
TYPE Original Research

PUBLISHED 24 November 2023

DOI 10.3389/frai.2023.1274830

OPEN ACCESS

EDITED BY

Pavan Turaga,

Arizona State University, United States

REVIEWED BY

Ankita Shukla,

Arizona State University, United States

Suhas Lohit,

Mitsubishi Electric Research Laboratories

(MERL), United States

Gautam Dasarathy,

Arizona State University, United States

*CORRESPONDENCE

Michael Kirby

michael.kirby@colostate.edu

RECEIVED 08 August 2023

ACCEPTED 03 November 2023

PUBLISHED 24 November 2023

CITATION

Karimov K, Kirby M and Peterson C (2023) An

algorithm for computing Schubert varieties of

best fit with applications.

Front. Artif. Intell. 6:1274830.

doi: 10.3389/frai.2023.1274830

COPYRIGHT

© 2023 Karimov, Kirby and Peterson. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

An algorithm for computing
Schubert varieties of best fit with
applications

Karim Karimov, Michael Kirby* and Chris Peterson

Department of Mathematics, College of Natural Sciences, Colorado State University, Fort Collins, CO,

United States

We propose the geometric framework of the Schubert variety as a tool for

representing a collection of subspaces of a fixed vector space. Specifically, given a

collection of l-dimensional subspaces V1, . . . ,Vr of R
n, represented as the column

spaces of matrices X1, . . . ,Xr, we seek to determine a representative matrix K ∈

R
n×k such that each subspace Vi intersects (or comes close to intersecting) the

span of the columns of K in at least c dimensions. We formulate a non-convex

optimization problem to determine such a K along with associated sets of vectors

{ai} and {bi} used to express linear combinations of the columns of the Xi that

are close to linear combinations of the columns of K. Further, we present a

mechanism for integrating this representation into an artificial neural network

architecture as a computational unit (which we refer to as an abstract node).

The representative matrix K can be learned in situ, or sequentially, as part of a

learning problem. Additionally, the matrix K can be employed as a change of

coordinates in the learning problem. The set of all l-dimensional subspaces of Rn

that intersects the span of the columns of K in at least c dimensions is an example

of a Schubert subvariety of the Grassmannian GR(l,n). When it is not possible to

find a Schubert variety passing through a collection of points on GR(l,n), the goal

of the non-convex optimization problem is to find the Schubert variety of best fit,

i.e., the Schubert variety that comes as close as possible to the points. This may be

viewed as an analog of finding a subspace of best fit to data in a vector space. The

approachwe take is well-suited to themodeling of collections of sets of data either

as a stand-alone Schubert variety of best fit (SVBF), or in the processing workflow

of a deep neural network. We present applications to some classification problems

on sets of data to illustrate the behavior of the method.

KEYWORDS

Schubert variety of best fit, manifold approximation, subspace classification, geometry of

learning, neural network, abstract node, GPU parallel computing

1 Introduction

A variety of powerful tools have been developed in Machine Learning and Artificial

Intelligence and these have led to remarkable applications. A damper on the success of

these tools is the fact that the resulting models are frequently difficult to explain and the

predictions may not be trustworthy in high stakes scenarios, e.g., those related to medical

diagnoses, battlefield scenarios, or intelligence gathering. One reason the success of ML/AI

tools is challenging to explain, or trust, is that these models were designed, first and foremost,

to make accurate predictions; attempts to interpret or explain the effectiveness of the models

being only an afterthought.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1274830
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1274830&domain=pdf&date_stamp=2023-11-24
mailto:michael.kirby@colostate.edu
https://doi.org/10.3389/frai.2023.1274830
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1274830/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

In this paper, we propose a methodology based on an

interpretable mathematical framework, i.e., the geometric setting

of the Schubert Variety, as the starting point, and explore

variations on the theme to determine optimal architectures

for predictive modeling. The goal of this research is to begin

with a mathematically motivated explainable approach, and

then optimize its performance through numerical algorithms.

Optimistically, this approach will lead to results of comparable

accuracy of the traditional ML/AI toolkit, however, with the

advantage of explainability and trustworthiness. To this end, we

propose an approach for characterizing sets of linear spaces, i.e.,

fitting/approximating subspaces with one, or more representative

spaces. Additionally, we demonstrate how the mathematical

framework and resulting algorithms can be integrated into current

tools including deep feed forward neural networks.

The initial development of ML/AI, focused more on thinking

machines than interpretability. Human intelligence, and the

associated architecture of the human brain, have been a driving

force in biomimetic approaches. For example, the McCullough-

Pitts node (McCulloch and Pitts, 1943) and its associated weights

were proposed as amathematical model of the cell and its associated

neurons, respectively. The first transfer function at a computational

node was a simple step function replicating the firing or quiescence

of a neuron. Impressively, arrays of such networks were shown to

be able to serve as models of associative memory, and to even recall

patterns which were partially occluded (Hertz et al., 1991). Hebbian

learning (Hebb, 1949) was proposed as a model for memory and

convincingly analyzed as a dynamical system where the patterns

were stored as fixed points (Hertz et al., 1991), an early appearance

of the application of mathematical analysis for explainability of

artificial neural networks.

Geometric ideas emerged with Rosenblatt’s simple

perceptron (Rosenblatt et al., 2002), still loosely based on neurons

firing, where the dot product operation between a pattern and a

weight vector gave rise to classification via the interpretation of

the models as splitting a space into two half-spaces. The multilayer

perceptron extended these ideas in natural ways, however, at the

expense of geometric interpretability. Nonlinear data reduction

was made possible by autoencoder neural networks (Kramer,

1991; Oja, 1992). The encoder-decoder architecture has been

widely exploited by Variational Autoencoders (Kingma and

Welling, 2019), Centroid-Encoders (Ghosh and Kirby, 2022), and

Transformers (Vaswani et al., 2017). These developments, while

providing powerful tools, widely lack mathematical underpinnings

that provide insight into their utility.

In this paper, we illustrate how one can use mathematical

theory and geometric frameworks as a design philosophy in the

construction of novel neural network architectures. This general

idea can be found in previous work, e.g., geometric, or topological

nodes such as circular (Kirby and Miranda, 1996), or spherical

computational units (Hundley et al., 1995). Whitney’s theorem has

also been invoked to provide a basis to understand the power of

autoencoders from a geometric perspective (Broomhead and Kirby,

2000) and to provide insights into novel architectures (Broomhead

and Kirby, 2001) and dimension estimation (Anderle et al., 2002;

Kvinge et al., 2018a,b). These ideas are central to the computation of

homeomorphisms between data sets residing in spaces of differing

dimensions. Using these ideas as motivation we can envision

extending the concept of an abstract node more generally to

algebraic varieties related to Generalized Principal Component

Analysis (Vidal et al., 2005), Klein bottles, Grassmannians, and

Schubert Varieties (see Figure 1).

In this paper, we focus our attention on the mathematical

framework of the Schubert Variety described in what follows. We

are motivated by the idea that a Schubert variety is to a Flag or

Grassmann manifold what a subspace is to a vector space. Flag

manifolds, and their special case the Grassmann manifolds, are

examples of homogeneous manifolds particularly relevant to and

amenable to subspace methods in Data Science. They have been

observed to be particularly robust to data collected under variations

in pattern state (and indeed exploit structure in such data sets). For

example, digital images of an object, collected under variations in

illumination, are known to sweep out a convex cone. If the object

is Lambertian then this cone has been shown to lie close to a low

dimensional linear space which can in turn be represented by a

point on a Grassmannian (Beveridge et al., 2008). The flagmanifold

comes equipped with geometric features capable of representing

sets of data where the number of points is larger than the number of

dimensions in the ambient space (Ma et al., 2021). We note that the

flag mean proposed in Marrinan et al. (2014, 2015) and Mankovich

et al. (2022), and its various extensions, are a special case of the

work proposed here.

Briefly, in this paper we propose several optimization problems

which are used to produce a geometric object, e.g., a Schubert

variety of best fit (SVBF), that optimally represents a set of linear

subspaces of a fixed vector space R
n. In several applications, the

set of linear spaces are obtained from sets of sets of data. The

optimization problem is determined by a real valued objective

function on a manifold (typically a Grassmann or Flag manifold)

whose points parameterize a family of potential Schubert varieties

of best fit. Further, we show how this framework can be viewed as a

component of a machine learning architecture integrated, e.g., into

the broader framework of feed forward neural networks.

This paper is organized as follows: Section 2 presents a brief

overview of a class of manifolds built from matrix group actions.

In Section 3, we describe Schubert varieties and how to define a

Schubert variety of best fit to a collection of subspaces. Section 4

describes a specific implemented optimization problem for finding

a Schubert variety of best fit and applies it to an illustrative

example. Section 5 provides three algorithms and shows how to

implement the ideas as an abstract node. Lastly, in Section 6, we

provide concluding remarks summarizing the overall findings and

contributions of our research.

2 Background

Consider the set, S, of n × n invertible matrices whose inverse

is equal to its transpose, i.e., S = {A ∈ R
n×n | ATA = In}. S

contains the identity matrix, In, and is closed under the operations

of matrix inversion and matrix multiplication. In other words, if A

and B are in S then both A−1 and AB are in S. The set S together

with the binary operation of matrix multiplication is known as the

orthogonal group O(n). Alternatively,O(n) is the group of distance-

preserving transformations of an n-dimensional Euclidean space

that preserve a fixed point. A distinguished subgroup of O(n) is

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 1

Various examples of abstract nodes. These computational units can be integrated into data fitting problems, e.g., multilayer neural networks, to extract

topological or geometric structure. This paper focuses on the particular case of the Schubert variety constraint (D). (A) This computational unit with

matrix values X is required to satisfy XTX = 1. (B) This unit requires the data to reside in a union of sub-spaces such as the xy, xz, and yz planes

shown. (C) The Klein bottle is an example of a unit manifold constraint. (D) A Schubert variety constraint.

the special orthogonal group SO(n) consisting of elements of Swith

determinant equal to one (orientation preserving transformations).

From a geometric perspective, the orthogonal group O(n) can

be considered as a manifold whose points parameterize ordered

orthonormal bases of R
n. As a manifold, it consists of two

connected components corresponding to the square orthogonal

matrices with determinant +1 and those with determinant −1. Its

dimension as a real manifold is
(n
2

)
. Several interesting manifolds

can be built, through a “quotient” operation, by considering the

action of subgroups of O(n) [resp. SO(n)] on O(n) [resp. SO(n)]

throughmultiplication. Some particularly relevant examples are the

following:

• Grassmann manifolds GR(l, n)

• Oriented Grassmann manifolds G̃R(l, n)

• Flag manifolds FL(l1, l2, ..., lm; n)

• (Partially) oriented flag manifolds

• Steifel manifolds ST(l, n)

Grassmann manifold—The Grassmannian of l-dimensional

subspaces of Rn is denoted by GR(l, n). Points on GR(l, n)

correspond to l-dimensional subspaces of Rn. It can be built as a

coset space O(n)/O(l) × O(n − l) where O(l) × O(n − l) denotes

n × n matrices consist of an l × l orthogonal block and an n −

l × n − l orthogonal block. Through this identification, points on

GR(l, n) correspond to equivalences classes of n × n orthogonal

matrices where two such matrices are identified if the span of their

first l columns agree. We can also think of points on GR(l, n) as

corresponding to equivalences classes of n× l orthogonal matrices

where two suchmatrices are identified if they have the same column

space. GR(l, n) can be considered as a homogeneous space and

as a differentiable manifold. As a real manifold, the dimension of

GR(l, n) is l(n− l) = dim(O(n))− dim(O(l))− dim(O(n− l)).

Oriented Grassmann manifold—The oriented Grassmannian

of all oriented l-dimensional subspaces of Rn is denoted G̃R(l, n).

It can be built as a coset space SO(n)/SO(l) × SO(n − l). There

is a natural 2:1 covering map from G̃R(l, n) to GR(l, n). A special

case is G̃R(1, n) whose cosets correspond to points on the n −

1 dimensional sphere Sn−1 in Rn. GR(1, n) corresponds to the

real projective space RPn−1. RPn−1 can also be built from Sn−1

by identifying antipodal points on the sphere. In the map from

G̃R(1, n) to GR(1, n), a pair of antipodal points on the sphere get

mapped to a single point in projective space. As a real manifold, the

dimension of G̃R(l, n) is the same as the dimension of GR(l, n).

Flagmanifold—FL(l1, l2, ..., lm; n) = collection of all flags of the

form V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ R
n such that dimVi = li. The

flag manifolds can be built by considering quotients of O(n) by a

direct product of smaller orthogonal groups. More precisely by the

quotient ofO(n) byO(l1)×O(l2− l1)×O(lm− lm−1)×O(n− lm). As

a real manifold, the dimension of FL(l1, l2, ..., lm; n) is dim(O(n))−

dim(O(l1))− dim(O(l2− l1))− dim(O(l3− l2))−· · ·− dim(O(lm−

lm−1))− dim(O(n− lm)).

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

Oriented flag manifold—FL◦(l1, l2, ..., lm; n) = collection of all

oriented flags of the form V1 ⊂ V2 ⊂ · · · ⊂ Vm ⊂ R
n

such that dimVi = li. The oriented flag manifolds can be built

by considering quotients of SO(n) by a direct product of smaller

special orthogonal groups. There is a natural 2m : 1 covering map

from FL◦(l1, l2, ..., lm; n) to FL(l1, l2, ..., lm; n). As a real manifold,

the dimension of FL◦(l1, l2, ..., lm; n) is the same as the dimension

of FL(l1, l2, ..., lm; n).

Partially oriented flag manifold—The partially oriented flag

manifolds can be built by considering quotients of SO(n) by a direct

product of a mixture of smaller special orthogonal groups and

smaller orthogonal groups [with the additional constraint that the

direct product is a subgroup of SO(n)]. There are many different

types of partially oriented flag manifolds.

Steifel manifold—Points on the Steifel manifold ST(l, n)

correspond to ordered orthonormal sets of l vectors in R
n.

Alternatively, points on ST(l, n) correspond to elements in the set

{A ∈ Rn×l|ATA = Il}. The Steifel manifold ST(l, n) can also

be considered as the oriented flag manifold FL◦(1, 2, 3, . . . , l; n).

The dimension of ST(l, n) is (n − 1) + (n − 2) + · · · +

(n − l). There is a natural 2l : 1 covering map from ST(l, n)

to FL(1, 2, . . . , l; n).

The homogeneous spaces listed above are all compact

differentiable manifolds whose points parameterize flags of

(oriented) subspaces of Rn with a common signature l1, . . . , lm.

Many problems of interest can be formulated in terms of

optimizing some function on one or several of these or related

parameter spaces. The formulation and solution is often driven

by geometric considerations. Problems which have an efficient

numerical solution are particularly appealing. Some additional

parameter spaces of interest include Affine space, Euclidean

space, Hyperbolic space, Anti-di Sitter space, and product spaces

built out of any combination of these spaces, their oriented

versions, or any the previously described homogeneous spaces

from above.

3 Schubert varieties

A Schubert variety in a Grassmann or flag manifold is a certain

kind of subvariety (typically with singularities) that can be defined

by a collection of linear algebraic incidence constraints with respect

to a fixed flag, F, drawn from some flag variety FL(k1, k2, . . . , km; n).

If you vary the flag then you vary the Schubert variety. The Schubert

variety can be viewed as a kind of moduli space while points on

the flag variety can be seen as parameterizing a family of Schubert

varieties of a particular type.

3.1 Definition of Schubert variety

We first consider an example of a kind of Schubert variety

that will be referred to several times in this paper. If W ∈

GR(k, n) then W is a rank k subspace of R
n. Given a pair of

non-negative integers (c, l), we can define a collection of points

in GR(l, n) by

�c,k,l(W) = {V ∈ GR(l, n) | dim(V ∩W) ≥ c}

In order for this set of points to be nonempty we will need that c ≤ l

and that c ≤ k. For eachW ∈ GR(k, n), �c,k,l(W) is a subvariety of

GR(l, n). As a consequence, GR(k, n) can be seen as parameterizing

a family of such subvarieties of GR(l, n). The subvariety �c,k,l(W)

is an example of a particular kind of Schubert variety on GR(l, n).

As mentioned in the previous paragraph, Schubert varieties are

typically singular.

The example in the previous paragraph can be extended in

several directions. The following is an example where W is drawn

from a more general Flag manifold. Recall that FL(k1, k2, ..., km; n)

is the collection of all flags of the form W1 ⊂ W2 ⊂ · · · ⊂

Wm ⊂ R
n such that dimWi = ki. To emphasize that W is a flag

of vector spaces, we will writeW asW. We call FL(k1, k2, ..., km; n)

an m step flag manifold. Points on this manifold are m step flags

of signature (k1, k2, . . . , km). A Grassmann manifold is a one step

flag manifold. For instance, GR(k, n) = FL(k; n). A large collection

of Schubert subvarieties of GR(l, n) can be built as follows: Pick

a point W on a flag manifold FL(k1, k2, ..., km; n) and an m-tuple

Ec = (c1, . . . , cm) (thus W corresponds to a specific flag W1 ⊂

W2 ⊂ · · · ⊂ Wm where dimWi = ki). Let Ek = (k1, k2, ..., km).

An associated subvariety of GR(l, n) is given by

�
Ec,Ek,l

(W) = {V ∈ GR(l, n) | dim(V ∩Wi) ≥ ci for 1 ≤ i ≤ m}

Points on FL(k1, k2, ..., km; n) parameterize a family of such

subvarieties.

In a similar manner, one can build subvarieties of a more

general flag manifold FL(l1, . . . , ls; n). The subvarieties will be

written �
C,Ek,El

(W). The data that is determining the subvariety,

�
C,Ek,El

(W), is the space from which we draw our fixed flags [e.g.,

W ∈ FL(k1, . . . , km; n)], a space on which the subvariety lives [e.g.,

FL(l1, . . . , ls; n)], and incidence constraints, ci,j, stored in an m × s

array C. We have

�
C,Ek,El

(W) =

{V ∈ FL(El; n) | dim(Vj ∩Wi) ≥ Ci,j for 1 ≤ i ≤ m, 1 ≤ j ≤ s}.

3.2 Schubert varieties of best fit

Suppose we are given a collection of l-dimensional subspaces

D = {V1, . . . ,Vr} of Rn. Each element in D can be thought of

as a point in the Grassmannian GR(l, n) thus we have r points on

GR(l, n). We seek to determine a Schubert variety of best fit to the r

points. In order for this problem to make sense, we need to answer

two questions: the first is “What class of Schubert varieties are you

going to use to best fit the data?” and the second question is “What

is the objective function you are trying to optimize when searching

for a Schubert variety of best fit?.” Intuitively, we are searching for a

Schubert variety that comes as “close as possible” to the set of points

determined byD. This should remind you of finding a “linear space

of best fit” to a set of points in R
n. For our purposes, given a point

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

or collection of points on Gr(l, n) and a Schubert variety S, we

further seek to have ameasurement of closeness that is orthogonally

invariant, i.e., is invariant to the action of the orthogonal group

O(n). Points on a Grassmannian correspond to subspaces and

Schubert varieties are defined in terms of incidence conditions with

respect to a fixed flag of subspaces. With this in mind, in order to

achieve measurements that are orthogonally invariant, it is natural

to write the measurement of closeness in terms of principle angles

between the subspaces involved. There are many different ways

in which this can be carried out and this leads to many different

answers to the problem.

In what follows, let D = {V1,V2, . . . ,Vr} be a collection of

l dimensional subspaces considered as points on GR(l, n). Given

positive integers k and c, our goal is to find a point W ∈ GR(k, n)

such that the Schubert variety

�c,k,l(W) = {V ∈ GR(l, n) | dim(V ∩W) ≥ c}

comes as close as possible to the points in D. We will break this

up into three parts. The first part will be to define a measurement

of closeness, d[Vi,�c,k,l(W)], between a single point Vi ∈ GR(l, n)

and the Schubert variety �c,k,l(W) [with W ∈ GR(k, n)]. The

second part will be to combine these single point measurements

into a measurement of closeness between a set of points D =

{V1,V2, . . . ,Vr} ⊂ GR(l, n) and the Schubert variety �c,k,l(W).

The third part will be to find a W∗ ∈ GR(k, n) that optimizes this

measure of closeness.

With respect to the third part, suppose we have fixed a real

valued measurement of closeness between a set of points, D ⊂

GR(l, n) and a Schubert variety �c,k,l(W). For each point W ∈

GR(k, n) we have effectively assigned a real number (the closeness

measure) thus we have a function F :GR(k, n) → R. Since GR(k, n)

is a compact manifold, this real valued function will attain both

its maximum and minimum values. Our goal is to describe an

algorithm, implemented in a neural network, to find a point in

GR(k, n) that achieves either a maximum or a minimum of this

function.

3.3 Examples of distance/closeness
measures

Let V1,V2 be subspaces of Rn of dimension l. Recall that the

principal angles between V1 and V2 satisfy 0 ≤ θ1 ≤ θ2 ≤

· · · ≤ θl ≤ π/2. If 2(V1,V2) = [θ1, θ2, . . . , θl] then dg(V1,V2) =

‖2(V1,V2)‖2 is known as the geodesic norm between V1 and V2.

If sin2(V1,V2) = [sin θ1, sin θ2, . . . , sin θl] then dc(V1,V2) =

‖ sin2(V1,V2)‖2 is known as the chordal norm between V1 and

V2.

We can generalize to the setting where V1 and V2 have

potentially differing dimensions and we can modify the measure

of the length of the principal angle vector between these subspaces.

We will rename V1 as V and V2 as W to emphasize this flexibility

in dimensional differences. Let V ,W be subspaces of R
n of

dimensions l and k and letm = min(l, k). Let c be a positive integer

less than or equal to m and define 2c(V ,W) = [θ1, θ2, . . . , θc]

and sin2c(V ,W) = [sin θ1, sin θ2, . . . , sin θc]. Given a vector

norm, ‖ · ‖α on R
c, we can measure the “size” of the vector

2c(V ,W) or of sin2c(V ,W). We claim that in either case, this

norm gives a measure of closeness between a point V ∈ GR(l, n)

and the Schubert variety �c,k,l(W) by defining d(V ,�c,k,l(W)) =

‖2c(V ,W)‖α or by defining d(V ,�c,k,l(W)) = ‖ sin2c(V ,W)‖α .

To see that this is a measure of closeness, note that θ1, . . . , θc are the

c smallest principal angles between the subspaces. They correspond

to the c smallest possible principal angles between c-dimensional

subspaces of V and c-dimensional subspaces ofW.

If we now pick a norm ‖ · ‖β on R
r , once we have chosen a

norm for measuring the size of 2c(V ,W) or of sin2c(V ,W), we

can measure a Schubert variety’s fit to a collection of l-dimensional

subspaces D = {V1, . . . ,Vr} of R
n by

FIT(D,�c,k,l(W)) =

‖d(V1,�c,k,l(W)), d(V2,�c,k,l(W)), . . . , d(Vr ,�c,k,l(W))‖β

and we can define the Schubert variety of best fit toD as

BEST(D,�c,k,l) = �c,k,l(W
∗) where

W∗ = arg minW∈GR(k,n)FIT(D,�c,k,l(W))

For programming advantages, in the next section an optimization

problem is described in terms of maximizing the norm of

cos2c(V ,W) = [cos θ1, cos θ2, . . . , cos θc] instead of minimizing

the norm of sin2c(V ,W). The goal of the optimization problem is

to find BEST(D,�c,k,l).

4 Optimization problem for SVBF

Consider a set of matrices {Xi}
r
i=1 with each Xi ∈ R

n×l having

orthonormal columns. Let K ∈ R
n×k be an unknown matrix with

orthonormal columns. Let R(Xi) denote the column space of Xi.

Define θij to be the jth smallest principal angle between R(Xi) and

R(K).

Problem Statement: Given the set {Xi}
r
i=1 and an integer c with

1 ≤ c ≤ min(l, k), find K that comes as close as possible to satisfying

dim(R(Xi) ∩R(K)) ≥ c for each of the subspacesR(Xi).

One approach is to find a matrix K∗ ∈ R
n×k such that

K∗ = arg max
K∈Rn×l

1

rc

r∑

i=1

c∑

j=1

cos2(θij) (1)

subject to KTK = I and 1 ≤ c ≤ min{l, k}. We have normalized by

the factor 1/rc so that the optimal value of the solution will be one.

Note that for c = min{l, k} this is the flag mean (Marrinan et al.,

2015).

Alternatively, we can solve

K∗ = arg max
K∈Rn×k

1

rc

r∑

i=1

c∑

j=1

cos(θij) (2)

subject to KTK = I and 1 ≤ c ≤ min{l, k}. Note that for

c = min{l, k} this is the flag median (Mankovich et al., 2022).

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 2

Images from the Cat and Dog dataset. The (top) row corresponds to the data in a single cat sample with three elements. Similarly, the (bottom) row

corresponds to a dog sample consisting of three elements.

4.1 SVBF optimization problem
formulation

For simplicity, in this paper we will focus on the case c = 1,

i.e., we are looking for the column space of each Xi to be close to

intersecting the column space of K in at least one dimension.

Suppose we are given a set of matrices {Xi}
r
i=1, each Xi ∈ R

n×l

satisfying XT
i Xi = Il. We would like to find a matrix K whose

column space intersects the column space of eachXi in at least a one

dimensional space. This is achieved if and only if the first principle

angle between the column space of K and the column space of Xi is

equal to zero for each i. Let θ1(K,Xi) denote the first principle angle

between the column space of K and the column space of Xi. In the

optimization below we seek to find a matrix K that maximizes the

function
∑r

i=1 cos
2(θ1(K,Xi)). This amounts to finding a a matrix

K∗ ∈ R
n×k such that

K∗ = argmax
bi ,K

r∑

i=1

bTi K
TXiX

T
i Kbi (3)

subject to bi ∈ R
k×1, ‖bi‖ = 1, K ∈ R

n×k, and KTK = Ik.

In the second optimization problem, given below, we seek to

find a matrix K that maximizes the function
∑r

i=1 cos(θ1(K,Xi)).

This amounts to finding a matrix K∗ ∈ R
n×k such that

K∗ = arg max
ai ,bi ,K

r∑

i=1

aTi X
T
i Kbi (4)

subject to ai ∈ R
l×1, ‖a‖ = 1, bi ∈ R

k×1, ‖bi‖ = 1, K ∈ R
n×k, and

KTK = Ik.

4.2 SVBF optimization problem
implementation with PyTorch

All of the experiments in this paper are conducted for the

special case where c = 1. This case, along with the relative

simplicity of the dataset that we used, allows us to directly initialize

the problem with the PyTorch class. The unknown matrix K and

vectors {bi} in this case are initialized in the PyTorch class as two

sets of parameters: {Kij}, 1 ≤ i ≤ n, 1 ≤ j ≤ k, and {bij}, 1 ≤ i ≤

r, 1 ≤ j ≤ k. The Lagrangian, associated with the problem given by

Equation (3), is considered via the Adam optimizer and provides a

path to the approximate solution:

LossK
(
K, b

)
= (5)

−

r∑

i=1

bTi K
TXiX

T
i Kbi + λ0

(
KTK − Ik

)
+

r∑

i=1

λi
(
‖bi‖ − 1

)

Let’s focus on the first part of this expression as the part

containing a majority of the complexity. In our design, for each

sample it is calculated in three steps:

1. L1i = KTXi

2. L2i = L1i L
1T
i

3. L3i = bTi L
2
i bi

Based on this chain of matrix multiplications and assuming that

n ≫ k we can calculate the time complexity of the forward pass as

O
(
2k(nl+ kl+ 2k)

)
= O

(
nkl

)
. The backward pass complexity,

calculated based on the chain of multiplications of respective

Jacobian matrices, is also equal to O
(
nkl

)
. Hence, along with

complexity of the Adam optimizer, equal to O
(
nk

)
, the overall

complexity of one iteration is equal to O
(
nkl

)
and the complexity

of the entire optimization process is equal to O
(
tnklr

)
, where t is

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

the number of iterations and r is a number of l-dimensional inputs.

Note that it is effectively equal to the complexity of the training of

one fully connected layer with k nodes at the output given that it

is trained on l × r n-dimensional vectors with the same number of

iterations t.

The given approximations of the complexity are derived

following the traditional approach that was common before the

era of GPU’s. The GPU’s benefit from parallelizing an immense

number of simple operations and are capable of accelerating

matrix multiplications by orders of magnitude. We run all of

our experiment on V-100 Tesla GPU’s, hence to provide a better

understanding of performance in actual experiments we present a

computational profiling in Table 1. The profiling was conducted for

100 randomly generated inputs. The dimensionalities of inputs vary

as n ∈ {82, 83, 84, 85}, l ∈ {1, 41, 42, 43}, while the dimensionality

of K varies as k ∈ {8 × 1, 8 × 41, 8 × 42, 8 × 43}. Given that

SVBF optimization can also be run as a training with batches for

larger number of samples, this range of parameters supposedly

covers several of the possible cases that one may encounter in real

experiments.

In fact, instead of including the unit length condition for each of

the bi’s in the cost function, we use the normalizing transformations

of bi’s suggested in Kirby and Miranda (1996), which doesn’t

introduce much complexity and, at this point, has already been

implemented in PyTorch as a built-in routine. The resulting loss

function is as follows:

LossK
(
K, b

)
= −

r∑

i=1

bTi K
TXiX

T
i Kbi + λ0

(
KTK − Ik

)
(6)

where ‖bi‖ = 1 ∀i ∈ {1, r} by construction of the PyTorch class.

As it was mentioned before this function is minimized with Adam

optimizer and the number of iterations is equal to 40,000. The

following is a list of some other details important for reproduction

of results:

• λ0 = 10,000

• Initialization of parameters K and {bi}:

element-wise random numbers from a uniform

distribution on the interval [0,1]

• Adam optimizer settings:

lr = 0.001, betas = (0.9,0.999), eps = 1e−08, weight_decay

= 0, amsgrad = False

• Python version: 3.6.8

• torch version: 1.10.1

• cuda version: 11.0

All these settings are preserved exactly the same across all

experiments including SVBF problem solving. For the faster

processing in benchmarking experiments we also leverage Ray 2.0.0

python package to run several experiments in parallel.

4.3 Illustrative example

In this paper we now present results from the given

implementations of the SVBF algorithm. Given that our objective is

a comparative analysis of these algorithms, we focus on a modestly

TABLE 1 Tables of processing times for one iteration of optimization loop

in milliseconds. The number of samples is fixed to 100, while the

dimensionatity of inputs l, dimensionalilty k of K, and dimensionality n of

ambient space vary.

l \ n 82 83 84 85

1 1.18 1.23 1.58 2.77

41 1.27 1.70 5.00 49.31

42 1.26 1.69 5.00 45.27

43 1.30 1.82 5.20 48.80

l \ n 82 83 84 85

1 1.30 1.49 2.45 1

41 1.47 1.97 5.09 28.18

42 1.47 1.98 5.18 30.53

43 1.54 2.13 5.87 52.20

l \ n 82 83 84 85

1 1.54 2.13 8.62 160.36

41 1.86 2.72 10.43 191.06

42 1.87 2.76 10.91 192.08

43 2.01 3.01 11.99 204.16

l \ n 82 83 84 85

1 4.09 6.76 73.90 491.70

41 5.17 7.72 77.40 506.52

42 5.49 7.97 80.87 518.80

43 6.58 9.96 89.52 616.49

k = 8× 1. k = 8× 41 . k = 8× 42 . k = 8× 43 .

sized Cat and Dog dataset consisting of 99 images of cats and 99

images of dogs. All the images are 64 × 64 greyscale images; you

can see some of the representatives of each class in Figure 2. We

preprocess the data by flattening each image into a vector of length

n = 4, 096 and scaling the entries into the range from−1 to 1. The

SVBF algorithm operates over sets of subspaces, therefore we split

the data into equally sized collections of l vectors and extract an

orthonormal basis for each set. The resulting orthonormal bases are

used as the inputs. In other words, the inputs, or samples, consist

of tall orthonormal matrices of dimension R
n×q where q = l for

training data and q = m for test data. We chose to allow for

l and m to be distinct so that we may consider the cases when

dimensionality of samples in training and test data might differ.

Importantly, no cat or dog vector is used in more than one sample.

Further, we never mix classes within one sample, samples consist

of sets of only dog vectors or only cat vectors. For example, the

notations {Xtrain
i }, l = 3 describes the set of three-dimensional

bases of mono-class sets of scaled image-vectors sampled from the

training data.

In Figure 3, we show sample solutions of Schubert Varieties

of Best fit. In each case the matrix K to be determined is chosen

to have one column and these solutions are displayed for cats

and dogs individually. It is interesting to compare the solutions

to Equation (3) and Equation (4). We see that for cos(θ) the

Schubert variety matrices K show higher resolution detail while

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 3

Solutions to the Schubert Variety of best fit problem for a = 1. The (left) column consists of solutions to Equation (3) while the (right) column consists

of solutions to Equation (4). In each case there are three images in each sample. The top and bottom rows use cat and dog samples, respectively.

for cos2(θ) the features are larger scale. This example underscores

the potential significance in the selection of distance measure in

computing SVBFs. For all these examples we select three images

in each sample.

4.4 Optimal dimension of K

We illustrate the relative rates of conve rgence of the SVBF

optimization problems in Figure 4. Figure 4A shows the value

of the objective function for the optimization problem given by

Equation (3), i.e., the average sum of the squared cosines of the

1st principal angles for 10 two-dimensional subsets of cats sampled

from both training and test datasets versus the dimension k of

the solution subspace K. We can see that the objective function

for test samples effectively flattens out after k=2. Similar behavior

can be observed for the dog dataset, presented in Figure 4B, except

the flattening is smoother and starts approximately at k =4. The

results for the combined datasets, presented in Figure 4C, show

that the flattening also starts at around k = 4. These plots lead us

to several observations. Firstly, the flattening of the curves itself

suggests that more columns in K do not lead to improvements in

the solution. Thus, the set of points {Xi} has an intrinsic subspace

dimension as captured by K. We see that the dimension of this

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 4

Average squared-cosines of the 1st principle angle for training and test data sampled from di�erent classes, from both classes and sampled from the

uniform distribution on the Grassmann manifold: (A) cat class, (B) dog class, (C) cats and dogs classes combined, (D) random samples.

FIGURE 5

Workflow of Cat and Dog classification experiment using Algorithm I.

subspace is smaller than the direct sum of the dimensions of the

class-specific subspaces. This does not come as too big a surprise

when one considers the correlation between the images. Finally,

the Figure 4D illustrates how samples, randomly selected from

the uniform distribution (with respect to Haar measure) on a

Grassmann manifold, do not possess the same structure and the

number of columns required in K does not converge. Experiments

with other dimensions of samples have also been conducted,

and they align with the results reported here. Other approaches

to dimension optimization are also possible with the SVBF

method, e.g., task-specific optimizations that will be considered in

Section 5.

5 SVBF as an abstract node

Here, we explore the application of the SVBF

as a computational unit in a feed-forward neural

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 6

Average accuracies with error bars for 1NN-classification of test data for Y embeddings from Algorithm I and for PCA embeddings. (A) Y embeddings,

plots are labeled as l_m depending on the dimensions of training samples l and dimensions of test samples m. (B) PCA embeddings, plots are labeled

as m_m depending on dimensions of test samples m.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 7

Workflow of Cat and Dog classification experiment using Algorithm II.

network. We shall see that Schubert varieties of best

fit provide a natural transformation of the data into

the coordinates of the learned Schubert variety of

best fit K.

5.1 Algorithm I

Given a solution K and a data sample Xi it is natural to consider

the change of coordinates of the sample that can be implemented in

the neural network, i.e.,

Yi = KTXi

The design of the classification experiment for this case is

presented in Figure 5.

Step 1 involves training the SVBF Node, the outcome of which

is the representative K of the SVBF. This K is then used in Step

2 to compute the change of coordinates to produce Y. This is

done using training data. Further, in Step 2 the 1-nearest neighbor

(1NN) classification is implemented using the scikit-learn Python

package. Step 3 involves the application of 1NN to the test data and

the results are shown in Figure 6. Figure 6A illustrates the average

for 10 different samplings of a 1NN-classifier applied to the {Yi}

embeddings of Cat and Dog data. In each sampling, the data is

split randomly into train and test datasets with proportions 0.78

and 0.22, respectively. Benchmarking is performed for different

dimensions l = m = 1, . . . , 5 of samples in training and tests

subsets, and different dimensions k = 1, . . . , 10 forK. The accuracy

grows with the dimension of the samples, but interestingly starts

decreasing for l ≥ 3. At the same time, increasing the dimension of

K also significantly increases the accuracy up to dimension 3 and

only slightly effects the accuracy above that level. This low accuracy

is a result of using the Frobenius norm to compute distances

between matrices. Later we will see that using subspace distances

in general produces superior results. For a better understanding of

the benefits of the SVBFmethod, we provide side by side the results

for classification based on PCA-embeddings as well (Figure 6B). In

this first experiment, the performance of the classification method

based on learningK is slightly better than the one based on learning

a representative subspace based on PCA-analysis.

5.2 Algorithm II

Another possible approach is to learn a representative K for

each class of data. In our example, in Step 1, we propose to

learn K1 as a solution to Equation (3) for the cat class, and

K2 as a solution to Equation (3) for the dog class. Now these

matrices K1,K2 can be used to classify the data. To assign a class

to an unknown sample Xi in Step 2, we compute the smallest

principle angle between Xi and each of K1 and K2. The smallest

of these two angles provides the classification. The diagram for

such an experiment with the Cat and Dog dataset is presented

in Figure 7. Labeling of the test data is performed by finding

the nearest, in terms of smallest principle angle to K, for each

sample.

Figure 8A shows the average classification accuracy

across 10 different samplings of the test data. Again,

this procedure is implemented for a range of l,m,

and k. The data was split into training and test

sets with the same ratio as in the Algorithm I

experiments.

The benchmarking plots indicate a significantly more accurate

classification versus Algorithm I for the comparable cases.

Due to the higher overall accuracy of this design, we also

investigated it for different dimensions of training and test

samples, which can be useful for a wide variety of datasets,

specifically when test samples cannot be grouped by labels.

As before, increasing the dimension k of K leads to higher

accuracies for all cases. However, in contrast to Algorithm I,

now the accuracy increases monotonically with the dimensions

l,m.

For further comparative analysis, we also calculate PCA

embeddings for each class and label test samples, based on

the nearest, in terms of the smallest principle angle subspace

captured by PCA-analysis. We repeat this experiment 10

times for different samplings similar to the Algorithm I

experiment. The results of this experiment are shown in

Figure 8B. The lower accuracies for the class-specific PCA

experiment indicate the SVBF optimization problem is

capturing additional useful information that is helpful for

classification.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 8

Average accuracies of classification of test set by Algorithm II design and design based on the closest class-specific PCA subspaces: (A) Algorithm II

design, plots are labeled as l_m depending on the dimensions of training samples l and dimensions of test samples m. (B) Closest PCA design, plots

are labeled as m depending on dimensions of test samples m.

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 9

Workflow of Cat and Dog classification experiment using Algorithm III.

FIGURE 10

Visualization of the outputs of the trained SVBF node and generated embeddings for the entire Cat and Dog dataset, k=3, and l=2. (A) Learned basis

K, (B) some samples reconstructed in ambient space from embeddings, (C) learned embeddings.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

FIGURE 11

Average accuracies of classification of test data by Algorithm III design. Accuracies for one-layer NN design are labeled as “NN,” and accuracies for

SVBF-Node design as “l_m,” where l is dimensionality of train samples and m is dimensionality of test samples.

5.3 Algorithm III

Note that the element k̂ ∈ R(K) given by

k̂i = Kbi

is the vector in R(K) that is closest to the span of Xi.

There is a natural association between Xi and bi and this

can be exploited for classification. Hence, a consequence of

Equation (3) is that once we approximate K we can use bi, the

coordinates of the closest to Xi vector in K, as a proxy for Xi

in the classification. One of the possible experiments exploiting

this option is classification with neural networks outlined

in Figure 9.

This experiment also illustrates how SVBF nodes can be

stacked into a larger network and trained simultaneously with

other parts of the network. In this case, we attach a classifier that

takes outputs bi of SVBF nodes as inputs, learns centroids in a

training process and generates soft labels at the inference step.

In Step 1, we optimize K and bi independently at each iteration.

In other words, K is not adjusted by any contribution to the

gradient from the classification error. Generally, the outline given

in Figure 9 does not require detaching the classifier’s error back-

propagation from that of an SVBF node. However, detaching the

training of K and bi, as we have done here, seems to improve

performance without loss of the benefits of parallelization. The

loss function for Step 1 is defined as a weighted sum of three loss

functions:

Lossθ = −

M∑

i=1

bTi K
TXiX

T
i Kbi

Lossorth = KTK − Ik×k

LossClass = −

k∑

j=1

yij log
(
logitij

)

Loss = αLossθ + βLossorth + γ LossClass

(7)

where logiti = Softmax((bTi W)2,T) with W learnable centroids,

and the hyperparameter T. The output of Step 1 is the matrix K, set

{btraini } and the classifierW. Now, given K,W, the prediction of the

labels is accomplished in Steps 2 and 3.

In Step 2, we initialize the SVBF node with the K computed in

Step 1 to determine the coordinates btesti , associated with the test

samples Xtest
i , using the loss function LossK similar to Step 1, but

without the classification component and with K fixed. In Step 3,

we use the classifier W trained in Step 1 to map the btesti to their

class label.

This hybrid network was also tested with the Cat and Dog

dataset following exactly the same preprocessing pipeline as in the

Algorithm I and Algorithm II experiments. Figure 10 illustrates

trained parameters for such a network for the entire Cat and Dog

dataset with l = 2 and k=3. As we now describe, this picture captures

many interesting features of the method. Figure 10A depicts the

three columns of K. Interestingly one column is a dog, and one is

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

clearly a cat! But all columns seem to capture salient features in

the data. In Figure 10B, we show the directions Kbi for three cat

samples and three dog samples, where we recall that each sample is

a 4, 096× 2 matrix. So each of these six figures is a direction in the

span of K that is closest to the data training sample. In Figure 10C,

we show the set of all features in terms of bi for cats (blue) and dogs

(red). We note that their clear separation is a reflection of the fact

that this method captures information capable of discriminating

between cats and dogs.

In Figure 11, you can find the classification accuracy for test

data for different dimensions of training and tests samples as well

as different dimensions forK. It is very interesting that the accuracy

of the classification problem levels off at 4 dimensions, which is

consistent with the optimal size k = 4 of K as suggested in Figure 4.

Hence we view k = 4 as the apparent working dimension for K.

We see the accuracy increases monotonically with the dimension

of the samples. Importantly, the results in which the samples have

dimensions >5, which we are not reporting here, support this

observation. However, given our limited data we were not able to

pursue this behavior further.

In the same Figure 11, we also report the average accuracies

for the classification of l2-normalized vectors used as inputs. In

this design, instead of an SVBF-Node, we use one fully connected

layer with k nodes at the output and with the hyperbolic tangent

as the activation function (all other settings are kept the same).

In Section 4.2, it was shown that this network has the same

computational complexity as the SVFB-Node. Along with the

higher resulting average accuracies for some cases this method also

has an advantage of ∼10 times faster convergence (in terms of the

required number of iterations). On the other hand, we can see that

for dimensionalities of test samples ≥ 3 the SVBF method is more

accurate. It’s important to note here that benchmarking against the

regular networks processing vector inputs wasn’t within the focus

of this paper. Our prime goal was to show that in the suggested

framework a big part of the progress made with the regular neural

networks during the last decades can be directly leveraged in the

case of sets of datasets.

6 Conclusions and future work

In this paper we proposed a geometric approach for the analysis

of sets of datasets using the idea of a Schubert Variety of Best Fit.We

formulated two optimization problems and compared them on a

two class data set comprised of sets of cats and dogs. We proposed

three distinct algorithms for data classification and explored and

benchmarked these using the same dataset and preprocessing

pipeline. Algorithm I uses a single solution K to characterize the

data and a Frobenius norm to measure distances. Overall, this

algorithm performed poorly when compare to Algorithms II and

III which generated promising results. Algorithm II, based on

learning two SVBFs, provides the most accurate classifications.

This algorithm explicitly builds a model for the cats and dogs

through their respective SVBFs and appears to be more capable of

addressing complex structures of data, including classes with higher

within-class variance. Algorithm III introduces the idea of using

auxiliary features to perform data classification, and is based on a

single model K.

All three algorithms suggest that there is a best dimension for

the representative subspace and that exceeding this leads to no

improvement in classification accuracy. Hence the SVBF approach

appears to provide a measure of complexity of a set of data

sets through this working dimension. Interestingly, Algorithm III

provides a very clear signal for this optimal dimension through a

classification criterion. Algorithm III illustrates how the SVBF node

can be used as an abstract unit of computation in a neural network.

This enables researchers to process sets of datasets in the same spirit

as sets of vectors are processed in a variety of ML libraries based on

neural networks.

It is worth noting that all the experimental results provided

in this paper are based on approximations of one or multiple K’s

intersecting all training samples or special label groups only in

one direction. The preliminary results indicate the promise of the

SVBF approach for finding a representative subspace for the set

of datasets in classification tasks. The natural path forward is to

increase the number of intersections in the SVBF optimization

problem, i.e., increase the number of angles being used in the

optimization problem. We also plan to explore this approach on

more realistic data sets and explore how this impacts our ability

to determine optimal K. We anticipate the main challenges will

be in parallelizing the code efficiently to make larger problems

computationally feasible.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

KK: Writing—original draft, Writing—review & editing. MK:

Writing—original draft, Writing—review & editing. CP: Writing—

original draft, Writing—review & editing.

Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work

was partially supported by the DARPA Geometries of Learning

Program under Award No. HR00112290074.

Acknowledgments

We would like to thank DARPA for support under the

Geometries of Learning program grant number HR00112290074.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Karimov et al. 10.3389/frai.2023.1274830

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Anderle, M., Hundley, D., and Kirby, M. (2002). The bilipschitz
criterion for mapping design in data analysis. Intell. Data Anal. 6, 85–104.
doi: 10.3233/IDA-2002-6106

Beveridge, J. R., Draper, B. A., Chang, J.-M., Kirby, M., Kley, H., and Peterson,
C. (2008). Principal angles separate subject illumination spaces in YDB and CMU-
pie. IEEE Trans. Pattern Anal. Mach. Intell. 31, 351–363. doi: 10.1109/TPAMI.
2008.200

Broomhead, D., and Kirby, M. (2000). A new approach for dimensionality
reduction: theory and algorithms. SIAM J. Appl. Math. 60, 2114–2142.
doi: 10.1137/S0036139998338583

Broomhead, D., and Kirby, M. (2001). The Whitney reduction network: a
method for computing autoassociative graphs. Neural Comput. 13, 2595–2616.
doi: 10.1162/089976601753196049

Ghosh, T., and Kirby, M. (2022). Supervised dimensionality reduction and
visualization using centroid-encoder. J. Mach. Learn. Res. 23, 20–21.

Hebb, D. O. (1949). The first stage of perception: growth of the assembly. Organ.
Behav. 4, 78–60.

Hertz, J., Krogh, A., Palmer, R. G., andHorner, H. (1991). Introduction to the theory
of neural computation. Am. Instit. Phys. 44:70. doi: 10.1063/1.2810360

Hundley, D., Kirby, M., and Miranda, R. (1995). “Spherical nodes in neural
networks with applications,” in Intelligent Engineering Through Artificial Neural
Networks, Vol. 5, eds S. Dagli, B. Fernandez, J. Ghosh, and R. S. Kumara (New York,
NY: The American Society of Mechanical Engineers), 27–32.

Kingma, D. P., and Welling, M. (2019). An introduction to variational
autoencoders. Found. Trends Mach. Learn. 12, 307–392. doi: 10.1561/2200000056

Kirby, M., and Miranda, R. (1996). Circular nodes in neural networks. Neural
Comput. 8, 390–402. doi: 10.1162/neco.1996.8.2.390

Kramer, M. A. (1991). Nonlinear principal component analysis using
autoassociative neural networks. AIChE J. 37, 233–243. doi: 10.1002/aic.690370209

Kvinge, H., Farnell, E., Kirby, M., and Peterson, C. (2018a). “A GPU-
oriented algorithm design for secant-based dimensionality reduction,” in 2018 17th
International Symposium on Parallel and Distributed Computing (ISPDC) (Geneva),
69–76. doi: 10.1109/ISPDC2018.2018.00019

Kvinge, H., Farnell, E., Kirby, M., and Peterson, C. (2018b). “Too many secants: a
hierarchical approach to secant-based dimensionality reduction on large data sets,” in
2018 IEEE High Performance Extreme Computing Conference (HPEC) (Waltham, MA),
1–7. doi: 10.1109/HPEC.2018.8547515

Ma, X., Kirby, M., and Peterson, C. (2021). “The flagmanifold as a tool for analyzing
and comparing sets of data sets,” in Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV) Workshops (Montreal, BC), 4185–4194.
doi: 10.1109/ICCVW54120.2021.00465

Mankovich, N., King, E. J., Peterson, C., and Kirby, M. (2022). “The flag median and
flagirls,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (New Orleans, LA), 10339–10347. doi: 10.1109/CVPR52688.2022.01009

Marrinan, T., Beveridge, J. R., Draper, B., Kirby, M., and Peterson, C. (2015).
“Flag manifolds for the characterization of geometric structure in large data sets,” in
Numerical Mathematics and Advanced Applications-ENUMATH 2013, eds T. J. Barth,
Mi. Griebel, D. E. Keyes, R. M. Nieminen, D. Roose, and T. Schlick (Berlin; Heidelberg:
Springer), 457–465. doi: 10.1007/978-3-319-10705-9_45

Marrinan, T., Draper, B., Beveridge, J. R., Kirby, M., and Peterson, C. (2014).
“Finding the subspace mean or median to fit your need,” in 2014 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) (Columbus, OH), 1082–1089.
doi: 10.1109/CVPR.2014.142

McCulloch, W. S., and Pitts, W. (1943). A logical calculus of the ideas immanent in
nervous activity. Bull. Math. Biophys. 5, 115–133. doi: 10.1007/BF02478259

Oja, E. (1992). Principal components, minor components and linear neural
networks. Neural Netw. 5, 927–935. doi: 10.1016/S0893-6080(05)80089-9

Rosenblatt, D., Lelu, A., and Georgel, A. (2002). “Learning in a single pass: a
neural model for principal component analysis and linear regression,” in Proceedings
of the IEE International Conference on Artificial Neural Networks (London),
252–256.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et
al. (2017). “Attention is all you need,” in Advances in Neural Information Processing
Systems, Vol. 30 (Long Beach, CA).

Vidal, R., Ma, Y., and Sastry, S. (2005). Generalized principal component
analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. 27, 1945–1959.
doi: 10.1109/TPAMI.2005.244

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2023.1274830
https://doi.org/10.3233/IDA-2002-6106
https://doi.org/10.1109/TPAMI.2008.200
https://doi.org/10.1137/S0036139998338583
https://doi.org/10.1162/089976601753196049
https://doi.org/10.1063/1.2810360
https://doi.org/10.1561/2200000056
https://doi.org/10.1162/neco.1996.8.2.390
https://doi.org/10.1002/aic.690370209
https://doi.org/10.1109/ISPDC2018.2018.00019
https://doi.org/10.1109/HPEC.2018.8547515
https://doi.org/10.1109/ICCVW54120.2021.00465
https://doi.org/10.1109/CVPR52688.2022.01009
https://doi.org/10.1007/978-3-319-10705-9_45
https://doi.org/10.1109/CVPR.2014.142
https://doi.org/10.1007/BF02478259
https://doi.org/10.1016/S0893-6080(05)80089-9
https://doi.org/10.1109/TPAMI.2005.244
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	An algorithm for computing Schubert varieties of best fit with applications
	1 Introduction
	2 Background
	3 Schubert varieties
	3.1 Definition of Schubert variety
	3.2 Schubert varieties of best fit
	3.3 Examples of distance/closeness measures

	4 Optimization problem for SVBF
	4.1 SVBF optimization problem formulation
	4.2 SVBF optimization problem implementation with PyTorch
	4.3 Illustrative example
	4.4 Optimal dimension of K

	5 SVBF as an abstract node
	5.1 Algorithm I
	5.2 Algorithm II
	5.3 Algorithm III

	6 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

