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We consider the problem of learning with sensitive features under the privileged

information setting where the goal is to learn a classifier that uses features

not available (or too sensitive to collect) at test/deployment time to learn a

better model at training time. We focus on tree-based learners, specifically

gradient-boosted decision trees for learning with privileged information. Our

methods use privileged features as knowledge to guide the algorithm when

learning from fully observed (usable) features. We derive the theory, empirically

validate the e�ectiveness of our algorithms, and verify them on standard

fairness metrics.
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1. Introduction

Machine learningmethods that consider learning from sources beyond just a single set of
labeled data have long been explored under several paradigms—learning with advice (Towell
and Shavlik, 1994; Fung et al., 2002; Maclin et al., 2005; Kunapuli et al., 2013; Das et al.,
2021), learning from preferences (Boutilier, 2002; Drummond and Boutilier, 2014; Pang
et al., 2018), learning from qualitative constraints (Altendorf et al., 2005; Yang et al., 2013;
Kokel et al., 2020), active learning (Settles, 2012), transductive learning (Joachims, 1999),
and as knowledge injection inside deep learning (Ding et al., 2018; Wang and Pan, 2020; Bu
and Cho, 2021).

We view the problem of learning with sensitive information using the lens of privileged
information. For instance, in a clinical study for improving adverse pregnancy outcomes, it
is natural to solicit information about race or sexual orientation. While race can potentially
affect the prior chances of an outcome (e.g., gestational diabetes or pre-term birth), the
treatment plan in the clinic should not discriminate based on this feature. Similarly, while
age/zipcode could be important to obtain a prior about the capacity to repay a loan, it
should not be used as a feature (due to its sensitive nature) during deployment of the system.
Chouldechova et al. (2018) consider these sensitive information as non-discriminatory for
fair machine learning. Kilbertus et al. (2018) encrypt sensitive attributes, and Williamson
and Menon (2019) measure the fairness risk on sensitive features.

In a different direction, Vapnik and Vashist (2009) introduced the problem of learning
from privileged information where more information in the form of features is provided
during training but is not available during testing/deployment. These privileged features

could be sensitive features (race/age/sexual orientation) or features that are simply too
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expensive to collect during deployment (expensive sensors or
FMRIs—functional magnetic resonance imaging, in a small clinic).
Hence, the classifier cannot use these privileged features during
deployment but may still be able to use them to improve the quality
of the model.

Our key idea is to use the privileged features as an “inductive
bias” or as knowledge constraints. To this effect, we develop two
versions of the gradient boosting algorithm—in the first approach,
a prior model is learned on the privileged/sensitive features. This
prior model is then used to constrain the model learned from the
fully observable features. Since this is inspired from the knowledge-
based learning literature, we refer to this as KbPIB (knowledge-
based privileged information boosting). In the second approach,
the models over the privileged/sensitive features and the observed
features are learned in a joint stage-wise manner. At each iteration,
first a small tree is learned on the privileged features, the set of
which is used as constraints for the observed feature model and the
process is repeated. Since these are learned jointly, we refer to this
as JPIB (joint privileged information boosting). The intuition is that
while the privileged features provide extra information, they are
not fully relied on when building the model. The resulting model,
in essence, is a trade-off between the privileged information and
the fully observed features—as is typically done in advice-based
methods where the data and the expert knowledge are explicitly
considered when learning.

Wemake a few key contributions: First, inspired by Quadrianto
and Sharmanska (2017), we pose the problem of fair machine
learning with sensitive data using the framework of privileged
information. Second, we present algorithms for learning trees
via functional-gradient boosting and show the gradient updates.
Specifically, we derive two different types of boosted algorithms
that can effectively exploit the sensitive/privileged features. Finally,
we perform exhaustive empirical evaluation that demonstrates the
effectiveness of the proposed approaches on different types of
test beds—standard benchmark data sets, fairness data sets with
sensitive information, and real-world medical data sets where the
goals are to predict gestational diabetes, nephrotic syndrome, and
rare disease occurrences. The results across data sets and evaluation
metrics (including fairnessmetrics) clearly show the effectiveness of
the algorithms.

2. Background

2.1. Learning with privileged information

Learning with privileged information is inspired by
richer forms of interactions between human teachers and
students (Vapnik and Vashist, 2009). Particular (labeled)
examples are given to the student along with explanations
and intuitions that are able to speed up the comprehension
of novel concepts. More formally, learning with privileged
information assumes that more information is known about
the training examples. However, as the expert is not available
for testing, this additional information is not available at test
time. Thus, training examples have the form 〈yi, xCFi , xPFi 〉
while testing examples have the form 〈yi, xCFi 〉. CF refers to the

classifier/normal features available during testing and PF refers to
the privileged features.

Learning algorithms for privileged information have previously
focused on SVMs (Vapnik and Vashist, 2009; Sharmanska et al.,
2013). The original formulation—SVM+ (Vapnik and Vashist,
2009)—learned the difficulty of each training example. The key
idea was to learn an SVM in the privileged space (using {〈yi, xPFi 〉})
and find the margin with respect to this SVM for each training
example. Training examples closer to the margin are considered
“more difficult” as they are closer to the decision boundary while
examples farther from the margin are considered “less difficult.”
Since the introduction of the new learning paradigm and the
corresponding SVM+ approach, there is a growing body of work on
learning with privileged information. Pechyony and Vapnik (2010)
developed a theoretical justification of the learning setting. Liang
et al. (2009) established links between the SVM+ and the multi-task
learning. Hernández-Lobato et al. (2014) showed that the privileged
information can naturally be treated as noise in the latent function
of a Gaussian process classifier (GPC). In contrast to the standard
GPC setting, the latent function becomes a natural measure of
confidence about the training data by modulating the slope of the
GPC sigmoid likelihood function.

Most closely related to our study, Chen et al. (2012) extend
the setting to AdaBoost, and Lapin et al. (2014) relate privileged
information to importance weighting within SVMs. Decision tree
learners, however, have not been explored in this context yet.
Instead of givingmore importance to certain examples, we establish
a novel connection to knowledge-based machine learning that
relies on existing knowledge (Section 3.2). We show that the
knowledge we have beforehand, which can be described with
privileged features, can also be represented using labels assigned
to each training example. These labels help guide the learning
process. Moreover, we improve the learning process by introducing
a regularization term into the log-likelihood for boosting method.
This regularization term is calculated as the KL divergence between
the distribution using classifier features and the distribution using
privileged features, which are available only at training time and not
during testing.

While our setting is similar to the generalized
distillation (Lopez-Paz et al., 2016), the fundamental principles
are different. We focus on two sets of features—privileged features
and normal features. Our goal is to build a model (teacher model)
on privileged features that guides the learning of a model (student
model) on normal features to improve performance. While our
strategy at a high-level appears similar to knowledge distillation by
Hinton et al. (2015), there are notable and important differences as
follows: (1) the teacher function and student function are learned
sequentially, and (2) predictions of teacher model are included as
soft labels for the student model.

Our study is also related to knowledge injection in deep
networks. Ding et al. (2018) use mean images as (color) knowledge
to produce class weight and object occurrence frequencies as
scene knowledge to determine scene weight; Wang and Pan
(2020) integrate logical knowledge in the form of first-order logic
as knowledge regularization into deep learning system; Bu and
Cho (2021) perform neuro-symbolic integration using domain
knowledge as first-order logic rules.
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2.2. Functional gradient boosting

Many probabilistic learning methods learn the conditional
distribution P(yi|xi;ψ) using standard techniques such as gradient-
descent that is usually performed on the log-likelihood w.r.t.
parameters to find the best set of parameters that model the training
data. Functional Gradient Boosting methods (GB; Friedman, 2001;
Dietterich et al., 2008; Natarajan et al., 2012, 2015), on the other
hand, represent the likelihood in a functional form (typically

using the sigmoid function) P(yi|xi;ψ) =
eψ(yi ,xi)

∑

y′ e
ψ(y′ ,xi)

where

ψ is a regression function defined over the examples. Given
this representation, GB methods obtain the gradient of the log-
likelihood w.r.t. ψ(yi = 1, xi) for each training example, xi
as: 1(yi) = I(yi = 1) − P(yi = 1|xi;ψ), where I is an
indicator function which returns 1 for positive examples and 0
for negative examples in a binary classification task. The GB
approach starts with an initial regression function, ψ0 = 0 to
compute the probabilities of the training examples and thereby
the gradients 11. A regression function (typically a tree), 1̂1,
is fit on the training examples with the gradients as the target
regression values. This learned function is now added toψ0, and the
process is repeated with ψ1 = ψ0 + 1̂1. Given that the stage-wise
growth of trees resembles boosting, and that the process involves
computing gradients of functions, this method is called Gradient

Boosting (GB).

2.3. Sensitive features in fairness

Several studies within fairness in ML treat the sensitive
information (e.g., race, gender, or financial status) as non-
discriminatory (Žliobaitė, 2017; Chouldechova et al., 2018).
Several approaches have been proposed to avoid the use of
sensitive features, including by utilizing encrypted sensitive
attributes (Choudhuri et al., 2017; Kilbertus et al., 2018) or utilizing
sensitive features to measure the fairness risk by proposing a
new definition of fairness to include categorical or real-valued
sensitive groups beyond binary sensitive features (Angwin et al.,
2016; Williamson and Menon, 2019). Krasanakis et al. (2018)
reweigh training samples on trade-offs between accuracy and
disparate impact. Kamishima et al. (2012) regularize on prejudice
(a statistical dependence between sensitive features and other
information) to achieve fairness. Quadrianto and Sharmanska
(2017) enforce fairness constraints through privileged learning.
They consider the setting from the study by Vapnik and Vashist
(2009) to build a privileged model on all features, optimizing
the prediction boundary of a privileged model and adapting the
boundary of the normalmodel. On the other hand, we use a boosted
model as the privileged model relying only on the privileged
features and incorporate constraints from the privilegedmodel into
the objective of the model constructed on non-privileged features.
Wang et al. (2021) approach fairness by putting strict restraints on
the ability to infer sensitive features from the available features.
Their approach focuses on improving fairness while maintaining
performance. Alternatively, our approach aims to leverage the
sensitive information to improve performance. Empirically, we
demonstrate that our approach maintains fairness.

3. Boosting with privileged sensitive
information

Motivating real-world task: The Nulliparous Pregnancy
Outcomes Study (NuMoM2b) monitors expectant mothers with
the goal of predicting adverse pregnancy outcomes (Haas et al.,
2015). The data set includes clinical tests (e.g., BMI, METs)
and demographic information. Our goal is to use this data to
predict gestational diabetes. While the prevalence of gestational
diabetes varies significantly across ethnic groups, it may not be
appropriate to use the sensitive demographic information to make
the diagnoses. Thus, we may utilize this privileged information
during training but want to withhold it from our diagnostic
models. A similar consideration is in our rare disease data
where certain demographic information, such as age, gender, and
marital status, is considered privileged and cannot be used during
deployment. While we focus on four specific medical tasks, one
could imagine such situations in other high social impact problems
including, but not limited to, credit card/home/auto/education loan
approvals, hiring decisions, clinical study recruitment, or allocation
of resources, where some sensitive information could be used while
training to better understand the problem but cannot be used
during deployment.

3.1. Problem formulation

Recalling that our goal is to learn robust models that do not
include sensitive/privileged information but still leverage them to
improve training. Our problem is formally defined as follows:

GIVEN: A set of training examples {〈yi, xCFi , xPFi 〉} and a set of test
examples {〈yi, xCFi 〉}, where

F = CF ∪ PF & CF ∩ PF = ∅

TO DO: Learn a classifier that employs only the classifier features
CF for classifying the test data and can utilize the privileged
features PF effectively in learning a better model.

F is the set of all features, CF is the set of features that are
available at both training and testing time (and we call them
classifier features), PF are the privileged features that are accessible
only during training and not during testing, yi is the label of the
ith example and xi is the feature of that example. We use {} to
denote sets. For example, the input to the algorithm is the set of
all examples {〈yi, xCFi , xPFi 〉}. We first consider a knowledge-based
approach to leverage with privileged features. Then, we extend this
approach to joint training over the classifier and the privileged
features. While we use tree-based classifiers, our approach can
easily be extended to other clustering/classification techniques.

3.2. Knowledge-based privileged
information boosting

Inspired by knowledge-based machine learning methods, Fung
et al. (2002), for example, reformulated SVM classifier that
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Input: Classifier features: training data XCF
train,Ytrain;

validation data XCF
val ,Yval; privileged features: training

data XPF
train,Ytrain; validation data XPF

val ,Yval

Parameter: Number of trees N, early-stop parameter P

Output: Learned model ψ

1: Initialize model ψ0 = 0, counter C = 0, score R,

best number of trees index j

2: ψPF ← NF(XPF
train,Ytrain,XPF

val ,Yval) {

Supplementary Algorithm 1}

3: for i = 1 to N do

4: 1i ← ComputeGradient(XCF
train,Ytrain,ψi−1,ψPF)

{Equation (2)}

5: 1̂i ← FitRegressionValue(XCF
train,1i)

6: ψi ← ψi−1 + 1̂i

7: Rval ← Evaluate(XCF
val ,Yval,ψi)

8: j, R, C ← EarlyStop(i, j, R, Rval, C, P) {

Supplementary Algorithm 2}

9: end for

10: return ψj

Algorithm 1. KbPIB: Knowledge-based Privileged Information Boosting.

uses previous knowledge in the form of multiple polyhedral sets;
Kunapuli et al. (2013) incorporate expert advice in states and
actions by stating preferences; Towell and Shavlik (1994) map
domain theories in propositional logic into neural networks, which
leverage external knowledge via human input to guide the learning
process; we consider privileged information as a source of high-
quality knowledge. We introduce twomodels: a model learned over
the classifier features and a privileged model that is learned over
the privileged features in Algorithm 1. By attempting to guide the
predictions of the classifier model with the privilegedmodel, we can
potentially find a way to insert informed priors to the labels based
on both the privileged and classifier features. We first train a model
over privileged features at line 2 in Algorithm 1. Then, from lines
3 to 9, we learn a model over the classifier features while reducing
the margin with the privileged model. An overview of our KbPIB
approach is shown in Figure 1.

In Vapnik’s SVM+ model, the PF features were used to define
an oracle function that can predict the slack on each example. In
our probabilistic framework, we use the PF features to build an
oracle model that can predict a close approximation to the true
distribution of each example which is not captured by the discrete
class labels. Instead of modeling the error (distance between the
labels and the underlying distribution), we directly model the
distribution of labels using privileged features during training. We
use P(y|xPF;ψ ′) to indicate this true label distribution learned over
privileged features and P(y|xCF;ψ) for the distribution learned
over classifier features. Similar to SVM+, we can now use the
privileged features to model this difference between the true
distribution and the label distribution. Since the training labels are
completely observed, the privileged features can be directly used
to model the distribution of the examples. Thus, we learn a model
that minimizes the error of the model over the training labels and

FIGURE 1

Overview of proposed approaches KbPIB and JPIB [Both

approaches train a model on CF, while KbPIB trains a model on PF

once and uses it as a bias for the classifier, JPIB learns models on CF

and PF in an iterative manner (in a manner loosely similar to

co-training); models on PF data are dropped after training to avoid

consideration during testing/deployment].

the margin between the distribution P(y|xPF;ψ ′) and P(y|xCF;ψ),

min
ψ

∑

i

(

− logP(yi|x
CF
i ;ψ)

︸ ︷︷ ︸

NLL

+α · KL
(

P(yi|x
PF
i ;ψ

′)||P(yi|x
CF
i ;ψ)

)

︸ ︷︷ ︸

KL Divergence

)

NLL denotes the negative log-likelihood of the training data
that models the error while KL denotes the KL divergence between
P(∗;ψ ′) and P(∗;ψ) and is equal to

∑

i P(i;ψ
′) log P(i;ψ ′)

P(i;ψ) . We use
α to model the trade-off between fitting to the labeled data versus
fitting to the distribution learned over the privileged features. We
can now use gradient boosting with respect to ψ(yi = 1, xCFi ) to
minimize this objective function.

Notably, in our formulation, the model ψ ′ could be provided
by the domain expert on the privileged features (for instance, a
Bayesian network or a neural network that is used in the literature
on these privileged features). We do not assume any specific form
for ψ ′, and the goal is to use this privileged knowledge. In our
experiments, we learn ψ ′ from data. If the model of ψ ′ is provided,
one could treat that as a regularizer (similar to knowledge-based
learning).

The first term of our objective function is the standard log-
likelihood function which has the gradient as follows1:

∂
∑

i log P(yi|x
CF
i ;ψ)

∂ψ(yj = 1, xCFj )
= I(yj = 1)− P(yj = 1|xCFj ;ψ) (1)

1 We use ψ(yi = 1, xCFi ) to denote the probability mass of being positive

given the classifier features.
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For the second term, we derive the gradients below:

∂KL
(

P(yi|xPFi ;ψ
′)||P(yi|xCFi ;ψ)

)

∂ψ(yi = 1, xCFi )

=
∂

∑

yi
P(yi|xPFi ;ψ

′)
(

logP(yi|xPFi ;ψ
′)− log P(yi|xCFi ;ψ)

)

∂ψ(yi = 1, xCFi )

= −
∂

∑

yi
P(yi|xPFi ;ψ

′) logP(yi|xCFi ;ψ)

∂ψ(yi = 1, xCFi )

= −
(

P(yi = 1|xPFi ;ψ
′)
∂ log P(yi = 1|xCFi ;ψ)

∂ψ(yi = 1, xCFi )

+ P(yi = 0|xPFi ;ψ
′)
∂ log P(yi = 0|xCFi ;ψ)

∂ψ(yi = 1, xCFi )

)

= −
(

P(yi = 1|xPFi ;ψ
′) ·

(

1− P(yi = 1|xCFi ;ψ)
)

+ P(yi = 0|xPFi ;ψ
′) ·

(

−P(yi = 1|xCFi ;ψ)
)
)

= P(yi = 1|xCFi ;ψ)− P(yi = 1|xPFi ;ψ
′)

We combine the gradient terms to get the final gradient for each
example as follows2:

1(xCFi ) = I(yi = 1)− P(yi = 1|xCFi ;ψ)

− α ·
(

P(yi = 1|xCFi ;ψ)− P(yi = 1|xPFi ;ψ
′)
)

(2)

Intuitively, if the learned distribution has a higher probability
of an example belonging to the positive class compared with the
distribution, P(yi = 1|xCFi ;ψ) − P(yi = 1|xPFi ;ψ

′) would be
positive and the gradient would be pushed lower. Hence, the
additional term would push the gradient (weighted by α) toward
the distribution as predicted by our privileged features.

The parameter α controls the influence of the privileged
data on the learned distribution. When α = 0, privileged
features are ignored resulting in the standard functional gradient.
As α is increased, the gradient is pushed lower, for example,
where predicted probability is higher than true probability (w.r.t.
privileged model) and vice versa.

3.3. Joint privileged information boosting

While the previous approach used the privileged information
to influence final model learned over CF at each step in gradient
boosting, it did not leverage this learned model to further tune the
privileged tree labels. By attempting to reduce the margin by jointly
training the two models, we can potentially find more consistent
predictions based on both the privileged and classifier features.
Similar to Equation (2), the gradients can be computed for learning
the true distribution using the privileged features with P(∗;ψ) and
P(∗;ψ ′) switched around.

1(xPFi ) = [I(yi = 1)− P(yi = 1|xPFi ;ψ
′)]

− α · [
(

P(yi = 1|xPFi ;ψ
′)− P(yi = 1|xCFi ;ψ)

)

] (3)

2 More details of derivation in Supplementary material.

Input: Classifier features: training data XCF
train,Ytrain,

validation data XCF
val ,Yval; privileged features: training

data XPF
train,Ytrain

Parameter: Number of trees N, early-stop patience P

Output: Learned model ψ

1: Initialize models ψPF
0 = 0 and ψ0 = 0, counter C = 0,

score R, best number of trees index j

2: for i = 1 to N do

3: 1i ← ComputeGradient(XCF
train,Ytrain,ψi−1,ψPF

i−1)

{Equation (2)}

4: 1̂i ← FitRegressionValue(XCF
train,1i)

5: ψi ← ψi−1 + 1̂i

6: Rval ← Evaluate(XCF
val ,Yval,ψi)

7: j, R, C ← EarlyStop(i, j, R, Rval, C, P)

{Supplementary Algorithm 2}

8: 1PF
i ← ComputeGradient(XPF

train,Ytrain,ψPF
i−1,ψi)

{Equation (3)}

9: 1̂PF
i ← FitRegressionValue(XPF

train,1
PF
i )

10: ψPF
i ← ψPF

i−1 + 1̂
PF
i

11: end for

12: return ψj

Algorithm 2. JPIB: Joint Privileged Information Boosting.

Given these gradients, we can now describe our approach called
JPIB to perform gradient boosting jointly over the classifier features
and the privileged information. We iteratively learn regression
functions (trees in our case) to fit to these gradients. However, the
key difference fromKbPIB is that we perform co-ordinate gradient
descent, i.e., we alternate between taking a gradient step along ψ
and ψ ′. From lines 2 to 11 in Algorithm 2, we learn one regression
tree using the gradients based on the classifier features (lines 2–
5), compute the gradients for the privileged features, learn a tree
for the privileged features (lines 8–10), and repeat this at most N
times to generate at most N trees of the boosting model. The early-
stop mechanism at line 7 helps return the best performing model
on validation data (line 6).

3.4. Sensitive attributes and fairness
constraints

Notably, since our algorithms drop the privileged information
after learning, one could argue that they do not discriminate
between the different groups at deployment time. However, one
could go even deeper and establish a strong connection between

the learning framework and the fairness constraints. Given
the above definitions of the objective function, several fairness
constraints can be easily captured by our model. For instance, to
handle metric fairness, the privileged model could simply be a
constraint of the form

(∀x, y)sim(x, y) H⇒ h(x) = h(y)

that can be used inside the second term of Equations (2) and (3),
where the second term is the probability of the constraint satisfied

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2023.1260583
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Yan et al. 10.3389/frai.2023.1260583

by the model (computed by counting). Weakly meritocratic

fairness can be handled by the form

(∀x, y)merit(x) ≥ merit(y) H⇒ ψ(x) > ψ(y)

while group fairness can be handled by

normalgroup(x) ∧ protectgroup(y) H⇒ h(x) = h(y)

and group parity can be handled by using precision and recall.
Similar to the metric constraints, all these constraints can be
included in the second term of the model. Essentially one could
drop the privileged tree model and use these constraints. Another
way is to include these constraints along with the privileged
model. However, as we show in our experiments, with treating the
sensitive attributes as privileged features, the algorithm performs
significantly better in terms of the fairness criteria compared with
the boosting baseline.

4. Experiments

Our experimental evaluations aim to answer the following
questions:

Q1: How effective is incorporating privileged information into
gradient boosting?

Q2: Can jointly updating the privileged model with the classifier
improve performance?

Q3: How is model fairness affected by withholding sensitive
information from the classifier?

We present empirical evaluations of our proposed
approaches—(KbPIB) and (JPIB). We evaluate the approaches
in two ways. To evaluate the effect of privileged information,
we compare against learning a gradient-boosted model over
only the classifier/normal features, NF. To evaluate fairness,
our approaches are compared with All, which is learned over
both CF and imputed PF based on mode. Notably, though we
explicitly evaluate against the SVM-based approach and fairness
approach, the key question in our study is whether the notion of
privileged information can help gradient boosting and whether
the sensitive features are handled appropriately. We adopt 10-fold
cross-validation for all datasets: 8-folds of training, 1-fold of
validation, and 1-fold of test. Due to the data size and very few
negative instances in the dataset Nephrotic Syndrome, we use
5-fold cross-validation: 3-folds of training, 1-fold of validation,
and 1-fold of test. The value of α and thresholds of precision
and recall are selected based on the validation data. More details
are presented in Supplementary material. The experiments are
conducted on the machine with CentOS Linux 7, CPU of Intel
Xeon E5-2630 with 2.40 GHz and 16 cores, and 512 GB RAM. The
source code (details of dependency) of our methods and prepared
data can be downloaded.3

3 https://github.com/starling-lab/PI_GBM

TABLE 1 Standard benchmark datasets and fairness benchmark datasets.

Dataset PF #F #Instances N/P

Heart Tests 13 297 1.17

Car Main. 6 1,728 2.34

Spam Word freq. 57 4,601 1.54

Adult Age, race, sex 13 30,162 3.02

Diab. Sex 17 46,176 3.13

Dutch Sex 11 60,420 1.10

Bank Age, mar. 16 45,211 7.55

Credit Edu., mar., sex 23 30,000 3.52

COMP. Race, sex 8 6,172 1.20

C. V. Race, sex 8 4,015 5.16

Comm. Race 21 1,994 15.34

St. M. Age, sex 32 395 0.49

St. P. Age, sex 32 649 0.18

OUL. Sex 10 21,562 0.47

KDD Race, sex 23 284,556 15.35

PF, privileged features; #F, #features; N/P, negative positive ratio; main., maintenance; edu.,

education; mar., marital status.

4.1. Datasets

We employ three types of datasets: standard benchmarks,
medical datasets, and fairness benchmarks. The standard
benchmarks consist of three datasets from UCI ML
repository (Dheeru and Taniskidou, 2017). The fairness
benchmarks include 12 datasets from 10 data sources:
Adult (Kohavi, 1996), Diabetes (Diab.) (Strack et al., 2014),
Dutch Census (Dutch) (Van der Laan, 2000), Bank Marketing
(Bank) (Moro et al., 2014), Credit Card Clients (Credit) (Yeh
and Lien, 2009), COMPAS (COMP.) and COMPAS Violence
(C. V.) (Angwin et al., 2016), Student–Mathematics (St. M.) and
Student–Portuguese (St. P.) (Cortez and Silva, 2008), OULAD
(OUL.) (Kuzilek et al., 2017), Communities and Crime (Comm.),
and KDD Census Income (KDD) (Dheeru and Taniskidou,
2017). While we describe the medical datasets in more detail, the
properties of standard and fairness benchmarks are presented in
Table 1.

4.2. Real-world medical datasets

4.2.1. NuMoM2b_a
Polygenic risk scores (PRS) for type 2 diabetes (T2D) can

improve risk prediction for gestational diabetes (GD) (Haas
et al., 2015). We use PRS as the privileged feature. Demographic
information and clinical history serve as normal features: body
mass index (BMI), exercise levels or metabolic equivalents
of time (METs), age, diabetes history (DM_Hist), polycystic
ovary syndrome (PCOS), and high blood pressure (HiBP). The
classification task is to predict GD. There are 3,657 instances with
Neg/Pos ratio of 25.89.
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4.2.2. NuMoM2b_b
We use the attribute race as privileged feature, which often is

not usable during test or deployment for privacy concern (Haas
et al., 2015). The normal features and classification task are same
as NuMoM2b_a. There are 6,164 instances with the Neg/Pos ratio
of 23.76.

4.2.3. Nephrotic syndrome
A novel dataset of symptoms that indicates kidney damage is

sourced from Dr Lal PathLabs, India.4 This consists of 50 clinical
reports with patient history information. The privileged features
are age and gender. History of other diseases, Edema duration,
urine test, and blood reports are used as normal features. The
classification task is to predict Nephrotic Syndrome. The Neg/Pos
ratio is 0.14.

4.2.4. Rare disease
This dataset is collected to identify rare diseases from

behavioral data (MacLeod et al., 2016). We consider age, gender,
and marital status as privileged features. The survey questions are
used as normal features and include demographic information,
disease information, technology use, and health care professional
inputs. The boolean classification task is to predict the presence of
rare diseases. There are 284 instances with the Neg/Pos ratio of 2.69
and 69 features.

4.3. Results

We first compare our KbPIB and JPIB approaches to the
baseline NF that does not use privileged information during
training. We evaluate the approaches based on the AUC ROC, as
shown in Table 2, due to class imbalance. Blue denotes when either
of our approaches outperform the baseline. The best performance is
bolded. Overall, our approaches outperform the baseline, showing
improvement in 18 out of 19 datasets. Both of ourmethods perform
at least as well as the baseline across the rest of the datasets. Notably,
both KbPIB (2 out of 4) and JPIB (3 out of 4) outperform the
baseline in real-world medical tasks, where sensitive information
includes demographic information. The NS dataset, on the other
hand, has a large number of positives to negatives (but a small
number of examples over all), and the base model that uses the
urine tests gets nearly perfect example. It is an example of a
situation where privileged information does not quite helpful, and
it is natural that in many domains, the data might be sufficient to
learn a good predictive model and extra information may not be
helpful. We present this result to show the absence of improvement
and acknowledge this case. KbPIB performs slightly worse than the
baseline NF on three domains. In future, we can attempt different
classifiers on privileged features and normal features.

We also evaluate the approaches based on precision and
recall in Table 3 due to class imbalance. In 6 out of 19 datasets,
our approaches yield both higher precision and recall. Our
approaches achieve higher precision and higher recall in 12

4 https://www.lalpathlabs.com/

TABLE 2 AUC ROC.

Dataset NF KbPIB JPIB SVM+

Heart 0.792 0.810 0.798 0.746

Car 0.845 0.846 0.846 0.841

Spam 0.961 0.961 0.962 0.934

N2b_a 0.658 0.656 0.684 0.690

N2b_b 0.643 0.652 0.655 0.641

NS 0.989 0.989 0.989 0.5

Rare 0.531 0.614 0.560 0.667

Adult 0.714 0.725 0.719 –

Diab. 0.562 0.561 0.566 –

Dutch 0.744 0.763 0.764 –

Bank 0.681 0.696 0.714 –

Credit 0.701 0.703 0.703 –

COMP. 0.618 0.627 0.643 0.698

C. V. 0.567 0.596 0.609 0.703

Comm. 0.893 0.883 0.899 0.919

St. M. 0.959 0.974 0.975 0.959

St. P. 0.908 0.921 0.914 0.914

OUL. 0.523 0.532 0.523 0.534

KDD 0.889 0.890 0.890 –

KbPIB and JPIB outperform the baseline NF in nearly all the datasets. Results with standard

deviation in Supplementary material. “–” indicates out-of-memory error. Bold values are the

best scores across different methods.

datasets. Collectively, our approaches that incorporate privileged
information are able to achieve better performance across several
metrics (Q1).

Comparing AUC ROC in Table 2, JPIB outperforms KbPIB

in 10 and achieves at least the same performance in 14 out of
19 datasets. Comparing precision and recall in Table 3, precision
of JPIB outperforms KbPIB in 10 and achieves at least the same
performance in 11 datasets; recall of JPIB outperforms KbPIB in 6
datasets and achieves at least the same performance in 7 datasets.
Overall, JPIB outperforms KbPIB, suggesting that updating the
privileged model with the classifier improves gradient boosting
with sensitive information (Q2).

Intuitively, we expect the gains from our approach to be relative
to the quality of the privileged information. When privileged
information is highly discriminative, we expect greater gains from
our approach and vice versa. For the standard benchmark and
medical datasets (ref. Table 2), there is a correlation between the
quality of the privileged information and the performance. We
compare the performance only using the privileged features with
KbPIB and JPIB, respectively. The Pearson correlation values of
the AUC ROC are 0.237 (KbPIB) and 0.306 (JPIB). This helps
explain the reason that JPIB outperforms KbPIB overall (Q2).

4.3.1. Prior framework for privileged information
To compare with previous study of using privileged

information with SVM, we run SVM+ on our data splits and
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TABLE 3 Precision and recall in first and second rows, respectively.

Dataset NF KbPIB JPIB

Heart 0.682± 0.0809 0.714±0.0819 0.761± 0.0774

0.786± 0.1269 0.816±0.1117 0.707± 0.1300

Car 0.588± 0.0389 0.592±0.0384 0.581± 0.0342

0.908± 0.0706 0.898±0.0800 0.923± 0.0758

Spam 0.858± 0.0200 0.873±0.0218 0.859± 0.0248

0.883± 0.0251 0.868±0.0270 0.884± 0.0268

N2b_a 0.101± 0.0611 0.078±0.0476 0.093± 0.0645

0.553± 0.3914 0.639± 0.3821 0.597± 0.4258

N2b_b 0.081± 0.0548 0.065± 0.0503 0.064± 0.0379

0.572± 0.3901 0.628± 0.4250 0.796± 0.3610

NS 0.960± 0.0894 0.960± 0.0894 0.960± 0.0894

0.978± 0.0497 0.978± 0.0497 0.978± 0.0497

Rare 0.286± 0.0651 0.340± 0.0885 0.324± 0.1226

0.879± 0.2174 0.661± 0.1912 0.616± 0.2556

Adult 0.447± 0.0225 0.418± 0.0565 0.452± 0.0371

0.631± 0.0229 0.704±0.1212 0.612± 0.0442

Diab. 0.243± 0.0029 0.245±0.0074 0.247± 0.0081

0.972± 0.0611 0.946± 0.1307 0.943± 0.0864

Dutch 0.835± 0.0656 0.736± 0.1237 0.770± 0.1173

0.572± 0.0662 0.682± 0.1439 0.663± 0.1423

Bank 0.308± 0.0300 0.304± 0.0292 0.312± 0.0483

0.495± 0.1720 0.572± 0.1140 0.522± 0.1141

Credit 0.439± 0.0731 0.487± 0.1071 0.463± 0.0852

0.599± 0.0951 0.539± 0.1207 0.557± 0.1323

COMP. 0.520± 0.0476 0.555± 0.0798 0.559± 0.0698

0.825± 0.1840 0.666± 0.2403 0.676± 0.2124

C. V. 0.271± 0.0426 0.309± 0.0426 0.228± 0.0753

0.340± 0.1536 0.434± 0.1490 0.584± 0.3006

Comm. 0.505± 0.1356 0.447± 0.0957 0.485±0.1200

0.411± 0.1249 0.515± 0.1398 0.485± 0.1805

St. M. 0.901± 0.0368 0.939± 0.0486 0.947±0.0519

0.951± 0.0364 0.936± 0.0435 0.925± 0.0580

St. P. 0.952± 0.0229 0.938± 0.0257 0.929± 0.0337

0.914± 0.0429 0.969± 0.0272 0.958± 0.0332

OUL. 0.685± 0.0114 0.691± 0.0146 0.688±0.0125

0.787± 0.0773 0.759± 0.1103 0.691± 0.1659

KDD 0.391± 0.0176 0.386± 0.0127 0.391± 0.0175

0.601± 0.0245 0.603± 0.0213 0.601± 0.0248

KbPIBand JPIB improve precision and recall in a big margin over the baseline NF across

multiple datasets. Bold values are the best scores across different methods.

include results, as shown in Table 2. The major drawback of the
previous study with SVM is that it lacks interpretability and

FIGURE 2

Performance comparison between JPIB and SVM+ (positive value if

JPIB performs better; SVM+ fails to train on six large datasets).

cannot handle large datasets well. SVM+ runs slowly on large
datasets (∼20 k instances) and fails to train on datasets with
∼30+k instances (6 datasets) due to out-of-memory error. As the
performance difference between our method JPIB and SVM+, as
shown in Figure 2, our method can outperform SVM+ (Q1). For
some domains, our method JPIB gets lower AUC ROC compared
with SVM+. This shows that SVM is still a very competitive base
classifier. Applying our methods to a more powerful base classifier
is a prospective future study to further improve the performance
on more domains.

4.3.2. Privileged information and fairness
We evaluate fairness on the fairness benchmark datasets

(Table 4) and the real-world medical datasets. We compare against
several fairness metrics: Statistical Parity (SP; Dwork et al., 2012),
Equalized Odds (EO; Hardt et al., 2016), and Absolute Between-
ROC Area (ABROCA; Gardner et al., 2019). SP measures the bias
of predicting positive for different groups. We use SP to measure
the overall fairness in predictive accuracy of our methods. EO
measures the bias of predicting positive between different groups
conditioned on the label. We take EO to further examine the
fairness in predictive accuracy of our methods, specifically given
different labels. ABROCA measures the divergence of ROC curves
between different groups. ABROCA is adopted to quantify the
fairness of our methods over all possible thresholds.

SP = |P(ŷ = +|s = 0)− P(ŷ = +|s = 1)|

EO =
∑

v∈{+,−}

|P(ŷ = +|s = 1, y = v)− P(ŷ = +|s = 0, y = v)|

ABROCA =

∫ 1

0
|ROC1(t)− ROC0(t)| dt

In addition to the previous baseline, we also compare against
All, which learns a model that contains (imputed) privileged and
classifier features. However, at test time, it estimates the privileged
features based on the most common training value. Blue denotes
when our approach outperforms All and bold denotes the best
performance. As shown in Table 4, our approach achieves better
fairness metrics than All in 10 (EO), 10 (SP), and 10 (ABROCA)
datsests. Our approaches also perform at least as well as NF in
9 (EO), 9 (SP), and 13 (ABROCA) datasets. When considering
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TABLE 4 Scores of fairness metrics (lower values are better).

Dataset Metric NF KbPIB JPIB All

N2b_b

(race)
EO 0.112 0.071 0.040 0.075

SP 0.017 0.020 0.013 0.023

ABR. 0.115 0.114 0.098 0.129

Rare

(mar.)
EO 0.170 0.337 0.360 0.526

SP 0.067 0.126 0.130 0.155

ABR. 0.249 0.203 0.246 0.268

Adult

(sex)
EO 0.371 0.314 0.346 0.415

SP 0.049 0.071 0.070 0.081

ABR. 0.154 0.130 0.143 0.189

Diab.

(sex)
EO 0.009 0.014 0.016 0.007

SP 0.005 0.006 0.007 0.003

ABR. 0.021 0.019 0.019 0.020

Dutch

(sex)
EO 0.131 0.122 0.129 0.110

SP 0.094 0.090 0.087 0.066

ABR. 0.075 0.058 0.067 0.065

Bank

(age)
EO 0.228 0.224 0.178 0.211

SP 0.209 0.221 0.183 0.193

ABR. 0.098 0.094 0.088 0.099

Credit

(mar.)
EO 0.047 0.047 0.037 0.047

SP 0.015 0.013 0.013 0.015

ABR. 0.029 0.030 0.025 0.029

COMP.

(race)
EO 0.247 0.239 0.215 0.334

SP 0.146 0.141 0.135 0.200

ABR. 0.071 0.059 0.061 0.037

C. V.

(race)
EO 0.190 0.254 0.195 0.246

SP 0.089 0.124 0.089 0.162

ABR. 0.089 0.089 0.084 0.059

St. M.

(sex)
EO 0.210 0.187 0.184 0.199

SP 0.094 0.096 0.097 0.089

ABR. 0.048 0.038 0.038 0.052

St. P.

(sex)
EO 0.320 0.335 0.364 0.379

SP 0.070 0.069 0.081 0.088

ABR. 0.140 0.124 0.138 0.152

OUL.

(sex)
EO 0.123 0.096 0.133 0.082

SP 0.056 0.039 0.061 0.041

ABR. 0.022 0.022 0.024 0.021

KDD

(race)
EO 0.100 0.101 0.099 0.106

SP 0.054 0.055 0.054 0.060

ABR. 0.033 0.032 0.033 0.035

KbPIB and JPIB achieve significantly better fairness scores than the baseline All (sensitive

features are imputed for test) and suppress the baseline NF over different metrics across

multiple datasets. Bold values are the best scores across different methods.

FIGURE 3

Fairness comparison between JPIB and MFC (negative value if JPIB

is fairer).

the privacy or fairness of the resulting predictions, imputing the

privileged information by treating them as missing has a clear
negative impact on the resulting fairness (see “All” in Table 4).
Collectively, our approaches are able to improve performance
by leveraging sensitive privileged information while maintaining
fairness (Q3).

To further verify the fairness benefit of our approach,
we compare with MFC (Zafar et al., 2017). MFC learns
fair classifiers by leveraging measurement of decision boundary
(un)fairness, gaining fine-grained control on fairness with small
cost of accuracy. As compared with MFC, our methods improve
the prediction accuracy over the boosting baseline, and we
would like to confirm that our methods enhance fairness. We
apply MFC to our data splits and generate fairness scores on
the same datasets of Table 4. Figure 3 shows the difference of
scores of three fairness metrics between our approach JPIB

and the baseline MFC on each dataset. We can observe
that our approach JPIB achieves comparable fairness scores
to MFC.

5. Conclusion

We considered the problem of learning with privileged and
sensitive information using gradient boosting and proposed
two algorithms that learned using these information. The
extensive experiments in standard, medical, and fairness
datasets demonstrated the ability of our algorithms to
learn robust yet fair models. More extensive evaluation
on large data sets, integration of other forms of domain
knowledge into our framework, understanding the
relationship with other fairness models, and considering more
expressive models such as deep networks remain interesting
future directions.
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