
TYPE Original Research

PUBLISHED 15 December 2023

DOI 10.3389/frai.2023.1268852

OPEN ACCESS

EDITED BY

Matt LeBlanc,

The University of Manchester, United Kingdom

REVIEWED BY

Jack Y. Araz,

Je�erson Lab (DOE), United States

Stefano Scali,

University of Exeter, United Kingdom

*CORRESPONDENCE

Nuno Filipe Castro

nuno.castro@fisica.uminho.pt

RECEIVED 28 July 2023

ACCEPTED 20 November 2023

PUBLISHED 15 December 2023

CITATION

Peixoto MC, Castro NF, Crispim Romão M,

Oliveira MGJ and Ochoa I (2023) Fitting a

collider in a quantum computer: tackling the

challenges of quantum machine learning for

big datasets. Front. Artif. Intell. 6:1268852.

doi: 10.3389/frai.2023.1268852

COPYRIGHT

© 2023 Peixoto, Castro, Crispim Romão,

Oliveira and Ochoa. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Fitting a collider in a quantum
computer: tackling the challenges
of quantum machine learning for
big datasets

Miguel Caçador Peixoto1, Nuno Filipe Castro1,2*,

Miguel Crispim Romão1,3, Maria Gabriela Jordão Oliveira1 and

Inês Ochoa4

1LIP—Laboratório de Instrumentação e Física Experimental de Partículas, Escola de Ciências,

Universidade do Minho, Braga, Portugal, 2Departamento de Física, Escola de Ciências, Universidade do

Minho, Braga, Portugal, 3Department of Physics and Astronomy, University of Southampton,

Southampton, United Kingdom, 4LIP—Laboratório de Instrumentação e Física Experimental de

Partículas, Lisbon, Portugal

Current quantum systems have significant limitations a�ecting the processing

of large datasets with high dimensionality, typical of high energy physics. In the

present paper, feature and data prototype selection techniques were studied to

tackle this challenge. A grid search was performed and quantummachine learning

models were trained and benchmarked against classical shallowmachine learning

methods, trained both in the reduced and the complete datasets. The performance

of the quantum algorithms was found to be comparable to the classical ones,

even when using large datasets. Sequential Backward Selection and Principal

Component Analysis techniques were used for feature’s selection and while the

former can produce the better quantum machine learning models in specific

cases, it is more unstable. Additionally, we show that such variability in the results

is caused by the use of discrete variables, highlighting the suitability of Principal

Component analysis transformed data for quantummachine learning applications

in the high energy physics context.

KEYWORDS

high energy physics, quantum computing, quantummachine learning, K-means, principal

component analysis, data reduction

1 Introduction

The Standard Model of Particle Physics (SM) provides a remarkable description of the

fundamental constituents of matter and their interactions, being in excellent agreement with

the collider data accumulated so far. Nonetheless, there are still important open questions,

unaddressed by the SM, such as gravity, dark matter, dark energy, or the matter-antimatter

asymmetry in the universe (Ellis, 2012), motivating a comprehensive search program for new

physics phenomena beyond the SM (BSM) at the Large Hadron Collider (LHC) at CERN.

The search for BSM phenomena at colliders poses specific challenges in data processing

and analysis, given the extremely large datasets involved and the low signal to background

ratios expected. In this context, the analysis of the collision data obtained by the LHC

experiments often relies on machine learning (ML), a field in computer science that can

harness large amounts of data to train generalizable algorithms for a variety of applications

(Guest et al., 2018; Feickert and Nachman, 2021), such as classification tasks. These

techniques have shown an outstanding ability to find correlations in high-dimensional

parameter spaces to discriminate between potential signal and background processes. They

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1268852
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1268852&domain=pdf&date_stamp=2023-12-15
mailto:nuno.castro@fisica.uminho.pt
https://doi.org/10.3389/frai.2023.1268852
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1268852/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

are known to scale with data, and usually rely on a large number of

learnable parameters to achieve their remarkable performance.

In order to train these large models, classical1 machine learning

(CML) takes advantage of hardware accelerators, such as graphics

processing units (GPUs), for efficient, parallel, and fast matrix

multiplications. On the other hand, a new class of hardware

is becoming available, with the advent of noisy intermediate-

scale quantum (NISQ) computing devices. This accelerated the

development of new quantum algorithms targeted at exploiting the

capacity and feasibility of this new technology for ML applications.

Quantum machine learning (QML) is an emerging research

field aiming to use quantum circuits to tackle ML tasks. One of the

motivations for using this new technology in high energy physics

(HEP) relates to the intrinsic properties of quantum computations,

namely representing the data in a Hilbert space where the data

can be in a superposition of states or in entangled states, which

can allow to explore additional information in data analysis and,

eventually, contribute to better classification of HEP events, namely

in the context of the search for BSM phenomena. Recently, this new

technology has been applied to various HEP problems (Guan et al.,

2021). Namely, in event reconstruction (Das et al., 2019; Shapoval

and Calafiura, 2019; Bapst et al., 2020; Tüysüz et al., 2020;Wei et al.,

2020; Zlokapa et al., 2021a; Funcke et al., 2022), classification tasks

(Mott et al., 2017; Belis et al., 2021; Blance and Spannowsky, 2021;

Terashi et al., 2021; Wu et al., 2021; Zlokapa et al., 2021b; Araz

and Spannowsky, 2022; Chen et al., 2022; Gianelle et al., 2022),

data generation (Chang et al., 2021a,b; Delgado and Hamilton,

2022; Borras et al., 2023; Rehm et al., 2023), and anomaly detection

problems (Ngairangbam et al., 2022; Alvi et al., 2023; Schuhmacher

et al., 2023; Woźniak et al., 2023).

Despite the promising potential of quantum computation,

NISQ processors have important limitations, such as the qubit

quality (i.e., the accuracy with which it is possible to execute

quantum gates), the qubit lifetime and the limited depth of

quantum circuits, since for large circuits the noise overwhelms

the signal (Li et al., 2018; Preskill, 2018). This necessarily limits

the complexity of the circuits and the size of the datasets used to

train them.

In this paper, we perform a systematic comparison of the

performance of QML and shallow CML algorithms in HEP. The

choice to focus on shallow methods rather than state-of-the-art

architectures based on deep neural networks is to provide a fair

comparison between methodologies, since neural networks are

known to require large datasets (both in terms of sample size

and dimension) to achieve good performance, something that is

not feasible with current quantum computers. By choosing CML

algorithms suited for smaller datasets, we will add to the on-going

discussion regarding potential advantages of quantum computing

by comparing QML and CML in the same footing.

The use of QML algorithms in this context is studied by

targeting a common binary classification task in HEP: classifying

a BSM signal against SM background. A benchmark BSM signal

leading to the Zt final state is considered, in events with multiple

leptons and b-tagged jets, which can be used to achieve a reasonable

1 Classical is used throughout the paper as opposed to quantum machine

learning.

signal to background ratio. Variational quantum classifiers (VQC)

are trained and optimized via a grid search. The use of reduced

data is explored, considering both the number of features and the

number of events, via different strategies: ranking of features, data

transformations aiming for a richer reduced set of features, use of

random samples, and choice of representative data samples.

2 Quantum machine learning

TheQML algorithms are implemented using a quantum circuit,

i.e., a collection of quantum gates applied to an n-qubit quantum

state, followed by a measurement (or multiple measurements)

that represent the output of the circuit. In order to implement a

learning algorithm, the quantum circuit can be parameterized with

parameters that can be learned by confronting the measurement to

a loss function.

QML is effectively an extension of CML techniques to the

Hilbert space, where instead of representing data as vectors in

a high-dimensional real space, we encode it in state vectors of

a Hilbert space. A QML algorithm, such as a quantum neural

network, can be implemented using the quantum equivalent of a

perceptron, one of the building blocks of CML. A problem arises

from the realization that the activation functions used in CML

can not be expressed using a linear operation, which is inherently

required from the quantum evolution of a state. Ideas have been

proposed to imitate an activation function in the quantum space

(Gupta and Zia, 2001; Schuld et al., 2015), but, in the current paper,

only variational quantum classifiers (Farhi and Neven, 2018; Schuld

et al., 2020) are used for binary classification.

A VQC is a parameterized quantum circuit, a circuit type

containing adjustable gates with tunable parameters. These gates

are a universal set of quantum gates and, in the current study,

rotation [RX(w), RY (w), RZ(w)] and CNOT gates are used.2

The considered VQC pipeline used has the following

components:

• Data Embedding: the numerical vector X representing the

classical information is converted to the quantum space with

the preparation of an initial quantum state, |ψX〉, which

represents a HEP event.

• Model circuit: a unitary transformation U(w), parameterized

by a set of free parameters w, is applied to the initial quantum

state |ψX〉. This produces the final state |ψ
′
X〉 = U(w)|ψX〉.

• Measurement: a measurement of an observable is performed

in one of the qubits of the state |ψ ′X〉, which will give the

prediction of the model for the task at hand. The training of

a VQC aims to find the best set of parameters w to match the

event labels to the prediction.

Throughout this work, the PennyLane package (Bergholm

et al., 2018) was used as a basis for the hybrid quantum-

classical machine learning applications. Leveraging PennyLane’s

default.qubit quantum simulator, a straightforward tool

2 Even if, in general, the phase shift gate P(w) should be included, this gate

does not change the final outcome (i.e., it does not impact probabilities), so

it can be discarded.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

for quantum circuit simulations, we trained and assessed the

performance of various QML algorithms. Subsequently, the

performance of the algorithms trained on IBM’s quantum

computers was gauged by integrating PennyLane with IBM’s

quantum computing framework, Qiskit (Anis et al., 2023).

2.1 Data embedding

Before passing the data through the VQC, the preparation

of the initial quantum state |ψX〉 is required. This is called data

embedding, and there are a number of proposals to perform

this step (LaRose and Coyle, 2020). Among the different possible

embeddings, it was chosen to test amplitude embedding against

angle embedding. The preliminary results have shown that angle

embedding leads to a better performance than the former, as

previously reported in a different context (Gianelle et al., 2022).

In this paper angle embedding was, therefore, the adopted choice.

Further studies on possible embeddings is left for future works.

For an N-dimensional vector of classical information, X =

(x1, x2, ..., xN), the state entering the VQC will be defined via a

state preparation circuit applied to the initial state of |0〉
⊗

N . The

information contained in X is embedded as angles: these are the

values used in rotation gates applied to each qubit, thus requiring

N qubits for embedding N features from the original dataset.

In the current study, the embedding is done using rotations

around the x-axis on the Bloch sphere, thus defining the quantum

state embedded with the classical information as:

|ψX〉 =

N
⊗

i=1

RX(xi) =

N
⊗

i=1

[

cos
(xi

2

)

|0〉 − i sin
(xi

2

)

|1〉
]

, (1)

where RX(x) = e−ixσ̂x and σ̂x is a Pauli operator. In this embedding

each of the considered features of the original dataset is required to

be bound between [−π ,π].

2.2 Model circuit

The model circuit is the key component of the VQC and

includes the learnable set of parameters. It is defined by a

parameterized unitary circuit U(w), with w being the set of tunable

parameters, which will evolve a quantum state embedded with

classical information ψX into the final state ψ ′X .

Analogously to the architecture of a classical neural network,

the model circuit is formed by layers. Each layer is composed of an

assemblage of rotation gates applied to each qubit in the system,

followed by a set of CNOT gates.

A rotation gate, R, is designed to be applied to one single qubit

and rotate its state. It is composed by three learnable parameters:

φ, θ ,ω, which enables the gate to rotate any arbitrary state to any

location on the Bloch sphere.

R(φ, θ ,ω) = RZ(ω)RY(θ)RZ(φ) =
[

e−i(φ+ω)/2 cos(θ/2) −ei(φ−ω)/2 sin(θ/2)

e−i(φ−ω)/2 sin(θ/2) ei(φ+ω)/2 cos(θ/2)

]

(2)

Since all the learnable parameters of the VQC are contained

inside the rotation gates, and each gate has three parameters, the

shape of the weight vector is w ∈ R
n×l×3, where n is the number

of qubits of the current system and l is the number of layers in the

network. As mentioned in the previous section, n will depend on

the number of features in the data and l is a hyper-parameter (HP)

to be tuned.

After rotating the qubits’ state, a collection of CNOT gates

will be applied to entangle the qubits. The CNOT gate is a 2-

qubit gate with no learnable parameters. It will flip the state

of the so-called target-qubit, based on the value of the control-

qubit, and it is usually represented by having two inputs as such:

CNOT(control-qubit, target-qubit). Given the number of qubits,

the CNOT arrangement is implemented as detailed in Algorithm 1.

Require: n ≥ 2, n being the number of qubits.

if n == 2 then

CNOT(1, 0)

else

for qubit← 0 to n− 1 do

if qubit == n− 1 then

CNOT(qubit, 0)

else

CNOT(qubit, qubit + 1)

end if

end for

end if

Algorithm 1. CNOT arrangement.

2.3 Measurement

The output of the model is obtained by measuring the

expectation value of the Pauli σ̂z operator in one of the qubits of

the final state ψ ′X . An example of the implementations of a VQC is

represented in Figure 1.

3 Classical machine learning methods

Shallow CML methods are used to provide a baseline

comparison to the QML models. The specific methods chosen for

the comparison are Logistic Regression (LR) and Support Vector

Machines (SVM), with these algorithms being trained with the

same data as the QML algorithms.

All the classical methods were implemented using scikit-

learn (Pedregosa et al., 2011) library and, if not specified otherwise,

the default parameters were used.

3.1 Logistic regression

Logistic Regression is one of the simplestMLmodels and can be

formulated as one of the basic building blocks of a neural network—

a single-layer perceptron. The goal is to find the best set of weights

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 1

An example circuit for the VQC architecture used. It is comprised of two layers and three features as input. The three main stages of a QML model

can be seen: embedding of the data, passing the data through the model circuit, and the measurement of the outcome.

w that fit the data x:

ŷ(w, b, x) = σ (w · x+ b) , (3)

where ŷ is the probability of an event to belong to class 1, w, and b

are learnable parameters, and σ is the sigmoid function.

The learning process is guided by minimizing the loss function,

which in our case is the binary cross-entropy:

L = −Ex[y log(ŷ)+ (1− y) log(1− ŷ)] , (4)

where y is the binary label of whether the event is of the class

signal or not, and Ex is the expectation value over the training data,

obtained using the event weights corresponding to each signal and

background process.

3.2 Support vector machine

An SVM classifier is trained by finding the hyperplane that best

separates two classes of data in the hyperspace of features. It does

so by using support vectors, which are the data points from the

two classes closer to the hyperplane, influencing the position and

orientation of the hyperplane.

The loss function of an SVM revolves around the goal of

maximizing the margin, i.e., the distance between the hyperplane

and the nearest data point from either class. In other words, the goal

is to find the hyperplane with the greatest possible margin between

itself and any point within the training set, giving a greater chance

of new data being classified correctly.

Just like the Logistic Regression, the base SVM classifier can

only learn a linear decision boundary. However, classification

problems are rarely simple enough for it to be separable using a

hyperplane, thus usually requiring a non-linear separation. SVM

can do this by transforming the data using a non-linear function,

named kernel, after which it can be split by a hyperplane. For this

implementation, the radial-basis function (RBF) was used as kernel.

This endows the SVM with a non-linear mapping where it better

separates the two classes using a hyperplane.

4 Dataset

The dataset used in this work (Crispim Romão et al., 2021)

is comprised of simulated events of pp collisions at 13 TeV, in

final states with two leptons, at least 1 b-jet, at least 1 large-R

jet, and large scalar sum of transverse3 momentum (pT) of all

reconstructed particles in the event (HT > 500 GeV). Such basic

selection corresponds to a topology commonly used in different

searches for BSM events at the LHC (Crispim Romão et al., 2021).

The dominant SM background for this topology, Zbb̄, and the BSM

signal corresponding to tt̄ production with one of the top-quarks

decaying via a flavor changing neutral current decay t → qZ

(q = c, u) (Durieux et al., 2015), were considered. Such signal

was chosen given the kinematic similitude to the background, thus

providing a good benchmark for the present study.

Both samples were generated with MADGRAPH5 2.6.5 (Alwall

et al., 2014) and PYTHIA 8.2 (Sjöstrand et al., 2015), and

the detector was simulated using DELPHES 3 (Selvaggi, 2014)

with the default CMS card. Jets were clustered using the anti-

kt algorithm (Cacciari et al., 2008), implemented via FASTJET

(Cacciari et al., 2012), with R-parameters of 0.5 and 0.8 (the latter

for the large-R jets).

The following features were used for training of both the

classical and quantum machine learning algorithms:

• (η,φ, pT ,m, b-tag) of the five leading jets, ordered by

decreasing pT , with b-tag being a Boolean variable indicating

if the jet is identified as originating from a b-quark by the

b-tagging algorithm emulated by DELPHES;

• (η,φ, pT ,m) of the leading large-R jet;

• N-subjettiness of leading large-R jet, τn with n =

1, ..., 5 (Thaler and Van Tilburg, 2011).

• (η,φ, pT) of the two leading leptons (electrons or muons);

• transverse momentum (�ET) and φ of the missing transverse

energy;

• multiplicity of jets, large-R jets, electrons, and muons;

3 The transverse plane is defined with respect to the proton colliding

beams.

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

TABLE 1 Top five features ranked by their AUC score on the training

dataset.

Feature AUC

�ET 0.817

Lepton1 pT 0.692

Lepton2 pT 0.649

large-R jetm 0.609

large-R jet τ1 0.576

• HT .

The proportion of signal and background events was kept

the same as the original simulated data during training, being

13 and 87%, respectively. Additionally, the Monte-Carlo weights,

corresponding to the theoretical prediction for each process at

target luminosity of 150 fb−1, were taken into account in the

evaluation of all the considered metrics and loss functions.

5 Feature selection

As described in the previous section, a total of 47 features

are available for training. Considering the type of data embedding

chosen, 47 qubits would be needed to train a VQC using all the

dataset features. Such number of qubits is impractical given the

currently available quantum computers and thus it is not feasible

to train a VQC using all the features in our dataset. For the

purposes of the current study, quantum computers with only five

qubits were considered and two methods for feature selection were

implemented: principal component analysis (PCA) and sequential

feature selection (SFS).

A relative comparison of the best five features4 is shown in

Table 1 while the best performance obtained with state-of-the-art

CML methods without any features or data points restrictions can

be seen in Figure 2.

5.1 Sequential feature selection

SFS algorithms are a widely used family of greedy search

algorithms used for automatically selecting a subset of features that

is most relevant to the problem. This is achievable by removing or

adding one feature at a time based on the classifier performance

until a feature subset of the desired size, k, is reached.

There are different variations of SFS algorithms but for the

current paper, the Sequential Backward Selection (SBS) algorithm

was chosen. This algorithm starts with the full set of features (n =

47) and, at each iteration, it generates all possible feature subsets of

size n − 1 and trains a ML model for each one of the subsets. The

performance is subsequently evaluated and the feature that is absent

from the subset of features with the highest performance metric is

4 The area under the curve (AUC) of the receiver operating characteristic

curve (ROC) is considered as metric for these comparisons.

FIGURE 2

Obtained ROC curve and respective AUC score on the test dataset

when training an Boosted Decision Tree, implemented

with xgboost (Chen and Guestrin, 2016) using the full set of features

and data points. The classifier has an identical configuration as the

one described in Section 5.1.

TABLE 2 List of the features selected by the SBS algorithm for k = 1, ..., 5.

k Selected features

1 �ET

2 �ET , Number of muons

3 �ET , Number of muons, Jet1 b-tag

4 �ET , Number of muons, Jet1 b-tag, Jet2 pT

5 �ET , Number of muons, Jet1 b-tag, Jet2 pT , large-R τ3

removed. This process is iterated until the feature subset contains

k features.

This technique was used to find subsets of 1–5 features. The

ML model assisting the SBS was a boosted decision tree (BDT)

with a maximum number of estimators set at 100 and a learning

rate of 1 × 10−5. The considered loss function was a logistic

regression for binary classification and the AUC score was used as

evaluation metric. The BDT was implemented using xgboost (Chen

andGuestrin, 2016) and the SBS algorithm usingmlxtend (Raschka,

2018). The selected features for the different values of k is shown in

Table 2 and the AUC scores for each feature in Table 3. It should

be noted that Table 2 shows the features selected with the SBS

algorithm and Table 3 shows the AUC value of each one of these

features. The latter is ordered by descending AUC value.

5.2 Principal component analysis

The PCA transforms a highly correlated, high-dimensional

dataset and into a new one with reduced dimensionality and

uncorrelated features, by rotating the dataset in the direction of the

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

TABLE 3 Features selected by the SBS algorithm and their respective AUC

score on the training dataset.

Feature AUC

�ET 0.817

Number of muons 0.534

Jet1 b-tag 0.418

large-R jet τ3 0.316

Jet2 pT 0.313

TABLE 4 Top five PCA components obtained with the training dataset,

ranked by their AUC.

PCA component AUC

Component 3 0.726

Component 14 0.606

Component 5 0.565

Component 41 0.563

Component 43 0.560

eigenvectors of the dataset covariance matrix. In the present paper,

the PCAwas performed only to remove the correlation between the

features, maintaining the same dimensionality as the original data.

The PCA transformation was learned from the training dataset and

then applied to all datasets. When training a VQC for a specific

number of features, the PCA components were ranked by AUC

score and thus selected from the highest to the lowest. This is done

by introducing a priority queue, i.e., if training a model using two

features is desired, the two top-ranked PCA components will be

selected. The scikit-learn PCA implementation was used and the

obtained five better components are shown in Table 4.

6 Dataset size reduction

The present paper addresses the use of reduced datasets to

overcome the limitation of NISQ processors while minimizing

the loss of information and thus avoiding a performance loss of

the QML algorithms in the HEP context. The primary method

used for this purpose in the current study is KMeans, where the

kth most representative points, i.e., a set of centroids, is obtained

from the original dataset. Although these centroids are the most

representative data points, they are not necessarily contained in the

original dataset and, consequently, a resampling process, allowing

to choose points of the original dataset (centrus), is required.

A study of the performance of the proposed dataset reduction

method will be done by training a logistic regression model with

the original dataset and comparing the results with those obtained

when Kmeans and randomly undersampled datasets are used.

6.1 KMeans algorithm

Considering a clustering algorithm, Kmeans iteratively tries

to separate data into independent groups (MacKay, 2003). This

separation is done using the Lloyd’s algorithm (Wilkin and Xiuzhen,

2008), based on the minimal variability of samples within each

cluster. The KMeans algorithm requires the specification of the

desired number of clusters (k) a priori. The following steps

were used:

1. Initialization of the centroids: using the scikit-learn

implementation, it is possible to do it in two different

ways, random and k-means++ (Vouros et al., 2021):

• Random: k random samples of the original dataset are

chosen.

• K-means++: k samples of the original dataset are chosen

based on a probabilistic approach, leading to the centroids

being initialized far away from each other.

Assuming there is enough time, the algorithm will always

converge, although the convergence to an absolute minimum is

not guaranteed. The K-means++ initialization helps to address

this issue. Furthermore, for both initializations, the algorithm,

by default, runs several times with different centroid seeds, with

the best result being the output.

2. Assignment: Each data point xi : is addressed to a cluster ck′ , in

such a way that the inertia is minimized:

k′ = argmin
k

{

F−1
∑

j=0

(xij − µkj)
2

}

, (5)

where F is the dimensionality, i.e., the number of features, µk is

the centroid of the cluster ck and j stands for the (j+1)th feature.

3. Update of the centroids’ position: The new centroids are just

the means positions of each cluster, i.e.,

µk : =

∑nk−1
i=0,xi :∈ck

xi :

nk
, (6)

with nk being the number of samples addressed to ck. It should

be noted that if nk′ = 0 the centroid µk′ doesn’t change.

4. Iteration: Steps 2 and 3 are repeated until themaximumnumber

of iterations is reached or until the result converges, i.e., the

centroids don’t change.

The KMeans algorithm was used separately for the signal and

background samples, with the corresponding weights being used.

6.2 Dataset resampling

As previously mentioned, although centroids are the most

representative points, they are not necessarily contained in the

original dataset. Hence, it was chosen to consider 10 neighbors of

each centroid to determine each centrus, i.e., the 10 nearest points

of the original dataset.

The position of each centrus was determined using the

weighted mean of the position of the neighbors,

W =

∑9
i=0 xi : × wi
∑9

i=0 wi

, (7)

whereW is the mean position, xi : is the (i+ 1)th nearest point and

wi the weight of the sample.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

TABLE 5 List of scanned hyperparameters.

Variable HP Possible values

Feature selection [PCA, SBS]

Number of data points [100, 500, 1 k, 5 k]

Number of features [1, 2, 3, 4, 5]

Number of layers [1, 2, 3, 4, 5]

Fixed HP Fixed values

Max epochs 500

Batch size Size of the dataset

Learning rate (LR) 0.03

The LR parameter is used only for the VQC optimized by Adam while the number of layers is

only used by the VQCs.

The sample weight of each centrus was calculated based on the

number of samples of the same label (i.e., signal or background) on

the original dataset:

wi =
1

n
, (8)

with wi being the weight of the (i+ 1)th centrus and n the number

of samples in the original dataset with the same label of this centrus.

7 Quantum and classical machine
learning training

The training of the QML algorithms used in the current paper

requires the use of optimizers. Two different ones were considered:

Adam (Kingma and Ba, 2014) and tree-structured Parzen estimator

sampler (TPE; Bergstra et al., 2011, 2013).

The Adam optimizer uses an extension of stochastic gradient

descent, leveraging techniques such as adaptive moment

estimation, being extensively used in optimization problems,

namely in the context of machine learning. Nonetheless, since

there is no reason to expect, a priori, that it will work equally well

in the context of QML, where specific challenges are expected, the

TPE optimizer was also tested.

The TPE is a Bayesian optimization algorithm first developed

for HP tuning in the context of machine learning. In the current

study, it will be used to optimize VQC weights in a way very

similar to what is typically done for HP tuning. TPE is implemented

using Optuna (Akiba et al., 2019), a library focused on HP

optimization for machine learning models. TPE works by choosing

a parameter candidate that maximizes the likelihood ratio between

a Gaussian Mixture Model (GMM) fitted to the set of parameters

associated with the best objective values, with another GMM being

fitted to the remaining parameter values. In the context of HEP,

TPE has also been used to explore parameter spaces of BSM

models (de Souza et al., 2022).

Different machine learning methods were optimized, namely a

LR, a SVM, and a VQC. The corresponding training was done for

the set of HP summarized in Table 5, where the scanned values are

also listed. For each set of HP, 5 models were trained on 5 different

subsets of the initial dataset (random sampling).

For both optimizers, the considered cost function used is the

squared error, with the individual Monte Carlo samples being

properly weighted. During the training of VQCs, the inference was

done on the validation dataset at five epoch intervals, the AUC

computed and only the best-performing model, according to the

previously mentioned metric, was considered.

7.1 Adam implementation details

The training starts with the initialization of the weight vector.

This is done randomly with an order of magnitude of 10−2, which is

followed by training iterations until a maximum number of epochs

is reached. At each iteration, the model is inferred with the training

dataset, the cost function calculated and the model parameters

updated via the Adam optimizer. A summary of Adam-optimized

VQC training is shown in Algorithm 2.

params← params_initialization()

for epoch← 1 to max_epochs do

loss← cost(params)

params← optimizer.step()

if epoch_number%5 == 0 or epoch_number == max_epochs

then

validation_step()

end if

end for

Algorithm 2. Adam training.

7.2 TPE implementation details

We use the Optuna implementation of the TPE sampler. Being

a Bayesian optimization algorithm, TPE works very differently to

Adam, which is a gradient descent algorithm. In TPE, for every

training iteration, each parameter is replaced by a new value

acquired sampling from a Gaussian Mixture Model of good points,

which is then used to compute the loss function. At each epoch,

the algorithm computes new values for the model parameters. With

the value of the loss function of the suggested parameters, TPE

will update its internal Gaussian Mixture Models of good and

bad points, which will allow it to learn what are good suggestions

as more parameter values are sampled. Since TPE is a Bayesian

algorithm, it does not need to compute derivatives of the loss

function, as Adam does, which might allow for a light workload

when running trainings on quantum computers.

8 Simulation results

8.1 Feature reduction

The results indicate that QML circuits trained with SBS data

are generally unstable and very susceptible to fluctuations in the

randomly sampled data, as can be seen in Figure 3. Specifically, it is

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 3

Plot grid representing the results for both Adam and TPE-Trained VQCs. Each data point represents the AUC score on the test dataset of a di�erent

set of HP, as listed in Table 5. The error bar represents the standard deviation associated with each data point since each point is the average of five

di�erent random samplings from the data.

evident that using PCA-originated data produces significantlymore

stable results.

The performance of both optimizers, Adam and TPE, is

usually saturated with only two layers. This effect is most

noticeable when the number of features is greater or equal

to 3. When considering only the PCA-obtained results, the

two optimizers are compatible for most of the configurations

tested. Exceptions occur when using a high number of features

(≥ 4) and only one layer, where TPE outperforms Adam,

and when using a high number of features (≥ 4) and

more than one layer, where the opposite happens and Adam

outperforms TPE.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 4

Plot grid representing the results for the considered shallow methods. Each data point represents the AUC score on the test dataset of a di�erent set

of HP, as listed in Table 5. The error bar represents the standard deviation associated with each data point since each point is the average of five

di�erent random samplings from the data.

The shallow ML methods trained on the same data as the

VQCs are shown in Figure 4. The AUC scores obtained in this

case are more stable for both the PCA and SBS datasets. The

performance in both cases is saturated when using two features

and the models trained with SBS data outperform the PCA-trained

models, contrary to what was observed for the QML case. It should

also be noted that the SVM outperforms LR in all cases except when

only one feature is used, which is not surprising since SVMs are

more sophisticated classifiers.

For the best set of HP, VQCs trained using TPE and Adam have

performed similarly to the shallow ML methods (c.f. with Figure 5,

Figure A1, respectively). It was also observed that there are no cases

where QML outperforms any of the shallow methods tested. The

TPE optimizer regime produced the best performance for QML,

achieving an AUC score of 0.841± 0.051, as shown in Figure 5.

The reduction algorithms studied come with an additional

computational cost compared to using the original dataset directly.

In particular, the SBS algorithm added an overhead of 1 h for

running the XGBoost algorithm and selecting the features with

more classification power. On the other hand, the PCA algorithm

took a sub-minute negligible time to complete. However, since

these algorithms only need to be run once, before the training,

and given that the grid search for the VQC, SVM, and LR

algorithms took over 200 CPU hours on a dual-Intel(R) Xeon(R)

Gold 6,348 machine, in the end the computational cost of the

classical reduction algorithms is negligible.

8.1.1 VQC’s robustness to discrete features
In the previous section it was noted that there was a significant

variability in the final score of QML models, especially when

training with SBS data. In fact, VQCs, being variational algorithms,

are highly susceptible to small fluctuations in the data, which can

have a correspondingly significant impact on the computed AUC.

Additionally, numerical instabilities caused by computational

floating point accuracy were observed during the validation step,

leading to considerable fluctuations in the computed AUC in

this regime.

To further investigate this behavior, which was not observed at

the same level on the PCA-trained circuits, we looked at the AUC

distributions produced byQMLmodels as a function of the number

of features. As shown in Figure 6, it is clear that the instability in SBS

results occurs when more than two features are used. The biggest

difference in the AUC mean is found for four features, where the

value for SBS is 0.471 ± 0.129 and for PCA is 0.719 ± 0.096. The

smallest difference is found for 1 feature, where the value for SBS is

0.814± 0.035 and for PCA is 0.724± 0.037.

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 5

ROC of the best HP set, using TPE’s QML model average AUC score as a metric and the corresponding shallow methods ROCs for the same data.

The HP for this run are SBS for feature method, 100 data points, 1 feature, and 5 VQC layers. The di�erent colors indicate the di�erent random

samplings of the data.

FIGURE 6

Distribution of the AUC values obtained for the QML model as a

function of the number of features used in training, evaluated on the

test dataset, for SBS and PCA inputs.

Additionally, we produced visualizations of the decision

regions of the models trained using both feature selection methods.

We focused on runs that used two features, as this is where

the problem originated. Figures 7, 8 show the decision regions

obtained with each model for one representative run, illustrating

the sensitivity of each boundary to variations in the data, for SBS or

PCA. The SBS features used are listed in Table 2, where the second

feature, the number of muons in the event, is a discrete variable.5

While LR and SVMs are robust in the presence of discrete

variables, they may pose a challenge for continuous learning

algorithms such as VQCs. It is therefore possible that the variability

observed when using different sub-samples of SBS data could be

attributed to the use of this discrete variable. To investigate this, we

conducted the SBS feature selection once again, this time excluding

all discrete variables—yielding Table 6. The VQC circuits where

once again trained using this modified list of inputs in a limited

study of two features only, as illustrated in Figure 9.

Using the discrete-free SBS version to train the VQC led to

significantly better AUC scores, outperforming PCA-trained QML

models with an average AUC score of around 0.85, although still

5 In ML literature this is called a categorical variable. However, we note that

even though it is categorical, it is still ordinal. As there are no non-ordinal or

non-binary categorical variables in our dataset, wewill refer to these variables

as discrete instead of categorical for the rest of this work.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 7

Decision regions of the three di�erent architectures in a run where large variability of results for the QML SBS-trained model was observed. This case

uses SBS data, Adam as an optimizer, 100 data points for training and two layers for the circuit.

with larger variability than that of the PCA-trained VQCs. This

is a notable departure from our previous observations in Section

8.1, where including discrete features in the SBS feature selection

methodology resulted in erratic performance with no instance of

outperforming PCA (except in cases where only one continuous

feature was used). Therefore, we found that excluding discrete

variables during feature selection led to better performance for

VQC circuits in a limited study of two features, compared to when

discrete variables were included. This indicates that the choice of

input features is crucial for achieving high accuracy in quantum

machine learning, and future studies should consider the impact of

discrete variables on VQC performance. The findings may inform

future choices in selecting input features for VQC circuits to

optimize model performance.

8.2 Dataset reduction

8.2.1 Implementation of KMeans

The performance of the KMeans algorithm was tested initially

by training LR models with 10 reduced datasets and selecting a

different number of k features (k ∈ [1, 2, 3, 4, 5]) obtained with the

SBS algorithm. The KMeans algorithm considers the sample weight

and, in order to have an equal number of signal and background

centroids, it was separately applied to the signal and background

data. Since state-of-the-art quantum computing requires small

datasets, the data reduction studies were done for datasets with

100, 500, 1,000, and 5,000 data points and the number of features

previously mentioned.

Two configurations were studied: the framework presented in

Section 6.1 was applied to the training and test datasets; and only to

the training datasets (with test datasets obtained through random

undersampling).6

The mean AUC score and respective standard deviation found

using KMeans for train and test datasets are summarized in

Figure 10. The results obtained using the KMeans algorithm for

the training dataset and random undersampling in the test signal

and background samples are presented in Figure 11. In order to

provide a benchmark point for comparison with the performance

of the reduced datasets, a LR model was trained on the full original

dataset, with results shown in both figures.

It can be seen in Figures 10, 11 that using the KMeans

algorithm to reduce the training dataset results in AUC scores

that are compatible with the performance obtained using the full

original dataset.

6 Throughout this article random undersampling refers to the random

selection of data points from the original dataset. In the ML subfield

of imbalanced learning, the proper methodology is to use resampling

algorithms only during training, but not during validation or test. In this

section we present results of these two cases as a comparison, but later we

will restrict to random undersampling during validation and testing.

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 8

Decision regions of the three di�erent architectures in a run where large variability of results for the QML PCA-trained model was observed. This case

uses PCA data, Adam as an optimizer, 100 data points for training and one layer for the circuit.

TABLE 6 Features selected by the SBS algorithm and their respective AUC

Score on the training dataset with all the discrete features removed.

Feature AUC

�ET 0.817

large-R jet τ1 0.576

large-R jet τ3 0.316

Jet2 pT 0.313

Jet1 pT 0.292

This study shows that although KMeans is a more sophisticated

algorithm for data reduction than random undersampling, in the

HEP case under consideration no significant deterioration of the

performance is observed when using it, suggesting that in this study

the dataset composed of prototypes is a good representative of the

whole dataset in the small dataset regime, which is explored in

this work.

8.2.2 Application to QML
The QML, SVM, and LR models were trained using KMeans

reduced datasets as well as random undersampling, for different

dataset sizes. In this comparison, the HP for the VQC are the ones

previously found to be the best, i.e., one feature chosen with the SBS

method and five VQC layers for the architecture. Themetric used to

compare all models is the AUC score average of five different runs.

For all cases, the test and validation sets were reduced using

random undersampling, hence, for each dataset size there are

one train, five validation and five test datasets. The choice to

keep random sampling for the test dataset, rather than KMeans

reduction, is to ensure that our methodology represents the test

samples as close to the original dataset as possible, ensuring that

sophisticated resampling techniques do not significantly modify

the data.

The obtained results are shown in Figure 12. It can be

seen that the performance for the KMeans reduced dataset is

compatible with the one obtained using the dataset reduced

through random undersampling, for QML and CML models.

Furthermore, the performance achieved by the simulated VQCs

is identical within the statistical uncertainties to the performances

by the SVM and LR, in agreement to what was observed

in Section 8.1.

Nonetheless, it should be emphasized that the model trained

with random undersampling needs to be trained several times for

achieving these average scores, as many times as the number of

reduced datasets used. On the other hand, the models using the

KMeans reduced dataset need to be trained only once. This can

be relevant in the context of quantum computers, where access is

often subject to long queues and thus the number of accesses can be

a limiting factor. While the KMeans reduction technique brought

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 9

Plot grid representing the results for both Adam and TPE-Trained VQCs. Each data point represents the AUC score on the test dataset of a di�erent

set of HP, as listed in Table 5, with the two features restriction. The error bar represents the standard deviation associated with each data point since

each point is the average of five di�erent random samplings from the data.

FIGURE 10

Average AUC score and corresponding standard deviation,

represented as uncertainty bands, for di�erent numbers of clusters

as a function of the number of features. The training and testing

datasets were reduced using the KMeans algorithm. In each case, 10

di�erent reduced test datasets were used.

an overall increase in time of around 1%, this change is negligible

taking into account the reduction in number of accesses.

9 Real quantum computers results

Until this point, only simulated quantum environments were

used. In order to test the performance in real quantum computers,

and thus validate the simulation results, the Pennylane framework

was used as the integration layer with Qiskit, which works

FIGURE 11

Average AUC score and corresponding standard deviation,

represented as uncertainty bands, for di�erent numbers of clusters

as a function of the number of features. The training dataset was

reduced using the KMeans algorithm. In each case, 10 di�erent

randomly undersampled test datasets were used.

effectively as a direct API to the quantum computers provided

by IBM.

In this study, only the best performant model HP-set was used,

i.e., the TPE-trained VQC. This VQC was implemented and its test

set was inferred on six different quantum systems with identical

architectures, all freely available. Evaluating our model in multiple

identical quantum systems allows us to get an idea of the scale

of the associated systematic uncertainty via the variability of the

observed results. Since the implemented circuits are small, no

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 12

Comparison between the QML, SVM, and LR models when trained with the TPE and the best set of HP for di�erent dataset sizes for both random

undersampling (regular) and KMeans reduced datasets.

error mitigation techniques were implemented. IBM’s transpiler

optimization level was set to 37 (Anis et al., 2023) and, for each

event, the final expectation value was computed by averaging 20k

shots on the quantum computer. The obtained results, shown in

Figure 13, are compatible with the simulated ones (Figure 5).

10 Conclusion

In this paper, we assessed the feasibility of using large datasets in

QML applications by exploring data reduction techniques. To allow

for a fair comparison between CML and QML models, we opted to

use shallow classical methods as opposed to deep methods, which

require large datasets that are not viable given the limitations of

the current quantum computers. Our results indicate that there is

comparable performance between CML and QML when tested on

the same small dataset regime.

To achieve this, our study first compared feature

selection techniques, showing that while SBS can produce

7 The level 3 of optimization corresponds to the heaviest optimization

inherently implemented.

the best performant QML model, it generally yielded

worse and more unstable results than PCA. Additionally,

we found this was produced by using discrete variables

in VQCs, highlighting the suitability of PCA-transformed

data for QML applications in the HEP context, where

discrete variables are commonly used to describe

collider events.

Our grid search over different HP combinations of VQC

ran in simulation provided no evidence of quantum advantage

in our study. We confirmed the results by running the

best performing configuration on real-world quantum systems,

obtaining compatible performances and therefore validating

our conclusions. We compared the performance of TPE and

Adam optimizers in QML and found that TPE achieves

competitive results. Being a gradient-free optimizer, TPE offers

the advantage that it can lead to faster training with a

smaller memory usage when compared to Adam, which in

principle can further facilitate the application of QML in current

quantum computers.

We then explored data reduction techniques, finding

that reducing the dataset size with the KMeans algorithm

produces results that are similar to those obtained

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

FIGURE 13

Final ROC curve of the best-performing model when inferred on the test dataset in six di�erent IBM systems. The average AUC scores and the

corresponding standard deviations are also shown. The colors in each subplot stand for di�erent runs of the same circuits in the same QC.

from random undersampling. This finding is significant

in that it means that the model can achieve similar

performance with fewer accesses to a quantum computer

during training, which is a considerable bottleneck in

current QML.

In conclusion, while our study found no evidence of quantum

advantage in the current state of QML within the context

of large HEP datasets, the performance of QML models was

comparable to that of classical machine learning models when

restricted to small dataset regimes. Our findings suggest that

using dataset reduction techniques enables us to use large

datasets more efficiently to train VQCs, facilitating the usage

of current quantum computers in large datasets often found

in HEP.

Data availability statement

The dataset used in the studies reported in the current paper

can be found in https://zenodo.org/doi/10.5281/zenodo.5126746,

while the computational code used to obtain the present results is

publicly available via https://github.com/mcpeixoto/QML-HEP.

Author contributions

MP: Conceptualization, Data curation, Formal analysis,

Investigation, Project administration, Software, Validation,

Visualization, Writing—original draft, Writing—review

& editing. NC: Conceptualization, Data curation, Funding

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://zenodo.org/doi/10.5281/zenodo.5126746
https://github.com/mcpeixoto/QML-HEP
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

acquisition, Investigation, Methodology, Resources, Supervision,

Writing—original draft, Writing—review & editing. MR:

Conceptualization, Data curation, Formal analysis, Investigation,

Methodology, Software, Supervision, Validation, Writing—

original draft, Funding acquisition, Writing—review & editing.

MO: Conceptualization, Formal analysis, Investigation, Project

administration, Software, Validation, Visualization, Writing—

original draft, Writing—review & editing. IO: Conceptualization,

Formal analysis, Funding acquisition, Investigation, Methodology,

Resources, Supervision, Writing—review & editing.

Funding

The author(s) declare financial support was received for

the research, authorship, and/or publication of this article.

This work was supported by Fundação para a Ciência e a

Tecnologia, Portugal, through project CERN/FIS-COM/0004/2021

(“Exploring quantum machine learning as a tool for present and

future high energy physics colliders”). IO was supported by the

fellowship LCF/BQ/PI20/11760025 from La Caixa Foundation (ID

100010434) and by the European Union Horizon 2020 research

and innovation program under the Marie Skłodowska-Curie grant

agreement No 847648.

Acknowledgments

We acknowledge the use of IBM Quantum services for this

work. We thank Declan Millar, Nuno Peres, and Tiago Antão

for the very useful discussions and Ricardo Ribeiro for kindly

providing access to some of the computing systems used in

this work. We also thank Henrique Carvalho for the help in

producing (Figure 1).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

The handling editor ML declared a past

co-authorship/collaboration with authors NC and IO.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Author disclaimer

The views expressed are those of the authors, and do

not reflect the official policy or position of IBM or the IBM

Quantum team.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2023.

1268852/full#supplementary-material

References

Akiba, T., Sano, S., Yanase, T., Ohta, T., and Koyama, M. (2019).
“Optuna: a next-generation hyperparameter optimization framework,” in
Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Anchorage, AK). doi: 10.1145/3292500.33
30701

Alvi, S., Bauer, C. W., and Nachman, B. (2023). Quantum anomaly detection for
collider physics. J. High Energy Phys. 2023:220. doi: 10.1007/JHEP02(2023)220

Alwall, J., Frederix, R., Frixione, S., Hirschi, V., Maltoni, F., Mattelaer, O., et al.
(2014). The automated computation of tree-level and next-to-leading order differential
cross sections, and their matching to parton shower simulations. J. High Energy Phys.
7:79. doi: 10.1007/JHEP07(2014)079

Anis, M. S., Abby-Mitchell, Abraham, H., AduOffei, Agarwal,
R., Agliardi, G., Aharoni, M., et al. (2023). QISKIT: An Open-
Source Framework for Quantum Computing. doi: 10.5281/zenodo.25
73505

Araz, J. Y., and Spannowsky, M. (2022). Classical versus quantum: Comparing
tensor-network-based quantum circuits on large hadron collider data. Phys. Rev. A
106:62423. doi: 10.1103/PhysRevA.106.062423

Bapst, F., Bhimji, W., Calafiura, P., Gray, H., Lavrijsen, W., Linder, L., et al. (2020).
A pattern recognition algorithm for quantum annealers. Comput. Softw. Big Sci. 4, 1–7.
doi: 10.1007/s41781-019-0032-5

Belis,V.,González-Castillo, S., Reissel, C.,Vallecorsa, S., Combarro, E. F.,Dissertori,
G., et al. (2021). “HIGGS analysis with quantum classifiers,” in EPJWeb of Conferences,
Vol. 251 (EDP Sciences), 03070. doi: 10.1051/epjconf/202125103070

Bergholm, V., Izaac, J., Schuld, M., Gogolin, C., Ahmed, S., Ajith, V., et al. (2018).
PennyLane: automatic differentiation of hybrid quantum-classical computations.
arXiv:1811.04968v4. doi: 10.48550/arXiv.1811.04968

Bergstra, J., Yamins, D., and Cox, D. (2013). “Making a science of model search:
hyperparameter optimization in hundreds of dimensions for vision architectures,” in
International Conference on Machine Learning (San Francisco), 115–123. Available
online at: https://proceedings.mlr.press/v28/bergstra13.html

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. (2011). “Algorithms for hyper-
parameter optimization,” in Advances in Neural Information Processing Systems, Vol.
24.

Blance, A., and Spannowsky, M. (2021). Quantum machine learning for particle
physics using a variational quantum classifier. J. High Energy Phys. 2021, 1–20.
doi: 10.1007/JHEP02(2021)212

Borras, K., Chang, S. Y., Funcke, L., Grossi, M., and Hartung, T. (2023). Impact of
quantum noise on the training of quantum generative adversarial networks. J. Phys.
2438:012093. doi: 10.1088/1742-6596/2438/1/012093

Cacciari, M., Salam, G. P., and Soyez, G. (2008). The anti-kt jet clustering algorithm.
J. High Energy Phys. 4:63. doi: 10.1088/1126-6708/2008/04/063

Cacciari, M., Salam, G. P., and Soyez, G. (2012). Fastjet user manual. Eur. Phys. J. C
72:1986. doi: 10.1140/epjc/s10052-012-1896-2

Chang, S. Y., Herbert, S., Vallecorsa, S., Combarro, E. F., and Duncan, R. (2021a).
Dual-parameterized quantum circuit gan model in high energy physics. EPJ Web Conf.
251:03050. doi: 10.1051/epjconf/202125103050

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://www.frontiersin.org/articles/10.3389/frai.2023.1268852/full#supplementary-material
https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1007/JHEP02(2023)220
https://doi.org/10.1007/JHEP07(2014)079
https://doi.org/10.5281/zenodo.2573505
https://doi.org/10.1103/PhysRevA.106.062423
https://doi.org/10.1007/s41781-019-0032-5
https://doi.org/10.1051/epjconf/202125103070
https://doi.org/10.48550/arXiv.1811.04968
https://proceedings.mlr.press/v28/bergstra13.html
https://doi.org/10.1007/JHEP02(2021)212
https://doi.org/10.1088/1742-6596/2438/1/012093
https://doi.org/10.1088/1126-6708/2008/04/063
https://doi.org/10.1140/epjc/s10052-012-1896-2
https://doi.org/10.1051/epjconf/202125103050
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Peixoto et al. 10.3389/frai.2023.1268852

Chang, S. Y., Vallecorsa, S., Combarro, E. F., and Carminati, F. (2021b). Quantum
generative adversarial networks in a continuous-variable architecture to simulate high
energy physics detectors. arXiv:2101.11132. doi: 10.48550/arXiv.2101.11132

Chen, S. Y.-C., Wei, T.-C., Zhang, C., Yu, H., and Yoo, S. (2022). Quantum
convolutional neural networks for high energy physics data analysis. Phys. Rev. Res.
4:013231. doi: 10.1103/PhysRevResearch.4.013231

Chen, T., and Guestrin, C. (2016). “XGBoost: a scalable tree boosting
system,” in Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16 (New York, NY: ACM), 785–794.
doi: 10.1145/2939672.2939785

Crispim Romão, M., Castro, N. F., and Pedro, R. (2021). Finding new physics
without learning about it: anomaly detection as a tool for searches at colliders. Eur.
Phys. J. C 81:27. doi: 10.1140/epjc/s10052-020-08807-w

Crispim Romão, M., Castro, N. F., and Pedro, R. (2021). Simulated PP Collisions at
13 TeVWith 2 Leptons + 1 b Jet Final State and Selected Benchmark Beyond the Standard
Model Signals. Dataset on Zenodo. doi: 10.5281/zenodo.5126746

Das, S., Wildridge, A. J., Vaidya, S. B., and Jung, A. (2019). Track clustering
with a quantum annealer for primary vertex reconstruction at hadron colliders.
arXiv:1903.08879. doi: 10.48550/arXiv.1903.08879

de Souza, F. A., Crispim Romão, M., Castro, N. F., Nikjoo, M., and
Porod, W. (2022). Exploring parameter spaces with artificial intelligence and
machine learning black-box optimisation algorithms. Phys. Rev. D 107:035004.
doi: 10.1103/PhysRevD.107.035004

Delgado, A., and Hamilton, K. E. (2022). Unsupervised quantum circuit learning in
high energy physics. Phys. Rev. D 106:096006. doi: 10.1103/PhysRevD.106.096006

Durieux, G., Maltoni, F., and Zhang, C. (2015). Global approach to top-quark
flavor-changing interactions. Phys. Rev. D 91:074017. doi: 10.1103/PhysRevD.91.07
4017

Ellis, J. (2012). Outstanding questions: physics beyond the standard model. Philos.
Trans. R. Soc. Lond. A 370, 818–830. doi: 10.1098/rsta.2011.0452

Farhi, E., and Neven, H. (2018). Classification with quantum neural networks on
near term processors. Available online at: https://arxiv.org/abs/1802.06002

Feickert, M., and Nachman, B. (2021). A living review of machine learning for
particle physics. Available online at: https://arxiv.org/abs/2102.02770

Funcke, L., Hartung, T., Heinemann, B., Jansen, K., Kropf, A., Kühn, S., et al.
(2022). Studying quantum algorithms for particle track reconstruction in the LUXE
experiment. J. Phys. 2438:12127. doi: 10.1088/1742-6596/2438/1/012127

Gianelle, A., Koppenburg, P., Lucchesi, D., Nicotra, D., Rodrigues, E., Sestini, L.,
et al. (2022). Quantum machine learning for b-jet charge identification. J. High Energy
Phys. 08:014. doi: 10.1007/JHEP08(2022)014

Guan, W., Perdue, G., Pesah, A., Schuld, M., Terashi, K., Vallecorsa, S., et al.
(2021). Quantum machine learning in high energy physics. Mach. Learn. Sci. Technol.
2:011003. doi: 10.1088/2632-2153/abc17d

Guest, D., Cranmer, K., and Whiteson, D. (2018). Deep learning and
its application to LHC physics. Ann. Rev. Nucl. Part. Sci. 68, 161–181.
doi: 10.1146/annurev-nucl-101917-021019

Gupta, S., and Zia, R. (2001). Quantum neural networks. J. Comput. Syst. Sci. 63,
355–383. doi: 10.1006/jcss.2001.1769

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization.
Available online at: https://arxiv.org/abs/1412.6980

LaRose, R., and Coyle, B. (2020). Robust data encodings for quantum classifiers.
Phys. Rev. A 102:032420. doi: 10.1103/PhysRevA.102.032420

Li, G., Ding, Y., and Xie, Y. (2019). “Tackling the Qubit Mapping Problem
for NISQ-Era Quantum Devices,” in ASPLOS ’19: Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages and
Operating Systems.

MacKay, D. (2003). Information Theory, Inference and Learning Algorithms.
Cambridge University Press.

Mott, A., Job, J., Vlimant, J.-R., Lidar, D., and Spiropulu, M. (2017). Solving a
higgs optimization problemwith quantum annealing for machine learning.Nature 550,
375–379. doi: 10.1038/nature24047

Ngairangbam, V. S., Spannowsky, M., and Takeuchi, M. (2022). Anomaly detection
in high-energy physics using a quantum autoencoder. Phys. Rev. D 105:095004.
doi: 10.1103/PhysRevD.105.095004

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830.
Available online at: https://www.jmlr.org/papers/v12/pedregosa11a.html

Preskill, J. (2018). Quantum computing in the NISQ era and beyond.Quantum 2:79.
doi: 10.22331/q-2018-08-06-79

Raschka, S. (2018). Mlxtend: Providing machine learning and data science utilities
and extensions to python’s scientific computing stack. J. Open Source Softw. 3:24.
doi: 10.21105/joss.00638

Rehm, F., Vallecorsa, S., Grossi, M., Borras, K., and Krücker, D. (2023). A full
quantum generative adversarial network model for high energy physics simulations.
arXiv:2305.07284. doi: 10.48550/arXiv.2305.07284

Schuhmacher, J., Boggia, L., Belis, V., Puljak, E., Grossi, M., Pierini, M., et al.
(2023). Unravelling physics beyond the standard model with classical and quantum
anomaly detection. doi: 10.1088/2632-2153/ad07f7 Available online at: https://arxiv.
org/abs/2301.10787

Schuld, M., Bocharov, A., Svore, K. M., and Wiebe, N. (2020). Circuit-centric
quantum classifiers. Phys. Rev. A 101:32308. doi: 10.1103/PhysRevA.101.032308

Schuld, M., Sinayskiy, I., and Petruccione, F. (2015). Simulating a perceptron on a
quantum computer. Phys. Lett. A 379, 660–663. doi: 10.1016/j.physleta.2014.11.061

Selvaggi, M. (2014). DELPHES 3: a modular framework for fast-
simulation of generic collider experiments. J. Phys. Conf. Ser. 523:012033.
doi: 10.1088/1742-6596/523/1/012033

Shapoval, I., and Calafiura, P. (2019). “Quantum associative memory in
HEP track pattern recognition,” in EPJ Web of Conferences, Vol. 214, 01012.
doi: 10.1051/epjconf/201921401012

Sjöstrand, T., Ask, S., Christiansen, J. R., Corke, R., Desai, N., Ilten, P., et al.
(2015). An introduction to PYTHIA 8.2. Comput. Phys. Commun. 191, 159–177.
doi: 10.1016/j.cpc.2015.01.024

Terashi, K., Kaneda, M., Kishimoto, T., Saito, M., Sawada, R., and Tanaka, J. (2021).
Event classification with quantum machine learning in high-energy physics. Comput.
Softw. Big Sci. 5, 1–11. doi: 10.1007/s41781-020-00047-7

Thaler, J., and Van Tilburg, K. (2011). Identifying boosted objects with n-
subjettiness. J. High Energy Phys. 2011, 1–28. doi: 10.1007/JHEP03(2011)015

Tüysüz, C., Carminati, F., Demirköz, B., Dobos, D., Fracas, F., Novotny, K., et
al. (2020). Particle track reconstruction with quantum algorithms. EPJ Web Conf.
245:09013. doi: 10.1051/epjconf/202024509013

Vouros, A., Langdell, S., Croucher, M., and Vasilaki, E. (2021). An empirical
comparison between stochastic and deterministic centroid initialisation for k-means
variations.Mach. Learn. 110, 1975–2003. doi: 10.1007/s10994-021-06021-7

Wei, A. Y., Naik, P., Harrow, A. W., and Thaler, J. (2020). Quantum algorithms for
jet clustering. Phys. Rev. D 101:094015. doi: 10.1103/PhysRevD.101.094015

Wilkin, G. A., and Xiuzhen, H. (2008). A practical comparison of
two k-means clustering algorithms. BMC Bioinformatics 9(Suppl. 6):S19.
doi: 10.1186/1471-2105-9-S6-S19

Woźniak, K. A., Belis, V., Puljak, E., Barkoutsos, P., Dissertori, G., Grossi, M., et al.
(2023). Quantum anomaly detection in the latent space of proton collision events at the
LHC. arXiv:2301.10780. doi: 10.48550/arXiv.2301.10780

Wu, S. L., Sun, S., Guan, W., Zhou, C., Chan, J., Cheng, C. L., et al.
(2021). Application of quantum machine learning using the quantum kernel
algorithm on high energy physics analysis at the LHC. Phys. Rev. Res. 3:033221.
doi: 10.1103/PhysRevResearch.3.033221

Zlokapa, A., Anand, A., Vlimant, J.-R., Duarte, J. M., Job, J., Lidar,
D., et al. (2021a). Charged particle tracking with quantum annealing
optimization. Quant. Mach. Intell. 3, 1–11. doi: 10.1007/s42484-021-0
0054-w

Zlokapa, A., Mott, A., Job, J., Vlimant, J.-R., Lidar, D., and
Spiropulu, M. (2021b). Quantum adiabatic machine learning with
zooming. Bull. Am. Phys. Soc. 66:62405. doi: 10.1103/PhysRevA.102.
062405

Frontiers in Artificial Intelligence 17 frontiersin.org

https://doi.org/10.3389/frai.2023.1268852
https://doi.org/10.48550/arXiv.2101.11132
https://doi.org/10.1103/PhysRevResearch.4.013231
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1140/epjc/s10052-020-08807-w
https://doi.org/10.5281/zenodo.5126746
https://doi.org/10.48550/arXiv.1903.08879
https://doi.org/10.1103/PhysRevD.107.035004
https://doi.org/10.1103/PhysRevD.106.096006
https://doi.org/10.1103/PhysRevD.91.074017
https://doi.org/10.1098/rsta.2011.0452
https://arxiv.org/abs/1802.06002
https://arxiv.org/abs/2102.02770
https://doi.org/10.1088/1742-6596/2438/1/012127
https://doi.org/10.1007/JHEP08(2022)014
https://doi.org/10.1088/2632-2153/abc17d
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1006/jcss.2001.1769
https://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevA.102.032420
https://doi.org/10.1038/nature24047
https://doi.org/10.1103/PhysRevD.105.095004
https://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.21105/joss.00638
https://doi.org/10.48550/arXiv.2305.07284
https://doi.org/10.1088/2632-2153/ad07f7
https://arxiv.org/abs/2301.10787
https://arxiv.org/abs/2301.10787
https://doi.org/10.1103/PhysRevA.101.032308
https://doi.org/10.1016/j.physleta.2014.11.061
https://doi.org/10.1088/1742-6596/523/1/012033
https://doi.org/10.1051/epjconf/201921401012
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1007/s41781-020-00047-7
https://doi.org/10.1007/JHEP03(2011)015
https://doi.org/10.1051/epjconf/202024509013
https://doi.org/10.1007/s10994-021-06021-7
https://doi.org/10.1103/PhysRevD.101.094015
https://doi.org/10.1186/1471-2105-9-S6-S19
https://doi.org/10.48550/arXiv.2301.10780
https://doi.org/10.1103/PhysRevResearch.3.033221
https://doi.org/10.1007/s42484-021-00054-w
https://doi.org/10.1103/PhysRevA.102.062405
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Fitting a collider in a quantum computer: tackling the challenges of quantum machine learning for big datasets
	1 Introduction
	2 Quantum machine learning
	2.1 Data embedding
	2.2 Model circuit
	2.3 Measurement

	3 Classical machine learning methods
	3.1 Logistic regression
	3.2 Support vector machine

	4 Dataset
	5 Feature selection
	5.1 Sequential feature selection
	5.2 Principal component analysis

	6 Dataset size reduction
	6.1 KMeans algorithm
	6.2 Dataset resampling

	7 Quantum and classical machine learning training
	7.1 Adam implementation details
	7.2 TPE implementation details

	8 Simulation results
	8.1 Feature reduction
	8.1.1 VQC's robustness to discrete features

	8.2 Dataset reduction
	8.2.1 Implementation of KMeans
	8.2.2 Application to QML

	9 Real quantum computers results
	10 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Author disclaimer
	Supplementary material
	References

