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Introduction: The COVID-19 pandemic had a global impact and created an

unprecedented emergency in healthcare and other related frontline sectors.

Various Artificial-Intelligence-based models were developed to e�ectively

manage medical resources and identify patients at high risk. However, many of

these AI models were limited in their practical high-risk applicability due to their

“black-box” nature, i.e., lack of interpretability of themodel. To tackle this problem,

Explainable Artificial Intelligence (XAI) was introduced, aiming to explore the “black

box” behavior of machine learning models and o�er definitive and interpretable

evidence. XAI provides interpretable analysis in a human-compliant way, thus

boosting our confidence in the successful implementation of AI systems in the

wild.

Methods: In this regard, this study explores the use ofmodel-agnostic XAImodels,

such as SHapley Additive exPlanations values (SHAP) and Local Interpretable

Model-Agnostic Explanations (LIME), for COVID-19 symptom analysis in Indian

patients toward aCOVID severity prediction task. Variousmachine learningmodels

such as Decision Tree Classifier, XGBoost Classifier, and Neural Network Classifier

are leveraged to develop Machine Learning models.

Results and discussion: The proposed XAI tools are found to augment the high

performance of AI systems with human interpretable evidence and reasoning, as

shown through the interpretation of various explainability plots. Our comparative

analysis illustrates the significance of XAI tools and their impact within a healthcare

context. The study suggests that SHAP and LIME analysis are promising methods

for incorporating explainability in model development and can lead to better and

more trustworthy ML models in the future.

KEYWORDS

artificial intelligence, machine learning, COVID-19, explainable AI (XAI), data analysis,

decision tree, XGBoost, neural network classifier

1 Introduction

The world has witnessed the threat of severe acute respiratory syndrome coronavirus

disease (COVID-19), which critically affected the public health and economies of many

nations over the past 3 years. The pandemic has led to a dramatic loss of human

life worldwide and put forth unprecedented challenges to frontline workers. According

to the study report by the World Health Organization dated 20 March 2022 (Weekly

epidemiological update), over 468 million confirmed cases and over 6 million deaths have

been reported globally1. Given such an intimidating number of fatalities, it became critical

1 https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-

march-2022
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to identify the predictive features and/or risk factors that can aid

in early identification of the individuals at risk, thus facilitating the

optimal usage of medical resources as well as to deter similar future

scenarios.

Motivated by this rationale, various machine learning (ML)

based studies as well as exploratory data analysis (EDA)

were conducted to analyse the severity of the person, triage

measurements, and mortality risk assessment (Barda et al., 2020;

Yadav et al., 2020; Ong et al., 2021; Solayman et al., 2023).

Although there was limited data access in the early stages due

to the confidential nature of data, recently some works have

proven their improved potential by incorporating multiple data

sources and making it publicly available for research purposes. In

particular, various classical machine learning models, i.e., Decision

tree, Adaboost, XGboost as well as advanced deep learning models

were proposed in various studies (Yadav et al., 2020; Kwekha-

Rashid et al., 2021; Solayman et al., 2023) which can predict the

future pandemic wave or mortality/recovery of COVID-19 patients

of a future pandemic wave.

One of the biggest challenges that exist in many of the

aforementioned AI models is the lack of interpretability of the

result analysis, which is mainly due to the black-box nature

of such models which merely conveys ‘how much’ the system

performs; not “why” it works. To this end, Explainable Artificial

Intelligence (XAI) is proposed to overcome this lacuna by exploring

the unexplained hidden “black box” nature of advanced machine

learning models and thus providing the reasoning for the model

decision. It enables the interpretability of deep-learning-powered

models and results in a human-compliant way, hence boosting our

confidence in the successful implementation of AI systems in the

wild. Such XAI tools can reduce the implementation gap for ML in

healthcare, where trust in the model plays a vital part.

In this work, we leverage Explainable Artificial Intelligence

(XAI) for COVID-19 data analysis to predict key symptoms that

potentially influence on the severity of the disease, which in

turn provides insights on medical strategies and opportunities to

aid delivery of COVID-19 vaccination priority strategies in the

future. In particular, this work presents the interpretable analysis

of ML models via model-agnostic XAI models such as SHapley

Additive exPlanations (SHAP) values and Local Interpretable

Model-Agnostic Explanations (LIME) values, on the COVID-

19 symptoms in Indian patients. Three major ML models, i.e.,

Decision Tree, XGBoost, and Artificial Neural networks are utilized

for the development of the classifiers.

Dataset-level performance metrics are calculated for the

different ML models to assess the overall performance and

the post-hoc explainability tools such as SHAP and LIME are

explored further to interpret the results. The main objective

of this study is not to identify the most effective model in

terms of explainability but rather to shed light on the key

considerations to keep in mind while building ML models and

to explain the inner workings of these models, not just the

output they produce. With this rationale, the proposed XAI

models’ interpretations are analyzed via various explainability

plots. In particular, SHAP-based plots such as global bar plot,

local bar plot, beeswarm plot, waterfall plot, and force plot, and

LIME-based plots such as local bar plot and violin plot are

investigated.

The remainder of the paper is organized as follows: Section 2

details the related works. Section 3 briefly describes the materials

and methods that our work is based upon, i.e., dataset description,

various AI models, and the XAI methods used in this work.

Section 4 details the various experimental studies conducted.

Section 5 shows the experimental results including the performance

of various AI models and visual analysis of XAI performance.

Section 6 and Section 7 explain the state-of-the-art comparisons

and discuss significance and future works, respectively. Finally,

Section 8 concludes the paper.

2 Related work

Explaining the inner workings of deep neural networks has

gained significant attention in the past few years. Explainable

artificial intelligence (XAI) is an emerging area of research in

machine learning that is intended to explore the unexplained

hidden “black box” nature of deep neural networks (Guidotti et al.,

2018). XAI augments the quality and reliability of model decisions

via interpretable evidence, thus shedding light on “why the system

works” or “how individual factors contribute to the model’s final

prediction.”

AI models have played a pivotal role during the COVID-

19 pandemic, in exploratory data analysis (EDA), COVID-

19 case identification (Adeniyi et al., 2020), identifying the

mortality and co-morbidity risks (Snider et al., 2021), prediction

of transmission (Lin et al., 2020). Epidemiological models-based

studies were conducted in Chen et al. (2020) and Firth et al.

(2020) to study and analyze transmission also by relying on

many parameters and assumptions. To this end, it became quite

important to understand how the individual factors contribute to

the final prediction (Casalicchio et al., 2019). Such information

is critical in inculcating trust and reliability in the AI model

by providing insights into the importance of variables and their

relationship with the final prediction.

Onemajor direction of work in XAI includes AImodels that are

interpretable by design. For instance, ML models such as decision

trees (Yan et al., 2020) and logistic regression (Fisman et al., 2020)

are used in the studies to identify and interpret the mortality risk

prediction of COVID-19 patients, respectively. In the former, a

Multi-tree XGBoost model is used to rank the features according

to their importance to interpret the model’s prediction whereas in

the latter a logistic regression model that quantifies the weight of

each input variable to the final prediction was realized in order to

interpret the importance of the variables. A similar approach based

on the logistic regression model was reported in another recent

study (Quiroz et al., 2021) leveraging both clinical and imaging

data from two hospitals in Hubei, China, for automated severity

assessment of COVID-19 for individual patients. That work utilized

SHAP values to interpret the co-morbidity conditions and to

interpret the severity conditions. Some similar studies are also

reported in Petrilli et al. (2020) and Khot et al. (2020). While such

“interpretable by design” AI models comprehend the importance

of the model’s input variables, it was observed that they are often
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less accurate compared to black-box models (Murdoch et al., 2019;

Da Cruz et al., 2021).

Another direction of XAI works focuses on model agnostic

interpretation methods that are incorporated into the black-box

models to find out the relationship between inputs and the model’s

prediction. In this regard, some of the major model-agnostic

interpretation methods are SHAP (SHapley Additive exPlanations)

and LIME (Local Interpretable Model-agnostic Explanations).

SHAP uses game-theoretic concepts from economics to assign a

Shapley value to each feature, which represents its contribution to

the model’s prediction and LIME creates a simpler, interpretable

model to approximate the original model’s behavior, and generates

local explanations based on that simpler model. SHAP is designed

mainly for tree-based models and neural networks and LIME can

be used to interpret any type of machine learning model. One

of the works proposed a SHAP-based mortality prediction model

upon Israel’s COVID-19 patients dataset (Barda et al., 2020). In

particular, it investigated the importance of demographic attributes

in COVID-19 mortality risk prediction. Another work used the

DistilBERT and SHAP approach for COVID-19 infodemic Using

Explainable Natural Language Processing (Ayoub et al., 2021). Yet

another work by Ong et al. (2021) leveraged image data, i.e., X-

ray scans, in order to interpret COVID diagnosis. To this end,

they utilized both LIME and SHAP models and compared the

results. Similarly, Snider et al. (2021) proposed XGBoost AI model

to study COVID-19 instances of patient fatalities in Ontario. In

that work, they explored the usage of SHAP value to interpret the

model results. A novel image explanation method named Ensemble

XAI, a novel image explanation method built on the Grad-CAM++

and SHAP approaches was presented in the work (Zou et al.,

2022) for severe community-acquired pneumonia and COVID-19

respiratory infections. A more detailed comparative analysis chart

is provided in a later Section 6 and in Table 5.

In this work, we leverage model-agnostic XAI tools for

interpreting COVID-19 severity prediction in Indian patients

from the relevant symptoms. In particular, we investigate the

model predictions using three ML approaches, i.e., Decision tree,

XGBoost, and Neural Networks. Upon these black-box models,

two XAI models—SHAP and LIME—are incorporated to interpret

the prediction results. In contrast to similar works on the topic,

our work not only presents a more extensive analysis of both

global and local XAI models for severity prediction but also

facilitates “symptom analysis.” Such a “symptom analysis” helps

to comprehend the major symptoms that lead to COVID-19

severity such as tiredness, fever, dry-cough etc. To the best of our

knowledge, no other “XAI-for-COVID symptom analysis” work

was found in the literature. Furthermore, no similar works using

XAI on the COVID dataset was conducted in Indian datasets.

Hence, our work marks the first work leveraging XAI tools for

COVID-19 data analysis for severity prediction and symptom

analysis in the Indian patients’ dataset.

3 Materials and methods

In this section, the datasets and models used in this work

are detailed. In particular, data preparation, machine learning

models, and the interpretable XAI tools, i.e., SHAP and LIME

used to explore the black-box prediction model are explained. The

architecture diagram of the proposed Explainable AI framework

for COVID -19 severity analysis is depicted in Figure 1. Based

on the dataset, first the model is trained for classification.

Further, SHAP/LIME- based model-agnostic explainable AI-

model is employed upon the classification results, to obtain the

interpretation of the results. The detailed overview of each module

is presented below:

3.1 Dataset description

3.1.1 Data acquisition
Due to the scarcity of literature works reported on the Indian

COVID-19 scenario, there was a lack of availability of COVID-19

Indian data for research work. To this end, we carry out extensive

web scraping and exploratory data analysis. Various publicly

available COVID-19 Indian data from different resources are used

to create extensive data regarding COVID-19 patients within

FIGURE 1

Schematic overview of the Explainable AI framework for COVID-19 severity analysis.
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India2. For instance, data available as open source from IBM3 and

Kaggle4, that contains information such as symptoms of COVID-

19, contact with patients, wearing of mask in India etc. during

the period 2020–2022. Additionally, we used the data from the

work on Exploratory Data Analysis of COVID-19 in India (Mittal,

2020). Various datasets collected from different sources such

as Ministry of Health and family Welfare (MOH, 2021),

COVID-19 India website (COVID-19 India, 2020), Datameet Data

repository (Datameet, 2020), Worldometer (Worldometers, 2020),

and WHO (WHO, 2020) are leveraged in that work to study

spread and trend of the COVID-19 in India. Among the various

data repositories available in that work (Mittal, 2020), we use

“Symptoms observed for COVID-19 in India” data. It contains

information about the presence of symptoms observed in COVID-

19 patients from India.

All data are collected from patient health records as of

during the period 1st January 2020 to 1st January 2022. One key

assumption we postulate is that the consolidated dataset makes

a sample representative database of Indian patients, which are

collected from various available Govt./private resources, including

data from all Indian states and all genders. Among the total 3,16,000

cases included in the dataset, 2,67,600 patients had severe COVID-

19, and the remaining 48,400 either recovered from COVID-19 or

remained hospitalized. Each of 22 binary data features is collected

in this work. Since different symptoms appear to be independent

factors but the severity appears to be a dependent variable in

our scenario, we chose severity as the target variable. Of these

features, preprocessing is carried out to remove unwanted and/or

repetitive data contents, e.g., “Severity_mild,” “Severity_moderate,”

“Severity_high,” and “Country” are removed. Once the data is

cleaned, the target variable is set to be “Severity_present.” It shows

the presence of COVID-19 severity in the patient (either mild,

moderate, or high). Hence, “Severity_present” is selected as the

target variable, since this variable can help us decide whether the

patient is severe or not by using binary classification. Refer to

Table 1 for the complete list of 17 input features5.

3.1.2 Data cleaning and analysis
Data cleaning is also referred to as data cleansing and

data scrubbing. It is one of the most important steps in data

processing and decision-making since the quality of the input data

has a significant impact on the output. Data cleaning rectifies

corrupted/incorrectly formatted, duplicate, or incomplete data in

a dataset. It identifies and addresses inaccurate records, improving

the dataset by replacing, modifying, or deleting problematic

2 Sample COVID-19 Indian dataset used in our study is available in https://

github.com/NambiarAthira/COVID-XA.

3 https://github.com/IBM/covid19-india-data

4 https://www.kaggle.com/datasets/hemanthhari/symptoms-and-covid-

presence

5 We have consolidated our study data from multiple data repositories,

including government resources, as mentioned in Section 3.1.1. All the data

resources have sorted gender into either “Male,” “Female,” or “Transgender.”

Hence, following the standard practice of representation of genders, we also

used the same categories in this study.

TABLE 1 Summary of the features used in the AI models for the COVID-19

analysis.

S.No. Attribute/Symptom

1. Fever

2. Tiredness

3. Dry-Cough

4. Difficulty-in-Breathing

5. Sore-Throat

6. Pains

7. Nasal-Congestion

8. Runny-Nose

9. Diarrhea

10. None_Symptoms

11. None_Experiencing

12. Gender_Female

13. Gender_Male

14. Gender_Transgender

15. Contact_Dont-Know

16. Contact_No

17. Contact_Yes

information. The cleaned data is further fed toward the machine

learning phase.

3.2 AI models

In this work, we leverage three machine learning models to

analyse the severity of the disease: (i) Decision tree (Rochmawati

et al., 2020); (ii) Extreme gradient boosting decision tree—XGBoost

machine learning model (Jiang et al., 2021); and (iii) Artificial

Neural Network (Venables et al., 2002). The first two are the

classical ML models whereas the latter one is a deep-learning based

Neural network model. These models are selected due to their

high accuracy performance in binary classification problems and

acceptance in many of the previous literature.

a) Decision tree model

Decision tree is one of the popular and most widely used

algorithms to make predictions based on the input feature

data (Huyut and Üstündağ, 2022). The program creates decision

trees that describe a set of decisions and their potential outcomes

using mathematical formulas like entropy, information gain, and

Gini index. The formula for calculating the entropy is:

Entropy(S) = −

n
∑

i=1

pilog2pi (1)

where S is the set of examples, n represents the number of

possible classes or categories that the examples can belong to and

pi is the percentage of examples in class i. The above equation is

used to compute entropy, which is a measure of the impurity of a
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set of examples. Similarly, InformationGain (IG) is calculated using

the formula:
IG = Entropy(S)−

∑

v∈Values(A)

|Sv|

|S|
Entropy(Sv) (2)

where S is the set of examples and Sv is the subset of S for

which attribute A has value v. Information Gain(S, A) measures

the reduction in entropy achieved by a split. Another indicator

of impurity is the Gini index, which can be calculated using the

equation :

Gini(S) = 1−
n

∑

i=1

p2i (3)

where S is the collection of examples and pi is the percentage of

examples that belong to class i. A few advantages of decision trees

include their capacity to work with both category and numerical

data, simplicity of interpretation, and capacity for handling missing

values. However, some of the significant drawbacks of the decision

tree are the propensity to overfit the training data and sensitivity to

slight data changes.

b) XGBoost model

XGBoost (eXtreme Gradient Boosting) is a popular and

efficient implementation of the gradient boosting algorithm for

machine learning (Jiang et al., 2021). It is employed for supervised

learning problems, i.e., classification and regression. In XGBoost, a

decision tree is used as the weak learner, which is combined with

other decision trees to create an ensemble model. The objective of

XGBoost is to minimize the loss function, which can be expressed

mathematically as:

Loss = min
θ

n
∑

i=1

L(yi, ŷi)+
T

∑

j=1

�(fj) (4)

where i and j are indexing variables used to sum overall

training examples and decision trees in the ensemble respectively,

θ represents the model parameters that we want to find in order

to minimize the objective function and n is the number of training

examples in our dataset. The difference between yi (true label) and

ŷi (predicted label) for each training example i is represented by

L(yi, ŷi). Accordingly,
∑n

i=1 L(yi, ŷi) measures the sum of the loss

function for overall training examples.

In addition, a regularization term �(fj) for the j-th decision

tree is also used in the objective function. This helps to prevent

overfitting which can occur when the model is too complex and

fits the training data too closely. Given that T is the number of

decision trees in the ensemble and fj is the j-th decision tree in

the ensemble,
∑T

j=1 �(fj), i.e., the sum of the regularization term

for overall decision trees in the ensemble measures the overall

complexity of the model.

As shown in Equation (4), the objective function computes

the overall loss function by combining both the loss term and

regularization term. XGBoost utilizes gradient boosting to enhance

the model during the training process by minimizing this objective

function. It repeatedly applies a new weak learner to the residual

errors of the previous iteration, adjusting the learner’s parameters

to minimize the objective function, until the function reaches a

minimum or the maximum number of iterations is reached.

XGBoost has several features, such as parallel processing,

optimized memory usage, and handling of missing values and

sparse data, that make it an effective tool for large-scale machine-

learning problems.

c) Artificial Neural Network

Artificial Neural Network (ANN) is a machine learning model

based on the structure and function of the human brain (Zappone

et al., 2019). It is composed of interconnected nodes or neurons

that are connected to multiple other neurons through pathways

or synapses. Each artificial neuron receives inputs from other

neurons and performs a simple mathematical operation, known

as activation function, on those inputs to produce an output

signal. Activation functions are used in artificial neural networks

to introduce non-linearity in the model and enable the network

to learn complex relationships between input and output variables.

This is important for achieving high accuracy in prediction tasks

and for avoiding the problem of the vanishing gradient in deep

neural networks. The activation function can be a threshold

function, such as the step function, or a non-linear function, such

as the sigmoid, the rectified linear unit (ReLU) function, Hyperbolic

Tangent (Tanh) function, and Softmax (Karlik and Olgac, 2011).

The output signal from one neuron is then passed as input to

other neurons in the next layer. The weights on the connections

between neurons are adjusted during the training process using

algorithms such as backpropagation. The training process involves

presenting the ANN with a large number of input-output pairs,

also known as training examples, and adjusting the weights so as

to minimize the error between the model’s predictions and the

actual output. The error is calculated using a loss function. ANN

layers can be mathematically represented as follows. Suppose x =

[x1, x2, x3, . . . , xn] is the input vector and n is the number of inputs,

the hidden layer output h can be defined as:

h = f (W · x+ b) (5)

where h is the hidden layer output, f is the activation function,

W is the weight matrix, and b is the bias. After the weighted sum,

an activation function is applied to introduce non-linearity into the

model.

ŷ = g(h) (6)

where ŷ is the output after applying the activation function.

This process continues throughout the layers in the neural network,

and at the last layer, i.e., output layer, the discrepancy between

the predicted and actual values is quantified via a loss function.

Common loss functions include Mean Squared Error (MSE),

Cross-Entropy, and Binary Cross-Entropy. Given y and ŷ are

the target output and the predicted output, respectively, the loss

function can be written as:

E =
1

2

∑

(y− ŷ)2 (7)

In the first phase of the forward pass, inputs are fed through

the network, and the output of the network is computed using the

current values of the weights and biases. Then, loss computation

is computed as shown in Equation (8). Once the loss error is

computed, backpropagation is carried out and the weights and bias

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2023.1272506
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Nambiar et al. 10.3389/frai.2023.1272506

are updated based on an optimization algorithm such as stochastic

gradient descent algorithm, as shown in the following equations

1W = −α ·
∂E

∂W
(8)

1b = −α ·
∂E

∂b
(9)

where 1W and 1b are the changes in weight and bias, α is

the learning rate, and ∂E
∂W and ∂E

∂b
are the partial derivatives of the

error with respect to weight and bias. Further, the forward pass,

loss computation, and back propagation steps are repeated for a

fixed number of iterations or until the loss function converges to

a minimum.

3.3 Model-agnostic explainable AI
methods

3.3.1 SHAP
SHAP (SHapley Additive exPlanations) is a popular model-

agnostic technique for explaining the output of any machine

learning model (Mangalathu et al., 2020). It uses Shapley values

from cooperative game theory that quantify the contribution

of each player to a coalition. Specifically, it attributes the

importance of each feature to the final prediction by calculating the

contribution of each feature to the difference between the predicted

value and a baseline reference value, assigning credit or blame to

each feature based on how much it shifts the prediction away from

the baseline.

In the context of feature attribution in machine learning, the

Shapley value can be used to allocate the contribution of each input

feature to the prediction of the model. In other words, the SHAP

value of a feature represents the contribution of that feature to the

difference between the actual output and the expected output of the

model. Formally, the SHAP value of a feature for a specific instance

x can be defined as shown in Equation (10).

φi(x) =
1

K

∑

S⊆N{i}

|S|!(K − |S| − 1)!

K!

(

f (xS ∪ {i})− f (xS)
)

(10)

where, φi(x) represents the SHAP value of feature i for instance

x. Note that K and N are the total number of input features and the

set of all input features, respectively. S corresponds to the subset of

N that does not contain feature i. The model prediction function is

termed as f . Further, xS is the instance with the features in S set to

their expected values and xS∪{i} is the instance with feature i set to

its actual value.

The SHAP values help to assign the contribution of each

feature toward the model prediction with the help of summary

plots, wherein the absolute SHAP scores rank the features by their

importance. In addition to the global prediction, SHAP values

also provide a local explanation for a given instance. It shows the

influence of features contributes to the prediction and can be used

to explain why a particular prediction was made. The SHAP-based

explanations can help in diagnosing issues with themodel, assessing

the fairness of the model and comparing the feature importance of

different models.

3.3.2 LIME
LIME (Local Interpretable Model-Agnostic Explanations) is

yet another post-hoc explanation technique for explaining ML

models (Mishra et al., 2017). LIME justifications can increase user

confidence in an AI system. The goal of LIME is to provide

explanations that are both locally faithful to the model and

interpretable to humans.

LIME generates a simpler, interpretable model called the “local

surrogate model” around the prediction that it wants to explain.

This local surrogate model is trained on a set of perturbed instances

around x and is used to generate explanations by examining the

feature importance values of the simpler model. In other words,

LIME approximates the model locally using an interpretable model

such as linear regression or decision tree and generates explanations

by perturbing the input instance and observing the effect on

the output of the model. The mathematical formulation of local

surrogate models with interpretability constraint is expressed as in

Equation (11).

explanation(x) = argmin
g∈G

L(f , g,πx)+ �(g) (11)

To explain a model’s prediction for a particular instance x,

LIME generates an explanation model represented by g, that

minimizes a loss function L. This loss function evaluates how

accurately the explanation model g approximates the prediction

of the original model f . Note that G refers to the family of

possible explanations (e.g., all possible linear regression models.)

and proximity measure πx corresponds to the vastness of the

neighborhood around instance x that is considered for explanation.

The regularization term �(g) corresponding to the model

complexity is kept low to prefer fewer features.

LIME can be used to visualize the feature importance values

in various ways, e.g., bar chart, to help users understand how

different features contribute to the prediction. The LIME-based

explanation can help users understand the reasoning behind the

model’s predictions and can be useful for debugging and improving

the model.

3.4 Implementation details

The training and test data are divided in a 70–30% ratio, using

the sci-kit library6. Further, the grid-search technique (Syarif et al.,

2016) is used to find the optimal hyperparameters of the ML model

which results in the most accurate predictions. The training data set

is applied to the XGboost classification machine learning model,

Decision tree classification model, and Neural Network Classifier

models. XGboost employs binary cross-entropy optimization by

default for binary classification and has a verbosity of 1.

Regarding the Artificial Neural Network classifier, the hidden

layer sizes were set to 5 and the activation function was

set to “Logistic.” Out of two different optimization functions

SGD (Breuel, 2015) and Adam (Salem et al., 2022), the Neural

Network classifier outperformed using Adam, hence it was set as

the default model optimizer. To improve accuracy, more filtering

6 https://scikit-learn.org/
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TABLE 2 Performance analysis of AI models for COVID-19 severity prediction.

S.No. ML model Accuracy Accuracy after
resampling

F1-score Precision Recall AUC score

1. XGBoost classifier 83.583 86.895 0.859 0.877 0.842 0.845

2. Decision tree (DT) classifier 81.817 83.234 0.8360 0.839 0.827 0.829

3. Artificial neural network (ANN) classifier 79.396 81.159 0.7918 0.8015 0.7823 0.805

of the basic data was also done and a few more features were

eliminated. Eventually, there were 3,00,000 rows of “0”s and 75,000

rows of “1”s in the dataset. The binary class values in the dataset

were made nearly equal by using the ADASYN oversampling

technique (Rupapara et al., 2022).

3.5 Evaluation protocols

The model’s performance is assessed using Accuracy, Precision,

Recall, F1-score, and AUC-score metrics, obtained during training

and testing. The aforementioned evaluation metrics are explained

in detail below:

• Accuracy: Accuracy assesses how well a model performs in

categorizing or predicting outcomes. It is defined as the

proportion of the model’s right predictions to all of its other

forecasts. Formally,

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(12)

where TP is the number of “true positives” which are

the instances where the model predicts the COVID-19 cases

as severe when the true labels are actually severe; TN is the

number of “true negatives” which are the instances where

the model predicts the COVID-19 cases as non-severe when

the true label is actually non-severe; FP is the number of

“false positives” which are the instances where the model

predicts the COVID-19 cases severe when the true labels

are actually non-severe, and FN is the number of “false

negatives,” which are instances where the model predicts

the COVID-19 cases as non-severe when the true labels are

actually severe.

In addition to the accuracy metric, we also evaluate

“accuracy after resampling” in our study. This helps to

evaluate the performance of a machine learning model on a

dataset that has been altered by methods like oversampling

or undersampling to resolve unbalanced class distributions. It

gauges the percentage of cases in the resampled dataset that are

correctly categorized.

• Precision: Precision calculates what percentage of the model’s

positive predictions are accurate, i.e., what proportion of

all positive detections are severe cases. Mathematically, it is

represented as:

Precision =
TP

(TP + FP)
(13)

• Recall: Recall measures the proportion of COVID-19 cases

that are predicted to be positive among all instances that are

actually positive. The recall is defined as:

Recall =
TP

(TP + FN)
(14)

This metric is referred to by other names such as True

Positive Rate (TPR), Sensitivity, or Hit Rate.

• F1-score: It is a weighted average of the model’s precision and

recall, and it provides a single score that summarizes both of

these metrics. The F1 score can be calculated as follows:

F1 = 2 ∗
(Precision ∗ Recall)

(Precision+ Recall)
(15)

• AUC-score:AUC (Area Under the Curve) is a commonly used

metric to evaluate the performance of binary classification

models. The AUC score represents the area under the Receiver

Operating Characteristic (ROC) curve, which plots the True

Positive Rate (TPR) against the False Positive Rate (FPR)

at different classification thresholds. A higher AUC score

indicates better performance of the classification model.

4 Experiments

We conduct two sets of experiments leveraging different AI

models and XAI tools as mentioned in Section 3. First, the

performance of AI models and their interpretations via the SHAP

algorithm are instigated in Case study #1: SHAP. Second, the

same AI model’s interpretation is analyzed using the LIME XAI

interpretation model in Case study #2: LIME. Both of the case

studies are detailed in Sections 4.1 and 4.2, respectively.

4.1 Case study #1: SHAP

In this experimental analysis, three different ML models

XGBoost (XGBoost), Decision tree (DT), and Artificial Neural

network (ANN) are employed. After training the model, the model

results along with the dataset are fed to the explainable SHAP

function. The goal of SHAP is to explain the machine learning

model’s prediction by calculating the contribution of each feature

to the prediction (Białek et al., 2022). Shapley values consider all

possible predictions for an instance using all possible combinations

of inputs. Because of this exhaustive approach, SHAP can guarantee

properties like consistency and local accuracy. Due to the high time

and resources usually taken for this model-agnostic method, SHAP

values are often computed on a small subset of the data.
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Based on the ML models, the method to compute SHAP values

varies. For instance, exact SHAP values can be computed for tree

models whereas only approximations are possible in other ML

models using a linear regression mechanism. The SHAP function

yields Shapley values which can be further used to generate various

SHAP-based explainable plots. Some of the popular explainability

plots are the SHAP summary plot, global bar plot, local bar plot,

SHAP force plot, and waterfall plot. Direct comparison of SHAP

values between models is not feasible due to scaling variations.

However, it is possible to compare how various models weigh input

features, by examining the shapes of different plots. The experiment

results and explanatory analysis will be discussed in the Section 5.1.

4.2 Case study #2: LIME

Analogous to the study proposed using the SHAP algorithm

in Case study #1, the results of ML models are analyzed and

interpreted via another XAI tool known as Local Interpretable

Model-agnostic Explanations (LIME) here. The same three ML

models (XGboost, DT, ANN) are leveraged to evaluate the model

performance. After training the model, the model results along

with the dataset are fed to the LIME function. LIME builds sparse

linear models around each prediction to explain how the black

box model works in that local vicinity (Lundberg and Lee, 2017).

LIME is actually a subset of SHAP but lacks the properties of

consistency and accuracy. The LIME function yields an object

which contains the values as in SHAP. LIME considers only local

data for the graph yield. LIME is considerably faster compared

to SHAP since it uses a simpler approach that generates local

explanations by fitting an interpretable model to the data points in

the vicinity of the input being explained. On the contrary, SHAP

values involve computing a weighted average of feature attributions

across all possible combinations of input features, which can be

computationally expensive and time-consuming.

5 Experimental results

5.1 Analysis of ML models

The reliability of an interpretable AI result depends not only

on the XAI tool but also on the right usage of the ML model

used. To this end, we construct three different ML models as

mentioned in Section 4, i.e., XGBoost (XGBoost), Decision tree

(DT), and Artificial Neural network (ANN). We evaluated the

model performances for the XGboost, Decision tree, and Neural

Network models. The overall analysis of various ML model

performances is shown in Table 2. Specifically, the performance

of the three ML models is evaluated using accuracy, F1-score,

precision, recall, and AUCmetrics (refer Section 3.5).

From Table 2, it can be observed that XGBoost outperforms

the other models in terms of all evaluation protocols because of

its ability to handle missing values, built-in regularization, parallel

processing, ensemble learning, and gradient boosting. It surpasses

other models with accuracy, and accuracy after resampling, F1

score, precision, recall, AUC score values of 83.583, 86.895,

0.859, 0.877, 0.842, and 0.84, respectively. The performance of

TABLE 3 Performance analysis of ANNmodels for di�erent

hyperparameters.

S.No. No. of
layers

Optimizer epoch Accuracy (%)

1. 3 SDG 50 76.05

2. 4 SDG 50 76.2

3. 4 Adam 200 77.34

4. 5 SDG 50 77.9

5. 5 SDG 200 78.2

5. 5 Adam 50 79.18

6. 5 Adam 200 79.396

7. 6 SDG 50 78.89

8. 6 Adam 200 79.34

9. 10 86.895 200 78.9

The best model is shown in bold letters.

the decision tree model is found to be less than the XGBoost

model because it does not employ an ensemble of decision trees,

gradient boosting, and regularization. The performance of the

Neural Network (ANN) model was also found to fall behind the

other two models which may be ascribable to the lack of large data

to achieve high accuracy, which would make it more difficult to

train and optimize. As mentioned in Section 3.4, we tried with

various hyperparameters such as different optimizers (SDG and

Adam), changes in learning rates, and different numbers of epochs

for ANN. Refer to Table 3 for the ANN result analysis for varying

hyperparameters. The best model among the trials, i.e., a five-

layered fully connected neural network with Logistic activation

function and Adam optimizer with 200 epochs is chosen for our

XAI analysis.

5.2 Case study result#1: SHAP

As discussed in Section 4.1, SHAP-based result analysis is

carried out in this section. SHAP is a model-agnostic technique that

provides individual feature importance. It ensures consistency and

fairness in the attributions and can provide both global and local

explanations of the model’s behavior on the severity-prediction

task. In particular, the interpretations are drawn out using various

explainability plots such as SHAP global bar plot, local bar plot,

beeswarm plot, force plot, and waterfall plot. We analyse and

compare the results of the SHAP algorithm for three different

models, i.e., XGBoost, Decision tree, and Neural network models,

and discuss its interpretations.

5.2.1 Global bar plot
A SHAP-based global bar plot is a visualization technique that

shows the impact of each feature on a model’s output using SHAP

(SHapley Additive exPlanations) values. The bar plot displays the

average absolute SHAP value for each feature, indicating its relative

importance in the model. This plot explains the contributions of

each feature with respect to the whole data therefore this plot

is called the SHAP Global bar plot. The bar length implies the
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FIGURE 2

SHAP global bar plots for various ML models. (A) XGboost, (B) decision tree, (C) artificial neural network.

FIGURE 3

SHAP Local bar plots for various ML models. (A) XGboost, (B) decision tree, (C) artificial neural network.

average impact of the individual features on themodels’ output. The

features are listed top-down with their decreasing importance.

According to the interpretations depicted in Figure 2, some

features such as “Dry-cough,” “Tiredness,” “Fever,” “Nasal-

congestion,” and “Diarrhea,” are found to be the common

important features (among the top five bar) as per XGBoost,

Decision tree, and ANNmodels. On the other hand, the least mean

SHAP value was found to be “None symptoms” [sic] for XGboost

and “None Experiencing” for the decision tree and ANN models,

respectively.

5.2.2 Local bar plot
A SHAP-based local bar plot is a technique for interpreting the

feature importance of an individual prediction made by a machine

learning model. It uses SHAP values to quantify the contribution of

each feature to the prediction of a particular patient. See Figure 3

for the representation of our SHAP local plots. Such a plot is

helpful in comprehending the contribution of each feature to the

final prediction for a single instance or observation in the dataset.

The local bar plot visualizes the SHAP values for each feature in a

horizontal bar chart. The length of each bar indicates themagnitude

and direction of the feature’s impact on the prediction. Positive

and negative values on the x-axis show whether the feature is

contributing to a higher or lower prediction, respectively. The color

of each bar represents the value of the feature for the instance being

explained, where red indicates high values and blue indicates low

values.

According to interpretations from the Figure 4 for a particular

patient, “Difficulty in Breathing” has the highest positive mean

SHAP value, and “Contact-No” has the highest negative mean

SHAP value for the model XGBoost. The decision tree model’s

local plot shows “Gender-Transgender” has the highest positive

mean SHAP value for that particular patient and “Tiredness” has

the highest negative SHAP value. For the ANN model, “Difficulty-

in-Breathing” has the highest positive SHAP value, and “Runny-

Nose” has the highest negative SHAP value. Additionally, the

importance of “Dry-Cough” is found to be predominant in all three

models (XGBoost, Decision Tree, ANN model), interpreting the

significance of that feature in the considered patient.

5.2.3 Beeswarm plot
Referring to Figure 4, SHAP Beeswarm plots are represented

to identify patterns and relationships between the features and the

model’s predictions. A beeswarm plot is a type of scatter plot that
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FIGURE 4

SHAP Beeswarm plots for various ML models. (A) XGboost, (B) decision tree, (C) artificial neural network.

is used to visualize the distribution of a single continuous variable

or multiple continuous variables. The SHAP values of each feature

for each instance in the dataset are represented as a vertical line or

“bee.” Each dot or bee on the plot represents the SHAP value for

a single row and a data feature. The plot is sorted by the feature’s

absolute SHAP value, with the most significant features at the top.

The density of the bees or points in a particular region represents

the concentration of data points in that region. Beeswarm plot helps

to see the spread of SHAP values for each feature to understand how

much variability there is in the feature’s impact across the dataset,

and whether there are any outliers or unusual cases.

The Figure 4 show that the points/bees for the top feature

“Dry-cough,” “Runny-Nose,” “Tiredness,” “Nasal congestion,” and

“Difficulty-in-Breathing” are more accumulated near the median

line for XGBoost, Decision tree, and ANNmodel. On the contrary,

the least accumulated points, i.e., the least denser feature are found

to be “None-Symptom” and “None-Experiencing” for XGBoost,

Decision tree, and ANNmodel.

5.2.4 Force plot
Another very important SHAP-based XAI tool is the Force plot.

It also shows how each attribute contributes to a machine-learning

model’s output for a selected patient. However, in this plot, each

feature’s significance is measured using SHAP values, along with

the direction and size of its influence on the prediction. Refer to

Figure 5 for our force plot results. From Figure 5, it is observed

that “Difficulty-in-Breathing,” “Sore-Throat,” and “Runny-Nose”

impart high positive contributions toward COVID severity, which

is in alignment with the common clinical sense too. Similarly,

for that particular patient, “Nasal-Congestion,” “Contact-No,” and

“Contact-don’t-Know” showed negative contribution.

Referring to Figure 5, the base value of f(x) represents the

predicted outcome of the model when all the input variables are

set to their reference or baseline values. It is represented by a

vertical line at the center of the plot and is typically the mean or

median value of the input variables from the training data. The

base values of the plots are at 2.05, 0.22, and 0.52 for XGBoost,

decision tree, and ANN model, respectively. In the decision tree

and XGBoost models, the top positive contributing features are

“Runny-Nose” and “Sore-Throat” whereas for the ANN model,

the top positive contributing features are “Nasal-Congestion” and

“Difficulty-in-Breathing.”

5.2.5 Waterfall plot
A SHAP waterfall plot visualizes the individual and collective

contributions of features to a model’s prediction using Shapley

values. Such a plot helps to understand how the predicted value

for a particular instance deviates from the model’s base value, and

how each feature contributes to this deviation. See Figure 6 for our

SHAP waterfall plot.

Waterfall charts are designed to present explanations for

specific forecasts, hence they demand a single row of an explanation

object as input. The bottom of a waterfall plot starts as the expected

value of the model output, and then each row displays how the

positive (red) or negative (blue) contribution of each feature shifts

the value from the expected model output across the background

dataset to the model output for this prediction. The units on the

x-axis are log-odds units, so negative values imply probabilities of

<0.5.

The baseline prediction is the initial predicted value before

taking into account any of the feature contributions. It is

represented by the central zero line on the x-axis. We could

infer that “Difficulty-in-breathing,” “Gender-Transgender,” and

“Difficulty-in-breathing” are the highest positively contributing

features for themodels XGBoost, decision tree, and Neural network

respectively for the selected patient.

5.3 Case study result #2: LIME

In this section, the result analysis of the Local Interpretable

Model-agnostic Explanation (LIME) XAI tool, as described in

Section 4.2, is carried out. LIME is a local explanation technique,

i.e., it focuses on explaining the prediction of a single instance

at a time. Since LIME assumes that the model is locally linear, it

generates a local model to approximate the behavior of the black

box model around the instance of interest, and then uses the local

model to generate explanations for that instance. Because of this,

it is not possible to generate global plots as in SHAP, to provide

a global understanding of the model’s behavior across the dataset.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1272506
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Nambiar et al. 10.3389/frai.2023.1272506

FIGURE 5

SHAP force plots for XGboost (A), decision tree (B), and artificial neural network (C) model, respectively.

FIGURE 6

SHAP waterfall plots for various ML models. (A) XGboost, (B) decision tree, (C) artificial neural network.

Instead, LIME provides local explanations, giving some insight into

how the model behaves around a specific instance. In particular, the

results are interpreted via LIME explainability tools such as local

bar plots and violin plots.

5.3.1 Local bar plot
LIME is model-agnostic, making it flexible and powerful

for local model interpretation, providing insights into

how the model is behaving for a specific instance. LIME

local bar plot proves to be more efficient than the SHAP

algorithm when it comes to Local interpretations. A LIME-

based local bar plot shows the contribution of each feature

to the prediction for a specific instance or sample, with

bars colored according to their sign. The most important

features are shown at the top and the least important at the

bottom.

Refer to Figure 7 for the LIME local plot visualization, for a

specific patient observation in our COVID dataset. It is evident

from the figure that the features “Sore-throat” and “Pains” have the

highest positive contribution to the selected patient, according to

the XGBoost and Decision tree plots. The ANN-based LIME plot
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FIGURE 7

LIME local bar plots for XGboost (A), decision tree (B), artificial neural network (C) model, respectively.

deviates a bit in interpretation, highlighting “Gender-transgender”

as the high-impact feature.

5.3.2 Violin plot
Yet another LIME-based explainability plot is the violin plot.

The violin plot represents the distribution of feature importance
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FIGURE 8

LIME Violin plots for various ML models. (A) XGboost, (B) decision tree, (C) artificial neural network.

TABLE 4 Summary chart showing the findings from the XAI tools.

Visualization plot XAI tool Global/local Result and key symptoms Medical significance

Global bar plot SHAP Global “Dry-cough,” “Tiredness,” “Fever,”
“Nasal-congestion,” and “Diarrhea”

Overall model behavior; Feature importance
ranking;Magnitude of contribution;Verification of
domain knowledge

Local bar plot SHAP Local For a selected patient, “Difficulty in
Breathing” is found

Explanation of individual predictions; Positive and
negative contributions; Feature impact magnitude.

Beeswarm plot SHAP Global “Dry-cough,” “Runny-Nose,”
“Tiredness,” “Nasal congestion,” and
“Difficulty-in-Breathing”

Interaction effects among features;Outlier
detection;Distribution of contributions.

Force plot SHAP Local Positively contributing features for a
selected patient are “Runny-Nose” and
“Sore Throat”

Granular explanation of an instance-specific
breakdown of feature contributions; Net impact
calculation indicating the total impact of all features on
the prediction.

Waterfall plot SHAP Local For the selected patient, “Difficulty in
Breathing” is observed

Visualizing Cumulative Impact of how individual
components contribute; Identifying Key Drivers;
Forecasting and planning.

Local bar plot LIME Local “Sore-throat,” “Difficulty-in-Breathing,”
and “Pains” as the highest positive
contribution to the selected patient

Explain individual predictions; Feature impact
magnitude (both positive and negative); Model
consistency; Verification of domain knowledge.

Violin plot LIME Local Overall feature importance spread per
patient

Depicting the distribution of feature importance values
generated by LIME; density of the distribution indicates
frequent importance values.

values generated by LIME for a given instance. Each feature is

represented by a vertical line or “violin” that shows the distribution

of its important values across multiple samples generated by LIME.

The width of the violin indicates the density of the distribution,

with wider parts indicating more frequent importance values.

The LIME Violin plots for the COVID Severity class for a

sample instance in our COVID dataset are depicted in Figure 8.

Note that it represents the cumulative LIME value analysis for all

features, per person. The middle line represents the median, the

top line represents the top range, and the bottom line represents

the bottom range of the LIME values. In the XGBoost model, the

spread of feature weights for the COVID severity class are high

in the regions above below, and around the median line. In the

decision tree model, the spread of feature weights is high in the

median region. In the ANN model, the spread of feature weights

are high in the below and median regions.

In order to summarize all the aforesaid result analysis based

on SHAP and LIME, all the key findings from those XAI tools are

consolidated as a table in Table 4.

6 State-of-the-art comparison

In this section, a comparative analysis of our work against

state-of-the-art works is carried out. The holistic summary report

of the analysis is depicted in Table 5. From the chart, it can be

observed that Barda et al. (2020) presented a SHAP-based mortality

prediction model on Israel’s COVID-19 patients. In that work, a

decision-tree-based gradient boosting model was employed and

SHAP scores were used to comprehend the contribution and

effect of the selected features such as age, Chronic respiratory

disease, hospitalization duration, Ambulance services count etc.

Yet another similar work by Snider et al. (2021) explored the use

of the XGBoost AI model and SHAP explainability tool to study

COVID-19 instances of patient fatalities in Ontario.

Other than numerical data-based mortality prediction, image-

based COVID-19 diagnosis was also addressed in some of the

literature, such as in Ong et al. (2021), Kumar et al. (2022),

and Zou et al. (2022), using chest X-ray images. Using SHAP, LIME,

and GradCAM helps clinicians in the disposition and severity
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TABLE 5 State-of-the-art comparison of XAI models on various COVID-19 datasets.

S.No. References Data Region Model Result

1.

Barda et al. (2020)

Clalit Health Services’ (CHS)
COVID-19 patient cohort

Israel COVID-19 mortality risk
prediction model

AUROC 0.820; SHAP analysis
shows the impact of age,
hospital duration, and other
attributes such as Chronic
respiratory diseases, diabetes
etc.

2.

Snider et al. (2021)

Ontario Health Data Platform Ontario, Canada mortality predictions XGBoost AUC 0.956;
SHAP-based analysis shows
the highest importance of
variables for mortality, i.e.,
age, date of test, sex, and
presence/absence of chronic
dementia.

3.

Ong et al. (2021)

X-Ray images with different
conditions, taken from the
COVIDx dataset

Multinational cohort diagnosis of COVID-19 infection SHAP & LIME on X-ray
images indicating the
significant lung region
significant for COVID
prediction

4.

Zou et al. (2022)

AI predictive model known as the
Community-Acquired Pneumonia
and COVID-19 AI Predictive
Engine (CAPE©)

Singapore AI predictive model for
Pneumonia and COVID-19

AUC of 0.803; Ensemble XAI,
which is based on the SHAP
and Grad-CAM++ methods,
provides a visual explanation
for a deep learning prognostic
model that predicts the
mortality risk.

5.

Kumar et al. (2022)

COVIDx dataset Multinational Convolutional neural network
based COVID-19 prediction

Grad-CAM applied on top of
SARS-Net CNN and GCN
models for visual
interpretations

6.

Rahimi et al. (2023)

Patients with positive polymerase
chain reaction test for COVID-19

Quebec, Canada Deep forest/XGBoost ML models
for severity prediction

Explainable approaches such
as LIME, SHAP, PIMP, and
anchor; Correlation with
diabetes and dementia is
found out

7.

Gabbay et al. (2021)

Open dataset provided by the
Mexican Federal Health Secretary
through the General Director of
Epidemiology

Mexico MLP and RF decision trees for
prediction

LIME-based explainable
model; Individual-specific
local explanations.

8. Ours Custom-made dataset collected
from publicly available COVID-19
Indian datasets from various
resources

India COVID-19 Severity Prediction and
Symptom analysis

AUC 0.869 for XGBoost;
LIME, SHAP based extensive
global and local analysis on
Indian dataset).

assessment of COVID/pneumonia cases visually by showing the

area of interest, thereby increasing the transparency and the

interpretability of the model. The key findings of those papers are

also summarized in Table 5.

In contrast to the aforesaid works, i.e., mortality

prediction/COVID diagnosis, we present COVID-19 severity

Prediction and symptom analysis using XAI models leveraging

numerical data, which is not much explored in the literature. One

study (Rahimi et al., 2023) presented the use of explainablemachine

learning models to predict COVID-19 severity among older adults

in the province of Quebec, Canada. In that work, the correlation

between different variables such as diabetes and dementia, and

the severity of COVID-19 in the older adult population was

discovered. Another work from Gabbay et al. (2021), combined

the machine learning models with a LIME-based XAI model to

provide local explanations on patients’ severity prediction, which

used the dataset provided by the Mexican Federal Health Secretary.

In contrast to the aforementioned works, our work not only

presents a more extensive analysis of both global (SHAP-based

analysis on a holistic dataset) and local models (individual result

analysis) for severity prediction on the cross-section in the Indian

population but also facilitates “symptom analysis.” To the best of

our knowledge, “XAI-for-COVID symptom analysis” works are

not encountered in the literature.

Furthermore, no similar works using XAI for COVID analysis

are held in Indian datasets. The only available work using XAI

in the Indian database is by Pandianchery et al. (2022). However,

it addresses the task of predicting COVID-19 cases in different

provinces of India, using a Recurrent Neural Network (RNN) based

model. Hence, our work marks the first work leveraging XAI tools

for COVID-19 data analysis for severity prediction and symptom

analysis in the Indian patients dataset.
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7 Discussion

7.1 Significance

AI-powered medical analysis falls in one of the ascendent

fields of scientific research that requires immediate scientific

attention. Explainable AI tools in healthcare are crucial for ensuring

transparency, trustworthiness, and accountability in the decision-

making process of AI systems, ultimately leading to better patient

care.

Our work on using “Explainable Artificial Intelligence Tools

for COVID-19 Severity Prediction and Symptom analysis” helps to

understand the impact of attributes and symptoms that cause severe

COVID-19 and provide clinicians with an intuitive understanding

and interpretability of the impact of risk factors in the model.

We hypothesize that our model can proactively analyse and

predict future similar COVID-like scenarios in light of the key

findings of this research work. Integrating such interpretable AI

models with clinical observations, we contemplate that medical

professionals can make timely decisions and also prevent/notify

high-risk members based on the symptoms. Furthermore, the

methodology and results obtained in our COVID-19 study may be

extended to other medical conditions as well, e.g., other respiratory

diseases, stroke, etc. Such an explainable computer-aided tool will

be highly beneficial for medical practitioners in validating their

decisions and expanding the knowledge base with the help of AI.

Such an AI and human-in-the-loop model adaptively amalgamates

human knowledge as well as AI tools thus bridging the existing

semantic gap between man and machine and can instill new

interests in the multi-disciplinary research community of AI and

medicine (Bakken, 2023).

7.2 Limitations of the work

First, our study is based on the custom-made dataset collected

from various available COVID-19 data repositories in India, as

referred to in Section 2. However, it lacked external validation

by an independent cohort, which could provide further evidence

to confirm the superiority of the proposed prediction model.

We believe that the current study could be further expanded by

including related data from different regions and/or countries

for external validation. Furthermore, more detailed research

also by incorporating relevant clinical co-morbidity risk factors,

environmental factors, lifestyles, and other factors would also help

in improving future predictions and examining the impact of

confounding factors.

The interpretation analysis of model-agnostic XAI tools SHAP

and LIME clearly suggests that certain models can be good at one

aspect and still may be suboptimal in others. It can be observed

that a better model in terms of AUC may not imply the most

accurate model in terms of medical theory and vice versa. For

instance, although the ANN model has the worst AUC among

the ML models (refer Table 3), it was found from the SHAP

individual force plot that only the ANN model considered “Nasal

Congestion” while making a prediction, even when the others were

not. Similarly while analysing via SHAP local bar plot/waterfall

plot, some attribute, i.e., “Gender_Transgender” was assigned the

highest weightage by the Decision tree model, in contrast to the

XGBoost and ANN models that assigned “Difficulty-in-breathing”

as the major attribute. Nonetheless, from a medical perspective,

the latter observation on breathing makes a more meaningful

observation than the former gender cue, considering the patient’s

COVID severity condition. The reason behind such deviations may

be ascribable to the combination of the number of data samples

involved in the study, selection of feature values, preprocessing

techniques, and hyperparameter tuning. Although examining these

aspects can yield valuable insights, it falls beyond the scope of this

project.

Similarly, although SHAP and LIME facilitate model

interpretation, the choice between them depends on the specific use

case, the nature of the model, and the desired level of explanation

(SHAP provides both global and local explanations whereas, LIME

focuses on local explanations.). SHAP leverages Shapley values to

find the contribution for each feature across different predictions,

whereas LIME leverages a surrogate model (e.g., a linear model)

to approximate the model’s behavior locally. Further, SHAP is

more stable and consistent and can be computationally intensive,

whereas LIME is more sensitive to the choice of perturbations

AND computationally lighter. Due to these differences, we noticed

that different XAI models could provide different interpretations as

well. In this regard, we believe that some ensemble/hybrid models

or using multiple techniques in tandem also could be explored

for a more comprehensive understanding of a machine learning

model’s behavior.

7.3 Future directions

Referring to future works, we believe that there is a lot of

room to be explored within the XAI paradigm. In this work, we

utilized only the numerical database for COVID symptom analysis

and severity prediction. However, we contemplate that utilizing

other modalities could augment the overall performance of the

proposed model. For instance, additional electronic health records

and medical imaging data (chest imaging X-ray/CT scan, etc.) can

provide a comprehensive picture of the patient’s health status as

well as integrate with clinical decision support systems (CDSS).

We foresee that such additional data sources and active learning

by collaborating with healthcare professionals can aid significantly

in improving the accuracy and interoperability of the models.

Further studies are needed to incorporate these models into a

decision support system (e.g., web/mobile application) that aids

in the handling of diseases like COVID-19 for primary healthcare

providers andmedical staff worldwide. This research will also assess

their practicality and effectiveness within this context.

As pointed out in the previous section, it is found that there

exists a semantic gap between the practical use of AI in medicine

and clinical decisions. We foresee that incorporating explainable

computer-aided tools in medicine can complement the medical

practitioners in validating their decisions in a better interpretable

way by facilitating “AI-&-human-in-the-loop” thus fusing the best

of both worlds (Bakken, 2023). More research in this direction is

expected in the future.
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For the performance analysis, only the performance metrics

and visualizations deemed most appropriate are found to be

utilized. In addition, the comparisons between different XAI

models have also not been much explored. To this end, the

reliability of the XAI scores can be investigated at subject

level by assessing the intra-consistency of the XAI scores

and across subjects by analyzing the inter-similarity of the

scores as done in Lombardi et al. (2021). This could be a

relevant area for further research analysis and future works.

In addition, we contemplate incorporating more diverse and

representative datasets to improve accuracy and generalizability,

developing sophisticated feature selection techniques to

improve interpretability, and integrating multiple machine

learning models to enhance the system’s overall accuracy and

robustness.

8 Conclusions

In this work, we proposed the application of a model-

agnostic explainable artificial intelligence (XAI) framework to

provide accurate explanations of machine learning algorithms and

feature importance for medical output predictions. We adopted a

cohort of COVID-19-affected patients within India as our dataset

for the severity prediction and symptom analysis task. Three

different machine learning models, i.e., XGBoost, decision tree, and

Artificial Neural network models were applied to the data and the

performances were analyzed after pre-processing. The XGBoost

model is found to be performing the best because of its ability to

handle missing values, built-in regularization, parallel processing,

ensemble learning, and gradient boosting.

Further, to explore the feature’s importance and its contribution

to the predicted output, we leveraged two major XAI tools in this

work. In particular, SHapley Additive exPlanations values (SHAP)

and Local Interpretable Model-Agnostic Explanations (LIME) are

utilized extensively to comprehend the importance of features

and to provide better insights into model decision-making. The

SHAP and LIME values were calculated for each of the models to

interpret themodel’s outcomes. Extensive analysis in terms of visual

representations, i.e., global bar plot, local bar plots, beeswarm plot,

force plot, waterfall plot, and violin plot are conducted. The SHAP

model gives local as well as global level plots for interpretations

whereas LIME, as the name suggests, provides explanation at the

local level only.

According to the SHAP values, the features “Dry-Cough,”

“Tiredness,” “Fever,” “Nasal Congestion,” “Diarrhea,” and “Difficulty

in Breathing” were found to be the most important symptoms in

COVID-19 Indian patients, by all three models. This is found to

be in consensus with the medical reports in India. Further, for

different patient instances, local interpretations were also drawn

out using local analysis tools of SHAP and LIME. Despite LIME’s

superior local explanation, SHAP interpretation is preferred due

to its more solid theoretical foundation, and capacity for both

global and local interpretability, consistency, and robustness. In the

future, we envisage comparing the reliability of the XAI scores also

at a subject level by assessing the intra-consistency of the XAI scores

and across subjects by analyzing the inter-similarity of the scores.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Ethics statement

Written informed consent was not obtained from the

individual(s) for the publication of any potentially identifiable

images or data included in this article because Our case study

does not involve any identifiable data. All the data we used

are anonymized and contain binary features and targets showing

the attributes and the corresponding presence of COVID. No

individual data/identifiable information is involved in this work,

hence written informed consent is not obtained.

Author contributions

AN: Conceptualization, Formal analysis, Investigation,

Methodology, Project administration, Supervision, Validation,

Visualization, Writing—original draft, Writing—review & editing.

HS: Data curation, Investigation, Software, Writing—original

draft, Formal analysis. SS: Data curation, Investigation, Software,

Writing—original draft, Formal analysis.

Funding

The author(s) declare that no financial support was received for

the research, authorship, and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2023.

1272506/full#supplementary-material

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2023.1272506
https://www.frontiersin.org/articles/10.3389/frai.2023.1272506/full#supplementary-material
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Nambiar et al. 10.3389/frai.2023.1272506

References

Adeniyi, M. O., Ekum, M. I., Iluno, C., and Oke, S. I. (2020). Dynamic
model of COVID-19 disease with exploratory data analysis. Sci. Afr. 9:e00477.
doi: 10.1016/j.sciaf.2020.e00477

Ayoub, J., Yang, X. J., and Zhou, F. (2021). Combat COVID-19 infodemic using
explainable natural language processing models. Inform. Process. Manage. 58:102569.
doi: 10.1016/j.ipm.2021.102569

Bakken, S. (2023). AI in health: keeping the human in the loop. J. Am. Med. Inform.
Assoc. 30, 1225–1226. doi: 10.1093/jamia/ocad091

Barda, N., Riesel, D., Akriv, A., Levy, J., Finkel, U., Yona, G., et al. (2020). Developing
a COVID-19 mortality risk prediction model when individual-level data are not
available. Nat. Commun. 11:4439. doi: 10.1038/s41467-020-18297-9

Białek, J., Bujalski, W., Wojdan, K., Guzek, M., and Kurek, T. (2022). Dataset
level explanation of heat demand forecasting ANN with SHAP. Energy 261:125075.
doi: 10.1016/j.energy.2022.125075

Breuel, T. M. (2015). On the convergence of sgd training of neural networks. arXiv
preprint arXiv:1508.02790. doi: 10.48550/arXiv.1508.02790

Casalicchio, G., Molnar, C., and Bischl, B. (2019). “Visualizing the feature
importance for black box models,” in Machine Learning and Knowledge Discovery
in Databases: European Conference, ECML PKDD 2018 (Dublin: Springer), 655–670.
doi: 10.1007/978-3-030-10925-7_40

Chen, M., Li, M., Hao, Y., Liu, Z., Hu, L., and Wang, L. (2020). The introduction
of population migration to seiar for COVID-19 epidemic modeling with an efficient
intervention strategy. Inform. Fus. 64, 252–258. doi: 10.1016/j.inffus.2020.08.002

COVID-19 India. (2020). Available online at: https://www.mohfw.gov.in/ (accessed
April 24, 2023).

Da Cruz, H. F., Pfahringer, B., Martensen, T., Schneider, F., Meyer, A., Böttinger, E.,
et al. (2021). Using interpretability approaches to update “black-box” clinical prediction
models: an external validation study in nephrology. Artif. Intell. Med. 111:101982.
doi: 10.1016/j.artmed.2020.101982

Datameet. (2020). Datameet-Data-Repository. Available online at: https://projects.
datameet.org/covid19/

Firth, J. A., Hellewell, J., Klepac, P., Kissler, S., Kucharski, A. J., and Spurgin, L.
G. (2020). Combining fine-scale social contact data with epidemic modelling reveals
interactions between contact tracing, quarantine, testing and physical distancing for
controlling COVID-19.MedRxiv. 2020-05. doi: 10.1101/2020.05.26.20113720

Fisman, D. N., Greer, A. L., Hillmer, M., and Tuite, R. (2020). Derivation and
validation of clinical prediction rules for COVID-19 mortality in Ontario, Canada.
Open Forum Infect. Dis. 7, ofaa463. doi: 10.1093/ofid/ofaa463

Gabbay, F., Bar-Lev, S., Montano, O., and Hadad, N. (2021). A lime-based
explainable machine learning model for predicting the severity level of COVID-19
diagnosed patients. Appl. Sci. 11:10417. doi: 10.3390/app112110417

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D.
(2018). A survey of methods for explaining black box models. ACM Comput. Surveys
51, 1–42. doi: 10.1145/3236009
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