret

et al., 2020; Uddin et al., 2021), which exhibit dynamics different

from non-pandemic periods, the empirical period of this study

is set to the outbreak of the COVID-19 pandemic (from January

2020 to the end of June 2022). The aim is to understand the

extent to which the accuracy ofmachine learningmodel predictions

is affected when the stock market experiences significant turmoil

due to pandemic-related disturbances. In summary, this study

has three main objectives: (1) To establish predictive models

for the Taiwan biotech index after the COVID-19 outbreak

using four machine learning models: BPN, LSTM, RF, and ELM.

(2) To integrate fuzzy theory to modify the existing point

estimation approach of machine learning models and thus develop

a fuzzy interval-based machine learning model, while comparing

it with traditional point estimation models. (3) To understand

whether machine learning models are suitable for predicting

stock indices when the stock market faces significant disturbances

and substantial fluctuations (such as during the outbreak of the

COVID-19 pandemic).
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TABLE 1 Variables in this study.

Category Variables

Technical
indicators

MA_5, MA_20, K_9, D_9, RSI_6, RSI_12, MACD_9

Biotech and
medical sector
indicators

Listed biotech and medical sector turnover rate, biotech
and medical sector mutual fund net buy/sell, biotech
and medical sector proprietary trading net buy/sell,
biotech and medical sector foreign investor net buy/sell,
biotech and medical sector equity-to-debt ratio.

Composite index Taiwan Weighted Index, U.S. Dow Jones Industrial
Average, U.S. S and P 500 Index, U.S. Nasdaq
Biotechnology Index, Shanghai Composite Index, Hong
Kong Hang Seng Index, South Korea Composite Index,
Japan Nikkei 225 Index.

News-based index VIX Fear Index

Futures index CRB Index

Macroeconomic
analysis

Business Cycle Indicators

2 Materials and methods

2.1 Variables

This study focuses on the “Taiwan TEJ Biotechnology

Index” as the research subject, with the closing prices of

the Taiwan biotechnology index during the COVID-19

outbreak period as the research object. The primary data

source is the TEJ database. The study aims to compare 8

machine learning models: BPN, LSTM, RF, ELM, as well as

fuzzy interval-based BPN (fuzzy-BPN), fuzzy interval-based

LSTM (fuzzy-LSTM), fuzzy interval-based RF (fuzzy-RF),

and fuzzy interval-based ELM (fuzzy-ELM), in terms of their

predictive accuracy.

Initially, literatures were gathered to collect various

variable data used for index prediction. These variables

include Taiwan index data, international index data, futures

prices, sentiment indicators, macroeconomic analysis,

and 23 other variables. The study then employed factor

analysis to identify significant variables affecting the Taiwan

biotechnology index during the COVID-19 outbreak period.

Subsequently, a model was established using MATLAB to

predict the closing prices of the Taiwan TEJ Biotechnology

Index, thereby validating the feasibility of the proposed

research methodology.

The research framework consists of 9 steps, which are

elaborated as follows:

(1) Data Collection: Involves the collection of various variable

indicators, including seven technical indicators, five variables

related to Taiwan’s biotechnology and healthcare sector’s net

buying and selling, as well as trading volume, 8 variables

related to Taiwan and international index market trends,

one sentiment indicator, one futures price index, and one

macroeconomic analysis, total 23 variable indicators (see

Table 1).

TABLE 2 Machine learning models in this study.

Model Model

BPN MODEL 1

LSTM MODEL 2

RF MODEL 3

ELM MODEL 4

Fuzzy-BPN MODEL 5

Fuzzy-LSTM MODEL 6

Fuzzy-RF MODEL 7

Fuzzy-ELM MODEL 8

(2) Data Preprocessing: Due to variations in trading holidays for

international stock market, if trading data cannot be obtained

due to market closures or other reasons on certain days, the

entire set of data will be removed in advance.

(3) Removal of Ineffective Variables: Confirmatory Factor

Analysis (CFA) is employed to select appropriate variables

as input indicators for the research model. Ineffective

variables are eliminated to enhance the predictive accuracy of

the model.

(4) Normalization: The data is subjected to normalization,

scaled to a range between 0 and 1.

(5) Model Construction: Eight machine learning models are

individually established using the TEJ listed biotechnology and

healthcare sector index (see Table 2).

(6) Setting Training and Testing Parameters: Divide the data

in a 7:3 ratio, setting it as training data and testing

data, respectively.

(7) Train the model.

(8) Validate Predictive Results: If the predicted results are not as

expected, repeat steps 5 to 7.

(9) Model Comparison: Compare the predictive accuracy of

MODEL1 to MODEL8 from step (5), and perform a

comparison of predictive capabilities using indicators such as

the Mean Absolute Percentage Error (MAPE).

2.2 Data processing

The research data were sampled from the month of the first

confirmed COVID-19 case in Taiwan in January 2020 until the

end of June 2022, excluding market holidays for Taiwan and

international index markets. A total of 513 samples were collected,

with 359 samples used for learning and 154 samples used for

testing. This study conducted confirmatory factor analysis on 23

variables. Factors with eigenvalues >1 were extracted (Kaiser,

1960), followed by rotation using the maximum variance rotation

method. The results indicated that nine variables should be

excluded from the initial 23 variables. These variables are: economic

policy signals, South Korea composite index, Shanghai composite

index, biotech and medical stock-to-asset ratio, CRB index, VIX

panic index, US Nasdaq biotechnology NBI index, listed biotech

and medical stock turnover rate, and mutual fund net buying and
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selling. The remaining 14 variables (MA_5, MA_20, K_9, D_9,

RSI_6, RSI_12, MACD_9, biotech and medical proprietary net

buying and selling, biotech and medical foreign net buying and

selling, Taiwan weighted index, US Dow Jones Industrial Average,

US S&P 500 index, Hong Kong Hang Seng index, Nikkei 225

index) were selected as the final input variable indicators for

this study, explaining a total of 80.48% of the variance. After

adjusting the aforementioned indicator variables, their suitability

was tested with a Kaiser-Meyer-Olkin measure of 0.679, exceeding

the recommended threshold of 0.6 (Tabachnick and Fidell, 1996),

and a Bartlett’s sphericity test approximate chi-square distribution

value of 9668.408 with a p-value of 0.000 for 91 degrees of freedom.

These values suggest that the data of these 14 input variable

indicators are suitable for subsequent analysis. To standardize the

residuals between data points, the study normalized the variable

data. Normalization was performed using the sampled data and

the maximum value (Xmax) and minimum value (Xmin) within

a range. Depending on whether the initial value of the variable

was ≥0 or had negative values, equations (1) and (2) were used

separately to obtain the normalized value (Xnom). This normalized

value serves as the input variable data for the deep learning model

in this study.

If the initial values of the variables are all ≥0:

Xnom = X − Xmin

Xmax − Xmin
(1)

If the initial values of the variables have negative values:

Xnom = X

max |X| (2)

(Denominator is the maximum absolute value of X).

2.3 Machine learning model

2.3.1 BPN
BPN, introduced by Rumelhart and McClelland (1986), is a

supervised learning feedforward multilayer network architecture,

incorporating the concept of hidden layers and bias weights.

The network architecture is illustrated in Figure 1. It consists of

3 main layers: the input layer, hidden layer, and output layer,

each containing multiple processing units. Units in different

layers are interconnected through threshold values and weight

values. Input variables are transmitted from the input layer

to the hidden layer, computed, and then propagated to the

output layer.

After comparing the differences between actual values

and output variables, the results are propagated back to

the hidden layer. Based on this, the weight values of

the connecting links are adjusted. This iterative training

process employs the steepest descent method. Whenever

a training sample is input, the network adjusts the

weights by an amount 1wij [expressed using equations (3)

and (4)], continuing until the error converges under

predetermined conditions.

FIGURE 1

Architecture diagram of BPN (Chen and Lin, 2007).

1wij = −η
∂E

∂wij
(3)

η represents the learning rate, which serves the purpose

of controlling the magnitude of each step in the steepest

descent method to minimize the error function. E represents the

error function.

E = 1

2

∑

(Tj − Aj)
2 (4)

Tj represents the target output value of the j-th unit in the

output layer.

Aj represents the inferred output value of the j-th unit in the

output layer.

2.3.2 LSTM
LSTM is a model derived from recurrent neural networks

(RNN) that incorporates memory units. It was introduced by

Hochreiter and Schmidhuber (1997). LSTM primarily employs the

Sigmoid activation function and dot product operations to control

the switches of three gates (input gate, output gate, forget gate),

determining which data can be stored in the memory unit. The

input gate mainly controls whether input values flow into the

memory unit; the output gate regulates whether data computed

through the Tanh activation function should be output; the forget

gate’s main purpose is to decide whether the stored information

from the previous time step should be forgotten or retained in

the memory unit. Due to its memory units, LSTM is capable of

recording longer information compared to RNN and addresses the

issue of poor performance in long-term memory of RNN. Hence, it

is more frequently used than RNN. Figure 2 shows the architecture

of the LSTMmodel (Liu and Wei, 2022).
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FIGURE 2

Architecture diagram of LSTM.

The function of LSTM at time t is given by equations (5) to (11).

ft = σg(xtwf + ht−1Uf + bf ) (5)

it = σg(xtwi + ht−1Uf + bi) (6)

ot = σg(xtwo + ht−1Uo + bo) (7)

it = σg(xtwi + ht−1Uf + bi) (8)

c̃t = σh(xtwc + ht−1Uc + bc) (9)

ct = ft × ct−1 + it × c̃t (10)

ht = ot × σh(ct) (11)

xt represents the input data at time t

ht represents the output of the hidden layer at time t

wf , wo, wc, wi, Uf , Uo, Uc, Ui represents the weight function

bf , bo, bc, bt are bias parameters

σg is sigmoid function, σh is tanh function

ft , it , ot are the forget, input, and output gates, respectively.

2.3.3 ELM
ELM is a feedforward neural network devised by Professor

Guang-Bin Huang from Nanyang Technological University in

Singapore. Unlike conventional artificial neural networks such

as BPN that necessitate the configuration of numerous network

training parameters, ELM solely requires the specification of

the network’s structure, omitting the necessity for additional

parameters. Hence, it has gained renown for its straightforwardness

and user-friendliness (Cao et al., 2016). In this investigation, we

embrace the structure of a single-layer feedforward neural network

(SLFN) for ELM. This structure comprises an input layer, a hidden

layer, and an output layer. The output function FL of the hidden

layer is delineated as equation (12):

fL =
∑l

i=1
βihi (x) = h (x) β (12)

Within the equation, the symbol x signifies the input variable,

while l denotes the number of nodes in the hidden layer. β

corresponds to the output weight, and h (x) embodies the activation

function responsible for transforming data from the input layer

into the feature space of ELM. This expression is depicted as

equation (13):

h (x) = G
(

ai, bi, x
)

(13)

In the provided equation, the variables ai and bi represent

feature mapping parameters, often referred to as node parameters.

Specifically, ai denotes the input weight or input weights in

this context. This investigation utilizes the widely used Sigmoid

function, as depicted in equation (14):

G
(

ai, bi, x
)

= 1

1+ exp
(

a · x+ b
) (14)

The goal of training a neural network with a single hidden layer

revolves around the minimization of output errors. By undergoing

the process of learning and training, we can derive the values of β

that lead to the achievement of minimal and distinct error.

2.3.4 RF
Breiman (2001) introduced RF in 2001. RF operates based on

the concept of ensemble learning, where it amalgamates several

decision trees to create a more resilient learning model. This, in

turn, addresses the challenge of overfitting, leading to enhanced

predictive accuracy within the domain of machine learning.

Breiman’s definition of RF, delineated in equation (15), depicts

an assembly of tree-like structures that collectively shape a classifier:

{

h
(

x, k
)

, k = 1, . . .
}

(15)

In this definition, {k} represents an array of independently

and identically distributed random vectors. This conglomerate of

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1283741
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Lin and Hsu 10.3389/frai.2023.1283741

classifiers converges through their amalgamation, as illustrated

in equation (16):

h1 (x) , h2 (x) , . . . , hk (x) (16)

By creating the training set in a random manner from the

probability distributions of random vectors X and Y, the margin

function is established as outlined in equation (17):

mg (X,Y)

= αvkI
(

hk (X) = Y
)

−maxj6=YavkαvkI
(

hk (X) = j
)

(17)

Here, I represents the indicator function utilized for the

accurate classification of X and Y. The magnitude of the margin

function directly corresponds to an elevated correct classification

score. The generalization error is precisely defined as depicted in

equation (18):

PE∗ = PX,Y (mg (X,Y) < 0) (18)

In this context, X and Y stand as representations of

probabilities. The effectiveness of the RF model is commonly

evaluated based on the subsequent considerations:

(1) A more robust growth trajectory for each tree corresponds

to an enhanced overall performance of the forest.

(2) Improved independence and reduced correlation

among individual trees within the forest lead to superior

classification performance.

(3) The quantity of decision trees stands as the sole parameter

for RF execution and serves as the pivotal determinant for

achieving the RF model with the minimum error.

2.4 Hybrid fuzzy interval-based machine
learning model

Supervised machine learning models and deep learning models

share a common characteristic: the predicted values of the output

variable are point estimates. Despite the advantages of highly

predictive interpretability and low-error precision in machine

learning models, the drawback of single-point probabilistic

estimation still exists. To address this, this study attempts to

propose a fuzzy membership function to enhance and intervalize

machine learning models, aiming to mitigate the shortcomings of

point estimation while retaining the ability of machine learning

models to handle dynamic and complex data.

The traditional approach to modeling financial time-series

data heavily relied on normal distributions until 1963 when

Mandelbrot (1963) challenged this norm. He noticed leptokurtosis

in the empirical distributions of price changes and suggested

using symmetric stable distributions to account for this excess

kurtosis. Subsequent developments by researchers such as Ali and

Giaccotto (1982), Kon (1984), Bookstaber and McDonald (1987),

and Barinath and Chaterjee (1988) advanced the use of various

non-normal distributions formodeling financial data. Despite these

advancements in characterizing financial data with non-normal

distributions, there remains a lack of techniques to fully explain

their distribution.

Addressing this gap, this paper introduces a fuzzy-interval

architecture to enhance machine learning models, referred to

as Fuzzy machine learning models. These models utilize fuzzy

sets, defined by a membership function (MF), to overcome the

limitations of single-point predictions inherent in traditional

machine learning models. Specifically, the GaussianMF, a common

assumption in normal distribution, is adopted, characterized by two

parameters: the center {c, σ} equation (19):

f (x; c, σ ) = 1√
2 π σ

e−
1
2 (

x − c
σ

)2 (19)

where is the GaussianMF’s center and σ determinesMF’s width.

In this paper, indicates the mean of n-days returns or indices, σ

denotes the standard deviation of n-day returns or indices, and

the MF of fuzzy-interval is also decided completely by and σ. The

Gaussian MF in this approach is essentially an extension of the

normal distribution, a fundamental concept in probability theory.

Central to our methodology is the placement of the fuzzy-interval

MF around a central point c, allowing for a range of variance

that includes 1.68σ (representing a 95% probability) and 1.96σ

(accounting for a 99% probability). This strategic inclusion of 1.68σ

and 1.96σ within the interval significantly enhances traditional

machine learning models by addressing their inherent limitation

of relying solely on single-point predictions. By adopting this

approach, the model not only adheres to the principles of Gaussian

FIGURE 3

Gaussian MF of the fuzzy-interval approach.
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FIGURE 4

Conceptual diagram of Gaussian membership functions (MFs).

distribution but also substantially improves prediction accuracy by

accommodating a wider range of outcomes, thereby rectifying the

shortcoming of single-point forecasting prevalent in conventional

machine learning models.

Figure 3 illustrates the Gaussian MF of the fuzzy-interval

approach. Building on this foundation, the paper endeavors to

identify the parameters and σ using machine learning models.

Figure 4 will demonstrate the framework for generating the

fuzzy-interval MF, allowing for the retention of the nonlinear

characteristics of machine learning models while simultaneously

enhancing them by addressing their single-point prediction

constraints. This novel framework is termed Fuzzy machine

learning models in our study.

In the context of this study, c represents the center of the

Gaussian MFs, while σ governs the width of these MFs. Within the

scope of this paper, c denotes the average value of the weekly Taiwan

Biotechnology Index, while σ signifies the standard deviation of the

same index on a weekly basis. Moreover, the characteristics of the

fuzzy-interval MF are entirely determined by the values of c and

σ . It’s worth noting that the Gaussian Membership Function is a

straightforward extension of the normal distribution employed in

probability theory. In the case of the fuzzy-interval MF, its center

is aligned with c, and its spread around c is defined by adding

and subtracting 1.68 or 1.96 times the value of σ , representing the

corresponding confidence intervals.

The fuzzy-machine learning models proposed in this study

utilize the characteristics of financial time series data, taking the

dynamic N-day average and standard deviation to determine the

center and width of the interval. In application, it does not require

extensive mathematical derivations and computations to complete

the dynamic estimation interval.

2.5 Evaluation index

The evaluation indices used employed in this research for

gauging the effectiveness of the trained models consist of RMSE

(Root Mean Square Error), MAPE (Mean Absolute Percentage

Error), and MAE (Mean Absolute Error). The formulas are

presented as follows equations (20–22):

RMSE =
√

1

n
×

∑n

i=1
(Ŷi − Yi)

2
(20)

MAPE = 100%

n

∑n

i=1
| Ŷi − Yi

Yi
| (21)

MAE =
∑

∣

∣

∣
Ŷi − Y i

∣

∣

∣

n
(22)

Yi : Actual value

Ŷi: Predicted output value from the network

n: Number of test examples

Among the aforementioned indicators, RMSE is a statistical

metric that measures the difference between predicted and actual

values, and commonly used to assess model accuracy. It calculates

the mean of the squared prediction errors and then takes the square

root, providing a measure in the same units as the original data. A

smaller RMSE indicates higher accuracy of the predictive model.

However, as it is influenced by the data range, it’s suitable for

comparing predictive errors of specific variables among different

models. MAPE is a relative measure that determines the degree

of difference between estimated and actual values, independent

of unit influences. It calculates the absolute percentage error for

each predicted value and then takes the average of these errors.

A lower MAPE indicates higher accuracy in the predictive model.

Generally, a MAPE% value below 10 is considered highly accurate,

between 10 and 20 signifies good accuracy, between 20 and 50

suggests reasonable accuracy, and values exceeding 50 are deemed

inaccurate (Lewis, 1982). MAE, a metric used to assess the error

of a predictive model, representing the sum of absolute differences

between target and predicted values, measures the average length

of prediction errors without considering their direction. It ranges

from 0 to positive infinity. A lower MAE indicates smaller errors

in the predictive model, meaning less average difference between

predicted and actual values.
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TABLE 3 Empirical Performance of BPN.

Hidden layer parameters Data set RMSE MAE MAPE

10 Training 1.6292 1.1643 1.3060%

Testing 1.1983 0.8613 1.2709%

12 Training 1.4818 1.0725 1.3371%

Testing 1.1131 0.8303 1.2252%

7∗10 Training 1.7902 1.4344 1.4509%

Testing 1.4707 1.2094 1.7845%

7∗12 Training 1.7450 1.2701 1.3992%

Testing 1.3223 1.0784 1.5912%

10∗10 Training 1.6006 1.1983 1.3767%

Testing 1.2500 0.9607 1.4176%

10∗12 Training 1.6787 1.2231 1.3844%

Testing 1.3392 1.0107 1.4914%

Red and bold text indicate the best performance of BPN model.

Furthermore, when evaluating interval-based ML, this study

also employs the Accuracy (ACC)metric to assess model prediction

performance. ACC gauges the accurate prediction ratio of the

model and is calculated as shown in equation (23).

ACC = t

n
(23)

t: Number of the actual values that fall within the predicted CIs.

n: Total number of test examples.

3 Results

In this study, a total of 359 training examples and 154 testing

examples were used for the eight models, resulting in a total of 513

examples. The parameter settings and empirical performance of the

BPN, LSTM, RF, and ELMmodels are detailed as follows.

3.1 Empirical analysis of BPN

In this study, the BPN model was implemented using Matlab

2021 software. Regarding the determination of BPN model

parameters, Zhang et al. (1998) indicated that the most commonly

used number of neural network layers is 1 or 2, with usually 1

hidden layer achieving highly effective prediction performance.

Yoon et al. (1993) found through empirical research that a 2-layer

hidden layer configuration provides better predictive capabilities

for time series. Therefore, this study will test parameters with 1 to 2

hidden layers.

Furthermore, for determining the number of nodes in the

hidden layers, Davies (1994) stated that the suitable number of

nodes for each hidden layer can only be found through a trial-

and-error approach. Lawrence and Petterson (1991), on the other

hand, recommended that the number of nodes in each hidden layer

should be tested based on 50 to 75% of the sum of input and

output variables. Therefore, this study intends to test a range of

approximately 7 to 12 nodes, considering the total of 15 nodes (14

input variables and 1 output variable) as 50 to 75% of the range,

using a trial-and-error method. As for the learning rate, Freeman

and Skapura (1992) explained that the learning rate of an artificial

neural network should be <1 to achieve optimal learning state and

convergence. Therefore, this study plans to test a learning rate of

0.5 and set the training cycles to 1,000 or terminate the learning

process if the RMSE has converged for the BPN model. Regarding

the empirical execution of training and testing the BPN model in

this study, the evaluation was conducted using RMSE, MAE, and

MAPE metrics, and the results are summarized in the Table 3.

After experimentation through trial and error, it was found that

the optimal model configuration is with a single hidden layer and

12 nodes.

3.2 Empirical analysis of LSTM

The empirical implementation of the LSTMmodel in this study

was also conducted using Matlab2021 software. Currently, there

is no definitive standard for setting the parameters of the LSTM

model, and adjustments are often determined through a trial-and-

error approach (Chen et al., 2019). In this study, the number of

hidden layers was tested between 2 and 3, and the number of nodes

in each hidden layer was adjusted from 60 to 256. The range for

the number of iterations was set between 100 and 1,000, and the

dropout rate for hidden layer weights ranged from 0.2 to 0.5. The

learning rate was tested within the range of 0.005 to 0.01, and the

learning rate decay factor was set to 0.02. These parameter ranges

were consolidated from various literature sources. The parameter

values tested through the trial-and-error method are summarized

in the following Table 4.

Through implementation in Matlab2021, the results for the

LSTMmodel are presented in the Table 5.

From the Table 5, it can be observed that based on the

performance evaluation using RMSE, MAPE, and MAE values, the
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TABLE 4 Trial-and-error Parameter List for the LSTM Model.

Model Hidden layer Weight loss Epoch time Learning rate

LSTM 1 60∗180∗60 0.2/0.3/0.2 300 0.005

LSTM 2 128∗256∗64 0.3/0.3/0.3 300 0.005

LSTM 3 256∗256∗64 0.5/0.5/0.5 1,000 0.01

LSTM 4 128∗128 0.2/0.2 300 0.005

LSTM 5 128∗256 0.3/0.3 1,000 0.005

LSTM 6 180∗180 0.5/0.5 100 0.01

TABLE 5 Performance of LSTMmodel validation.

Model Data set RMSE MAE MAPE

LSTM 1 Training 0.6889 0.5315 0.8023%

Testing 1.5719 1.2889 1.9601%

LSTM 2 Training 1.9659 1.6023 2.4702%

Testing 2.3904 1.8512 2.9331%

LSTM 3 Training 4.5501 3.2104 4.9538%

Testing 4.8382 3.4790 5.5118%

LSTM 4 Training 0.6200 0.4804 0.7268%

Testing 0.7646 0.5811 0.8989%

LSTM 5 Training 0.4009 0.3088 0.4637%

Testing 0.6486 0.4880 0.7603%

LSTM 6 Training 1.2653 0.9750 1.5053%

Testing 1.5645 1.1268 1.7844%

Red and bold text indicate the best performance among all the models.

optimal parameter configuration for the LSTMmodel is the 5th set

(LSTM 5) model.

3.3 Empirical analysis of ELM and RF

The ELMmodel, as a single hidden layer neural network, offers

advantages such as not requiring the setup of numerous parameters

and having strong learning capabilities, compared to the traditional

BPN. In this study, the parameter settings for the ELM model

are as follows: a single hidden layer with 30 nodes, determined

through trial and error to achieve good convergence. The activation

function used is the commonly used Sigmoid function, and the

remaining parameters are set to their default values. For the RF

classification model in this study, the number of decision trees is

set to 20 using the TreeBagger function. RF is specified to operate in

regression mode. The feature selection method is set to “curvature,”

which selects split points based on the curvature of features. The

other parameters are set to their default values in the program.

Based on the aforementioned execution results, the RMSE,

MAE, and MAPE values of the empirical models in this study

have all converged to reasonable standards. Among the 4 machine

learning tools, the LSTM model exhibits the best convergence

state. The differences in error values between ELM and RF are

not significant, and the RMSE, MAE, and MAPE values of these

3 models are superior to those of the BPN model.

3.4 Empirical summary: fuzzy-BPN,
fuzzy-LSTM, fuzzy-ELM, and fuzzy-RF

In summary, to address the limitation of traditional “single-

point without probability” point estimation, this study proposes

the incorporation of Fuzzy Gaussian Membership Function

for interval estimation improvement, aiming to enhance the

accuracy of predicting actual values. Under the assumption

that confidence intervals are extended by 1 standard deviation

for 68%, 1.96 standard deviations for 95%, and 2.58 standard

deviations for 99%, the predictive results are presented in the

Table 7.

This study compares the actual values with the intervals formed

based on the predictions and standard deviation multiples of

the 4 models to determine if the actual values fall within the

predicted intervals. Figures 5–8 illustrate the predictive values,

upper and lower bounds, as well as the actual qualitative chart

(for the first 50 data points) of the four fuzzy interval-based

machine learning models during both the training set and testing

set phases. Thus, Tables 6, 7, it is evident that the LSTM model

exhibits the best convergence state in both training and testing
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FIGURE 5

Fuzzy-BPN Interval chart (for the first 50 data). (A) Training data; (B) Testing data.

examples among all machine learning models in this study.

It achieves the smallest errors in terms of RMSE, MAE, and

MAPE, followed by the RF, ELM, and BPN models. Additionally,

as shown in Table 7, compared to other models, the Fuzzy-

LSTM, in terms of ±1σ, ±1.68σ, and ±1.96σ, interval levels,

maintains an effective predictive accuracy of over 97%. In contrast,

the Fuzzy-BPN shows the least ideal prediction results, with

a maximum accuracy of only 70.56%. The empirical results

demonstrate the superior performance of the Fuzzy-LSTM model.

At the 99% confidence level of the prediction interval, all models
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FIGURE 6

Fuzzy-LSTM Interval chart (for the first 50 data). (A) Training data; (B) Testing data.

except Fuzzy-BPN achieve an accuracy of at least 85%, including

Fuzzy-LSTM, Fuzzy-ELM, and Fuzzy-RF. Notably, the Fuzzy-

LSTM model even achieves a 100% accuracy rate in predicting

the actual values of the test dataset. It is clear that as the

interval size and coverage increase, the predictive accuracy also

improves. The second-best performingmodel is Fuzzy-ELM, which

achieves an accuracy rate of nearly 76% at the 68% confidence

interval level. In summary, the Hybrid Fuzzy interval-based

machine learning models (LSTM, ELM, RF) indeed are capable of

effectively capturing the time-series characteristics of stock price

data in financial market time series and accurately predicting

their values.
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FIGURE 7

Fuzzy-ELM Interval chart (for the first 50 data). (A) Training data; (B) Testing data.

4 Discussion

This study presents an interval estimation principle to address

the limitations of traditional machine learning models’ point

estimates and aims to enhance the capability of time series

prediction. The summarized findings are as follows:

(1) Both the traditional BPN and LSTM models require trial-

and-error methods to find optimal parameter combinations.

After comparing with literature recommendations and trial-

and-error adjustments, the error values of the LSTMmodel in

this study are consistently lower than those of the BPNmodel.

On the other hand, the ELM and RF models require less trial
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FIGURE 8

Fuzzy-RF Interval chart (for the first 50 data). (A) Training data; (B) Testing data.

and error to adjust parameters, resulting in faster training

and testing processes. Although their error values are larger

than those of the LSTM model, their predictive results are

acceptable and outperform the BPNmodel. Overall, the results

suggest that the LSTM model is more suitable for predicting

time series data of the biotech and medical index during the

COVID-19 period.

(2) Despite the impact of the COVID-19 pandemic,

the volatility of Taiwan’s biotech index did not

experience significant fluctuations compared to

industries like the service or tourism sector. It remained

relatively stable, allowing for effective learning by

machine learning models despite the relatively short

sampling period.
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TABLE 6 Performance of ELM, RF, BPN, and LSTMmodels.

Evaluation index Data set ELM RF BPN∗ LSTM∗

RMSE Training 0.6007 0.6110 1.488 0.4009

Testing 1.0014 1.0605 1.1131 0.6486

MAE Training 0.4623 0.4180 1.0725 0.3088

Testing 0.8146 0.8782 0.8303 0.4880

MAPE Training 0.7017% 0.6432% 1.3371% 0.4637%

Testing 1.2517% 1.3433% 1.2252% 0.7603%

∗Means that the performance of the model is based on the optimal parameter combination identified through trial and error.

TABLE 7 Performance of hybrid fuzzy interval-based machine learning model.

Confidence interval

Model Fuzzy-BPN Fuzzy-LSTM Fuzzy-ELM Fuzzy-RF

Training Testing Training Testing Training Testing Training Testing

68% (± 1σ ) 41.67% 39.22% 97.18%∗ 97.00%∗ 82.78%∗ 76.47% 71.94% 50.33%

95% (± 1.68σ ) 56.11% 46.41% 99.44%∗ 99.33%∗ 95.83%∗ 94.12%∗ 91.67%∗ 80.39%∗

99% (± 1.96σ ) 70.56% 63.40% 99.27%∗ 100%∗ 97.78%∗ 97.39%∗ 95.00%∗ 85.62%∗

Red and bold text indicate the best performance among the 4 models. ∗The performance of prediction accuracy is higher than 80%.

(3) As described in (2), empirical evidence suggests that the

Fuzzy-LSTM model with a 68% confidence level estimation

can provide effective and reasonable predictions. The Fuzzy-

ELM and Fuzzy-RF models perform better with a 95%

confidence level estimation, while the Fuzzy-BPN model

exhibits the lowest predictive accuracy among all models.

(4) The proposed hybrid fuzzy interval LSTM model (LSTM,

ELM, RF) in this study achieves high predictive accuracy for

time series data. It implies that they are indeed capable of

effectively capturing the time-series characteristics of stock

price data in financial market time series and accurately

predicting their values. Future applications of this approach

in predicting time series data in other financial markets

are recommended, as it could enhance the effectiveness of

investment analysis measures for relevant financial decision-

makers.

(5) When making investment forecasts with financial data,

investors not only focus on potential profits but also pay

close attention to the risk management of their investment

portfolios. If an inadvertent investment error leads to losses,

the ability to reasonably estimate the maximum possible loss

can make investors more willing to fund investment activities.

An improved interval estimation machine learning tool can

incorporate Value at Risk (VaR) (Jorion, 1996) to estimate

the maximum potential loss for effective risk management.

This represents a suggested direction for future research in

this thesis.
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