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Training deepConvolutional Neural Networks (CNNs) presents challenges in terms

of memory requirements and computational resources, often resulting in issues

such as model overfitting and lack of generalization. These challenges can only

be mitigated by using an excessive number of training images. However, medical

image datasets commonly su�er from data scarcity due to the complexities

involved in their acquisition, preparation, and curation. To address this issue,

we propose a compact and hybrid machine learning architecture based on the

Morphological and Convolutional Neural Network (MCNN), followed by a Random

Forest classifier. Unlike deep CNN architectures, the MCNN was specifically

designed to achieve e�ective performance with medical image datasets limited

to a few hundred samples. It incorporates various morphological operations into

a single layer and uses independent neural networks to extract information from

each signal channel. The final classification is obtained by utilizing a Random

Forest classifier on the outputs of the last neural network layer. We compare the

classification performance of our proposed method with three popular deep CNN

architectures (ResNet-18, Shu	eNet-V2, and MobileNet-V2) using two training

approaches: full training and transfer learning. The evaluation was conducted on

two distinct medical image datasets: the ISIC dataset for melanoma classification

and the ORIGA dataset for glaucoma classification. Results demonstrate that

the MCNN method exhibits reliable performance in melanoma classification,

achieving an AUC of 0.94 (95% CI: 0.91 to 0.97), outperforming the popular CNN

architectures. For the glaucoma dataset, the MCNN achieved an AUC of 0.65

(95% CI: 0.53 to 0.74), which was similar to the performance of the popular

CNN architectures. This study contributes to the understanding of mathematical

morphology in shallow neural networks for medical image classification and

highlights the potential of hybrid architectures in e�ectively learning frommedical

image datasets that are limited by a small number of case samples.

KEYWORDS

deep learning, medical image classification, mathematical morphology, medical image
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1. Introduction

Artificial intelligence (AI) has revolutionized medical image analysis, playing a crucial
role in supporting diagnoses. Two prominent approaches have emerged: one involves
hand-crafted features coupled with traditional machine learning, while the other leverages
convolutional neural networks (CNNs). The latter approach has gained preference due to its
ability to automatically learn and extract relevant features, eliminating the need for extensive
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manual feature engineering (Sarvamangala and Kulkarni, 2022). In
the realm of CNNs, numerous architectures have been proposed,
many of which boast an extensive number of layers and parameters.
ResNet (He et al., 2016), Inception networks (Szegedy et al., 2016,
2017), MobileNet (Sandler et al., 2018), ShuffleNet (Ma et al., 2018),
and DenseNet (Huang et al., 2017) are some of the widely adopted
architectures in various medical imaging applications (Esteva et al.,
2017; Walsh et al., 2018; Lee et al., 2019; Khalifa et al., 2020; Mei
et al., 2020; Souid et al., 2021).

In addition to the widely discussed CNN architectures in the
literature, there have been proposals to enhance the functionality
of CNNs by combining them with traditional machine-learning
approaches (Wang et al., 2019; Taherkhani et al., 2020; Deepak and
Ameer, 2021). Moreover, alternative feature extraction techniques
such as the Gray-Level Co-occurrence Matrix (GLCM), Gabor
filters (Jia et al., 2020), local binary patterns (LBP) (Wetzer
et al., 2018), and morphological operations (Franchi et al., 2020)
have been explored. Interestingly, Mellouli et al. (2019) found
that combining convolution and morphology leads to improved
recognition performance compared to using these techniques
separately. Despite the numerous applications of mathematical
morphology in medical imaging (Bhateja et al., 2019; García-
Floriano et al., 2019; Zhao et al., 2021), there is a lack of studies
that explore its potential within neural networks for medical
image classification.

It is suspected that the impact of mathematical morphology
would depend on the operations chosen and the specific medical
case. Two diseases that could potentially benefit from particular
morphological operations are glaucoma and melanoma. In the
case of glaucoma, detecting this eye condition involves recognizing
specific morphological characteristics within fundus images, i.e.,
the relationship between optic disc and cup sizes, the optic nerve
of the affected eye has an irregular amount of optic nerve cupping
(Iqbal et al., 2022). Conversely, typical indicators of melanoma
include asymmetry of the lesion, irregular borders, variability
in colors, diameter larger than 5mm, and presence of nodular
components, all components present in dermoscopic images
(Garbe et al., 2022). Both conditions heavily rely on the detection
of distinct structural features. Considering that mathematical
morphology forms the basis of morphological image processing
– often employed to highlight or remove desired geometrical
structures – we hypothesized that this capability can potentially
aid in identifying the aforementioned features crucial for detecting
glaucoma and melanoma.

While different CNN architectures have shown success in
various medical image classification tasks, they also come
with certain drawbacks. One challenge is the optimization of
hyperparameters, which can be a complex task. Additionally,
to capture low-level textural information in images, small-
sized kernels are preferred, but this choice increases the
computational complexity during training. Moreover, CNNs with
significant depth and a large number of parameters require
substantial memory and computational resources, making training
computationally intensive. These factors often contribute to
inadequate training, leading to issues such as model overfitting
and a lack of generalization. To address the challenges of
overfitting and generalization, an extensive number of training

images are required, and these extensive sets are lacking in many
medical conditions.

The limited availability of large datasets for training CNNs
poses significant challenges, particularly in medical settings where
high-quality images and annotations are essential for supervised
training, validation, and testing of AI algorithms (Park and Han,
2018). The lack of diverse samples and limited sample sizes from
different geographic areas impede the generalizability and accuracy
of developed solutions (Soffer et al., 2019). Acquiring medical
image datasets for ML training purposes is a difficulty faced by
many research groups due to the scarcity and the challenges
involved in acquiring and preparing the images. Moreover,
accessing appropriate clinical installations with expensive medical
devices and the subsequent tasks of curating, anonymizing,
analyzing, and annotating clinical data can be costly and time-
consuming (Langlotz et al., 2019). Additionally, even in the case
of open-source datasets, manual inspection of each image becomes
necessary as some images may contain free-form annotations
that cannot be reliably removed using automated methods
(Willemink et al., 2020). Henceforth, publicly available well-curated
annotated medical imaging datasets with high-quality ground truth
pathological labels remain limited (National Lung Screening Trial
Research Team, 2011; Clark et al., 2013; Sudlow et al., 2015; Wang
et al., 2017; Bycroft et al., 2018; Mei et al., 2022).

When working with limited datasets, the issue of overfitting
becomes particularly concerning. To address this challenge,
researchers have proposed lightweight models that can still extract
essential features (Sarvamangala and Kulkarni, 2022). However,
it is important to note that the effectiveness of different models
also depends on the imaging modality. For instance, Morid
et al. (2021) suggest that deep models may be more suitable
for X-ray, endoscopic, and ultrasound images, while shallow
models could be optimal for processing OCT and photography
of skin lesions and fundus images. However, in situations where
gathering millions of training images is impractical, researchers
have proposed alternative techniques such as transfer learning and
data augmentation (Shorten and Khoshgoftaar, 2019) and transfer
learning (Pan and Yang, 2009).

Transfer learning has proven to be effective in medical
imaging, with many models pre-trained on non-medical imaging
datasets successfully applied to real-world medical datasets (Xie
and Richmond, 2018; Parakh et al., 2019; Ghesu et al., 2022).
However, there are differing opinions on the optimal approach.
For instance, Yu et al. (2019) found that retraining models from
scratch achieve the highest diagnostic accuracy. These varying
perspectives could be attributed to the diversity of data subjects and
imaging modalities. Nonetheless, a comprehensive investigation
of the characteristics of medical data and the application of
transfer learning with CNN models is still lacking (Kim et al.,
2022). Furthermore, it is crucial to note that successful transfer
learning requires a reasonably large sample size, diverse images,
and similarity between the training and target application images
(Cheplygina et al., 2019). Data augmentation, another technique
used in medical imaging, presents specific challenges. Firstly, it
requires a careful selection of appropriate transformations for each
modality and anatomy. Secondly, manual verification is necessary
to ensure that the transformations do not alter the image’s label
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or any relevant information. Moreover, it is important to consider
that highly augmented data may cause the training data to deviate
significantly from the testing data (Shorten and Khoshgoftaar,
2019).

Deep learning researchers must prioritize the development
of methods that can achieve good performance even with small
datasets, without the need to use data augmentation or transfer
learning because both approaches may bias clinical diagnosis. In
this regard, we propose a compact morphological-convolutional
neural network (MCNN) for medical image diagnosis, which is
trained using an extreme learning machine (ELM) and leverages
the potential of Random Forest (RF) to fully explore the features
created by the novel architecture. Unlike deep structures that
require large amounts of data for effective training, MCNN adopts
a more efficient design by incorporating mathematical morphology
to identify important non-linear features in specific medical cases.
We evaluated the effectiveness of our method by applying it to
two common medical conditions glaucoma and melanoma. The
structure of this article is organized as follows: Section 2 presents
the methodology and datasets employed, Section 3 highlights the
obtained results, Section 4 discusses our findings, and finally,
Section 5 presents our conclusion.

2. Materials and methods

2.1. Architecture

Figure 1 depicts our compact model designed to overcome
the limitations posed by the lack of large training sets in medical
diagnosis. The morphological-convolutional neural network
(MCNN) combines the power of convolutional and morphological
operations within its architecture. In this model, three independent
neural networks are trained, and their output probabilities are
then used as inputs for a Random Forest (RF) classifier (Ho, 1995)
(Figure 1A). Each neural network focuses on extracting features
from a specific color channel and is trained using the Extreme
Learning Machine (ELM) algorithm (Huang et al., 2004).

Morphological operations applied to 2D images are extensively
documented (Serra, 1986, 2020; Serra and Soille, 2012; Najman
and Talbot, 2013), for both binary and grayscale images. Their
implementation is fast, straightforward, and comes with a minimal
computational cost. Therefore, it was decided to use independent
neural networks to handle 2D images, avoiding the complexity of
direct 3D morphological operations.

The architecture of each neural network resembles a basic
CNN, consisting of convolutional layers followed by Max-Pooling
and ReLU activation, and concluding with a fully connected
layer. The convolutional and morphological layers were performed
with a stride of 1, same padding, and four filters in the first
layer and five in the second, in both cases the filters sizes
were 5 × 5 pixels the small number. Figure 1B illustrates this
architecture, showcasing its adaptability to medical classification
tasks, while Supplementary Figure 1 provides the architecture for
basic classification tasks.

Additionally, we included a morphological layer in which we
considered the following operations – erosion, dilation, opening,

closing, and morphological residual – for grayscale images:

εw (X) =

n∧

i=1

(xi ∗ wi) = X ⊖ w, (1)

δw (X) =

n∨

i=1

(xi ∗ wi) = X ⊕ w, (2)

σw (X) = (X ⊖ w) ⊕ w, (3)

γw (X) = (X ⊕ w) ⊖ w, (4)

µw = O− α,where

α ∈ {εw (X) , δw (X) , σw (X) , γw (X)} , (5)

and X and w correspond to the image and the filter,
respectively, being xi the i − pixel of the image in the
window, n the number of elements in the filter, and O the
original image.

These operations are all included within a single layer,
where they are applied in parallel. In conventional convolutional
layers, the same operation (convolution) is applied multiple
times using various filters, leading to distinct feature maps
generated from the same input image. However, in The
morphological layer, a varied assortment of operations is applied
to the same input image. Consequently, the resulting output
feature maps arise from not only diverse filters but also
distinct operations. The layer holds a sequence operation, which
allows for the sequential application of operations, resulting
in the creation of openings and closings, and a subtraction
operation, which allows us to create the morphological residual
by subtracting a morphological operation from the original
image. A different filter is learned per operation. Within this
layer, the weights, which undergo an updating process similar
to that employed for the convolutional layer, are binarized.
The binarization involves applying a threshold derived from
the midpoint between the normalization range’s two extremes.
In Figure 1C, we depict the internal configuration of the
morphological layer.

2.2. Datasets

To assess the performance of our proposed method for
disease detection, we selected a simple classification task to ensure
the proper functioning of the method, as well as two medical
classification tasks where the shape of certain elements in the
image plays a crucial role in disease identification. The first
dataset used was the German Traffic Sign Recognition Benchmark
(GTSRB) (Houben et al., 2013). Examples of the two classes
can be seen in Supplementary Figures 2A, B. The second dataset
employed was the Online Retinal Fundus Image Database for
Glaucoma Analysis and Research (ORIGA-light) (Zhang et al.,
2010) (Figures 2A, B). His dataset comprises 650 fundus images,
with 168 representing glaucoma cases and 482 representing non-
glaucoma cases. The images were meticulously annotated by
trained professionals. The original image size is 2048 × 3072
pixels, but for our study, they were resized to 256 × 256
pixels. The third dataset was obtained from the International
Skin Imaging Collaboration (2020) contribution (Figures 2C, D).
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FIGURE 1

Architecture overview: (A) The probability outputs (a neural network per channel) are the inputs of a Random Forest classifier; (B) the detailed

architecture of each neural network, the sized annotated below each layer corresponded to both ORIGA and ISIC images; (C) inside the

morphological layer, four operations are parallelly applied.

FIGURE 2

Main datasets for the study: (A) fundus image corresponding to glaucoma; (B) fundus image corresponding to a non-glaucoma eye disease; (C)

dermoscopic image corresponding to melanoma; (D) dermoscopic image corresponding to non-melanoma skin tumor (melanocytic nevus).

It consists of 4,522 images of malignant tumors (melanoma)
and 20,809 images of benign lesions (actinic keratosis, basal cell
carcinoma, benign keratosis, dermatofibroma, melanocytic nevus,
squamous cell carcinoma, and vascular lesion). The dataset includes
11,661 females, 13,286 males, and 384 individuals of unknown
gender, covering an age range of 0 to 85 years. The images were
captured from various body parts such as the anterior torso,
head, neck, lateral torso, lower extremity, oral, genital, palms,
soles, posterior torso, and upper extremity. For this study, we
randomly selected 1,000 images, consisting of 500 malignant
and 500 benign cases. These images were resized to 256 x
256 pixels.

2.3. Experimental procedures

Since this hybrid approach comprises two components—neural
networks and a traditional machine learning method—a
comparative analysis was conducted between the selected Random
Forest and three alternative classifiers: Gaussian Naïve Bayes,
Support Vector Machine (SVM), and AdaBoost. This experiment
enables us to elucidate the rationale behind incorporating the
Random Forest as the concluding component of the methodology.

The performance evaluation of the Morphological-
Convolutional Neural Network (MCNN) involved two
experimental procedures: an internal evaluation to ensure
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FIGURE 3

Methodology. Preprocessing details, internal evaluation using two experiments, and external evaluation against other common CNN architecture.

Before the final comparison, CNN’s performances were explored in detail. Two classification tasks were considered: glaucoma and melanoma.

TABLE 1 Classification results using di�erent machine learning methods as final step in the hybrid MCNN.

Classifier Accuracy Balanced accuracy AUC Error

95% CI 95% CI 95% CI 95% CI

ORIGA

Random Forest 0.73 (0.66, 0.79) 0.57 (0.50, 0.64) 0.65 (0.53, 0.74) 0.27 (0.24, 0.35)

Naïve Bayes 0.69 (0.62, 0.75) 0.55 (0.48, 0.62) 0.64 (0.55, 0.73) 0.30 (0.24, 0.37)

SVM 0.672 (0.60, 0.73) 0.51 (0.44, 0.58) 0.56 (0.46, 0.66) 0.32 (0.26, 0.39)

AdaBoost 0.66 (0.60, 0.73) 0.56 (0.49, 0.62) 0.52 (0.43, 0.62) 0.33 (0.26, 0.39)

ISIC

Random Forest 0.88 (0.84, 0.92) 0.88 (0.84, 0.91) 0.94 (0.91, 0.97) 0.11 (0.11, 0.17)

Naïve Bayes 0.84 (0.80, 0.88) 0.84 (0.80, 0.88) 0.90 (0.87, 0.94) 0.15 (0.11, 0.19)

SVM 0.86 (0.82, 0.90) 0.86 (0.82, 0.90) 0.93 (0.90, 0.96) 0.13 (0.09, 0.17)

AdaBoost 0.86 (0.82, 0.89) 0.85 (0.82, 0.89) 0.93 (0.90, 0.96) 0.14 (0.10, 0.17)

the proper functioning of the method and an external evaluation
to assess its performance on small datasets. For the internal
evaluation, two aspects were assessed using two datasets. First, the
stability of the method was measured by testing it with 10 different
seeds to observe the variability resulting from weight initialization
and the Random Forest (RF) dependence on randomness. Second,
the contribution of each channel-individual neural network to the
complete architecture was examined. The accuracy per channel
was compared with the accuracy of the complete architecture
using all three channels together and a random forest classifier.
This comparison was performed using 30 different test splits,

and the median of these runs was considered the main result for
further comparisons.

In the medical diagnostic evaluation, the two medical tasks
were compared against common CNN architectures: ResNet-18,
ShuffleNet-V2, and MobileNet-V2. Due to the limited dataset
size, architectures with the fewest parameters were chosen. Two
approaches were followed with these models: full training from
random weights and transfer learning. For the transfer learning
approach, models pre-trained with ImageNet (Deng et al., 2009).
ImageNet is a dataset available in frameworks such as Pytorch
and Tensorflow, making it easy to handle. Furthermore, previous
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FIGURE 4

Classification metrics distribution through 10 seeds with ORIGA and ISIC datasets.

FIGURE 5

Accuracy distributions of two classification tasks (glaucoma, and melanoma). Complete architecture (MCNN + Random Forest) vs. neural networks

working with each channel (Red, Green, and Blue).

studies have demonstrated that the gains in accuracy of pre-training
with a medical dataset, compared to ImageNet, do not outweigh the
time consumed on this task (Morid et al., 2021). The pre-trained
weights were frozen, except for the final fully connected layer,
which was replaced with a new layer having random weights. Only
this layer was trained. Before comparing the models, we inspected
the validation losses and accuracies for both training approaches,
ensuring the correctness of the settings. The performance of the
CNNs on the easy classification task (GTSRB dataset) served as
the benchmark.

For a summary of the methodology, refer to Figure 3.

2.4. Classification specifications

For the classification tasks using the MCNN method, the
datasets was divided into 80% for training and 20% for testing,
using a stratified split. As the optimizer used in this case is a
classic ELM, a validation set is not required. The weights were
randomly initialized using the method described in He et al. (2016).
In ELM, the only parameter requiring tuning is a regularization
parameter, which was set as specified in Supplementary Table 1.

For the experiment of stability, the method was executed 10 times
with different seeds but the same test set was kept, and for the rest
of the experiments the method was executed 30 times exploring
different test sets and proceeding to obtain the median of each
classification metric.

In this study, the neural networks were structured with two
layers (Figure 1B): an initial morphological layer followed by
a convolutional layer. Within the morphological layer, parallel
operations included an erosion, a dilation, an opening, and a
residual operation consisting of subtracting an erosion from the
original image. For each of these operations, distinct 5 × 5 filters
were applied – each tailored to a specific operation – yielding four
different featuremaps from a single original image (Figure 1C). The
convolutional layer was applied with 5 L of 5× 5.

The common three models were divided into 60, 20, and 20%
for training, validation, and testing sets, respectively, again using
a stratified split. The loss function used was the binary cross-
entropy loss, with stochastic gradient descent as the optimizer
and a learning rate of 0.01, gamma of 0.9, 24 epochs, and
a momentum of 0.9; but the ShuffleNet-V2 that was trained
from scratch for glaucoma classification required a momentum
of 0.1.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1253183
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Canales-Fiscal and Tamez-Peña 10.3389/frai.2023.1253183

FIGURE 6

Results for glaucoma classification using three CNNs. The GTSRB classification is used as benchmark.

The resizing of the images and the classification tasks were
performed using the Pytorch framework (Paszke et al., 2019) with
Python (Python Software Foundation. Python Language Reference,
version 3.7.14. Available at http://www.python.org) (Van Rossum
and Drake, 1995). Figure 3 shows a summary of the methodology
followed in this study.

3. Results

3.1. Classifiers comparison

Here, we present the outcomes of the comparison among the
four machine learning classifiers. Table 1 provides a comprehensive
overview of the resulting classification metrics.

3.2. Stability

The stability of the method is explored by looking at
the distribution of different classification metrics through 10
different seeds with the different datasets used in this study
(Figure 4, Supplementary Figure 3). In Table 2 a statistical
summary of this experiment is found. Figure 5 presents the
classification performance by channel against the result from the
complete architecture.

3.3. CNNs performance

The performance of the three CNN methods in medical
classifications was evaluated by observing their validation
losses, and accuracies. The easy classification task (GTSRB) was
used as unit test to ensure that the settings were appropriate.
Figures 6, 7 show results for glaucoma and melanoma
classification, respectively.

3.4. Medical diagnosis evaluation

The comparison between our MCNN method and the three
selected CNN architectures is presented in Figures 8, 9 for
glaucoma and melanoma, respectively. It includes the ROC-AUCs
for both training processes: from scratch and with transfer learning.
The complete metrics, such as balanced accuracy, error, AUC, and
the number of parameters, for both ORIGA and ISIC datasets, are
presented in Tables 3, 4, respectively.

4. Discussion

This study introduced the hybrid Morphological-
Convolutional Neural Network (MCNN), which combines
mathematical morphology operations with conventional
convolutional layers as feature extraction layers. Our results
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FIGURE 7

Results for melanoma classification using three CNNs. The GTSRB classification is used as benchmark.

FIGURE 8

ROC-AUC of three common CNNs and of the MCNN method for glaucoma classification trained from scratch (left) and using transfer learning

(right).

provided a more comprehensive analysis compared to our
preliminary findings, clearly demonstrating the superiority of the
hybrid deep learning method over standard CNN architectures
(Canales-Fiscal et al., 2023). The addition of a Random Forest in the
final part of the method is justified by observing at the performance
of the different classifiers in Table 1. Although Random Forest was
not statistically significant higher in most of the cases, it is still the

best method performing in both classification tasks, with an AUC
score of 0.65 (0.53, 0.74) 95% CI for the glaucoma classification
followed by Naïve Bayes with 0.64 (0.55, 0.73) 95% CI, and with
0.94 (0.91, 0.97) 95% CI in the melanoma classification followed by
SVM with 0.93 (0.90, 0.96) 95% CI.

To assess the model’s performance, evaluations using different
seeds were conducted, as depicted in Figure 4. The results indicate
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FIGURE 9

ROC-AUC of three common CNNs and of the MCNN method for melanoma classification trained from scratch (left) and using transfer learning

(right).

TABLE 2 Statistical results from the 10 runs per dataset.

Statistical
metric

Accuracy Balanced
accuracy

AUC Error

ORIGA

Mean 0.6673 0.6581 0.7026 0.3327

Variance 0.0010 0.0009 0.0003 0.0010

Std 0.0322 0.0302 0.0196 0.0322

Median 0.6670 0.6640 0.7035 0.3330

ISIC

Mean 0.8660 0.8657 0.9250 0.1340

Variance 0.0027 0.0027 0.0027 0.0027

Std 0.0523 0.0523 0.0521 0.0523

Median 0.8835 0.8830 0.9445 0.1165

that the MCNN exhibits higher stability in medical classifications,
with variances of<0.001 for the ORIGA dataset and≤0.003 for the
ISIC dataset. While a single outlier was observed in both glaucoma
and melanoma classifications, the distribution of classification
results for the ORIGA dataset tends to be smaller than that of the
ISIC dataset (Figure 4). It is important to note that in both cases,
50% of the data showed variations of < 0.05 across all metrics
(Figure 4).

In Figure 5, it is evident that the complete architecture of
the MCNN demonstrates both stability and improved results
compared to the individual neural networks (NNs). It is observed
that the individual NNs occasionally yield random classifications.
Specifically, when considering the ORIGA dataset, the NN
operating with the green channel exhibits a significant variation
range (∼23%) in 50% of the cases, indicating that this channel alone
may not provide sufficient information for accurate classification.
Moreover, the individual NNs consistently exhibit distributions
with variations of 10% or more in accuracy. In contrast, the

complete architecture remains stable, with variations of ∼5% or
less. The mean values of the individual NNs are consistently smaller
than those of the complete architecture, as expected since using
separate channels limits the available information. For the ORIGA
dataset, the NNs utilizing the red and blue channels show mean
results closer to the mean of the complete architecture. While
there are a few instances where the individual NNs outperform
the complete architecture in terms of accuracy, these cases are not
substantial enough to be considered representative. A similar trend
was observed with the ISIC dataset, although in this case, it was
identified the presence of skewed data that affected performance.

The performance of the CNN architectures (ResNet-18,
ShuffleNet-V2, and MobileNet-V2) is worth discussing. Figures 6,
7 clearly illustrate that their poor performance is primarily
attributed to the small size of the datasets rather than incorrect
settings. This assertion is supported by the fact that neither
of the methods, when applied to the ISIC and ORIGA
datasets, achieved satisfactory convergence, resulting in oscillating
validation accuracy. Conversely, when utilizing the GTSRB
dataset as a benchmark, the loss demonstrates convergence
and the validation accuracy steadily increases, aligning with
our expectations.

In comparing our method, MCNN, with other CNN
architectures, three key observations were made. Firstly, when
trained from scratch, MCNN outperforms CNNs, albeit only
slightly. Figure 8 illustrates this, where MCNN achieved an AUC
of 0.651 with the ORIGA dataset, while the best CNN method
(MobileNet-V2) achieved an AUC of 0.539. However, upon closer
examination of the confidence intervals in Table 3, it is found that
neither method demonstrates statistically significant superiority.
When considering accuracy, MCNN performs with 0.73 (0.66,
0.79) 95% CI, while ResNet-18 and MobileNet-V2 fail to classify
at all. Balanced accuracy further confirms this trend, as the CNN
methods trained from scratch provide random classification,
whereas MCNN yields a lower but non-random classification with
a higher confidence interval of 0.57 (0.50, 0.64). Additionally,
it is important to note that MCNN requires fewer parameters
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TABLE 3 Results of glaucoma classification using the ORIGA dataset and number of parameters trained per method.

Model Accuracy Balanced accuracy AUC Error No. of params

95% CI 95% CI 95% CI 95% CI

ResNet-18 S 0.29 (0.23, 0.36) 0.49 (0.42, 0.56) 0.58 (0.49, 0.66) 0.70 (0.63, 0.76) 1.1× 107

ShuffleNet-V2 S 0.72 (0.66, 0.79) 0.50 (0.43, 0.57) 0.52 (0.43, 0.60) 0.27 (0.20, 0.33) 6.1× 107

MobileNet-V2 S 0.29 (0.22, 0.35) 0.50 (0.43, 0.57) 0.53 (0.45, 0.62) 0.70 (0.64, 0.77) 1.3× 108

ResNet-18 TL 0.76 (0.70, 0.82) 0.50 (0.43, 0.58) 0.66 (0.58, 0.74) 0.23 (0.17, 0.29) 513

ShuffleNet-V2 TL 0.73 (0.67, 0.80) 0.51 (0.44, 0.58) 0.60 (0.50, 0.69) 0.26 (0.20, 0.32) 1,025

MobileNet TL 0.78 (0.72, 0.84) 0.53 (0.46, 0.60 0.70 (0.61, 0.79) 0.21 (0.15, 0.27) 1,001

MCNN 0.73 (0.66, 0.79) 0.57 (0.50, 0.64) 0.65 (0.53, 0.74) 0.27 (0.24, 0.35) 6.1× 104

S stands for training from scratch and TL for training using transfer learning.

TABLE 4 Results of melanoma classification using the ISIC dataset and number of parameters trained per method.

Model Accuracy Balanced accuracy AUC Error No. of params

95% CI 95% CI 95% CI 95% CI

ResNet-18 S 0.53 (0.48, 0.59) 0.50 (0.45, 0.56) 0.90 (0.86, 0.96) 0.46 (0.40, 0.52) 1.1× 107

ShuffleNet-V2 S 0.59 (0.53, 0.64) 0.57 (0.51, 0.62) 0.80 (0.75, 0.85) 0.40 (0.35, 0.46) 6.1× 107

MobileNet-V2 S 0.54 (0.48, 0.80) 0.51 (0.45, 0.57) 0.78 (0.72, 0.83) 0.54 (0.40, 0.51) 1.3× 108

ResNet-18 TL 0.76 (0.71, 0.80) 0.74 (0.69, 0.79) 0.90 (0.86, 0.93) 0.24 (0.19, 0.28) 513

ShuffleNet-V2 TL 0.68 (0.63, 0.73) 0.69 (0.64, 0.75) 0.89 (0.86, 0.93) 0.31 (0.26, 0.36) 1,025

MobileNet TL 0.45 (0.39, 0.51) 0.48 (0.42, 0.53) 0.60 (0.53, 0.66) 0.54 (0.49, 0.60) 1,001

MCNN 0.88 (0.84, 0.92) 0.88 (0.84, 0.91) 0.94 (0.91, 0.97) 0.11 (0.11, 0.17) 6.1× 104

S stands for training from scratch and TL for training using transfer learning.

for training compared to CNN methods trained from scratch.
Figure 9 highlights that, with the ISIC dataset, MCNN achieves
the best AUC (0.944), surpassing the CNN methods when trained
from scratch (0.9 for ResNet-18 as the second best). However,
from Table 3, it becomes evident that MCNN is statistically
significantly better only than ShuffleNet-V2 and MobileNet-V2,
with confidence intervals of 0.94 (0.91, 0.97) and 0.8 (0.75, 0.86),
respectively. MCNN’s performance overlaps with that of ResNet-
18, with confidence intervals of 0.95 (0.91, 0.97) for MCNN and
0.90 (0.86, 0.96) for ResNet-18. Lastly, when examining accuracy
in Table 4, our method consistently outperforms the others, with
an accuracy of 0.88 (0.84, 0.91) 95% CI, while the closest result was
observed for ShuffleNet-V2 with an accuracy of 0.57 (0.51, 0.62)
95% CI.

The second observation made was that MCNN performed
comparably to CNN methods trained using transfer learning.
When considering the classification results with the ORIGA
dataset, the AUC of the MCNN method (Figure 8) falls within
the same range as the CNN methods, and none of the methods
exhibit statistically significant differences. This pattern was also
evident in the accuracy results presented in Table 3. Turning
to the ISIC dataset, our method achieved a higher AUC
compared to CNN methods trained using transfer learning,
with an AUC of 0.944, whereas ResNet-18 attained 0.903 as
the second-best performance. However, upon reviewing Table 4,
we discovered that MCNN was only statistically significantly
superior to MobileNet-V2, with a confidence interval of 0.94

(0.91, 0.97), while MobileNet-V2 had a confidence interval of 0.60
(0.53, 0.66).

The third observation highlights that MCNN exhibited better
performance on imbalanced datasets. When comparing the change
from accuracy to balanced accuracy (Table 3), it is observed that
the MCNN method shows a smaller change, with a difference
of 0.16, whereas ShuffleNet-V2 had the second smallest change
of 0.22. Furthermore, in the final experiment, it was found that
our method performed more effectively with the ISIC dataset
than with the ORIGA dataset. When considering the accuracy
of MCNN, it outperformed all other methods, regardless of the
training approach, with the ISIC dataset. Specifically, the accuracy
of MCNN was 0.88 (0.84, 0.91) with a 95% confidence interval,
while the second-best result was obtained by ResNet-18 trained
using transfer learning, with an accuracy of 0.74 (0.69, 0.79)
(Table 3). However, when examining the results with the ORIGA
dataset, the performance of MCNN was within the range of the
methods trained using transfer learning (Table 3).

This study had some limitations that should be considered.
Firstly, the resizing of images to 256 × 256 pixels may have
affected the classification performance, as vital information might
have been lost during the process. Secondly, the capability
of the morphological layer requires further exploration. Each
medical case could benefit from a specific combination of
morphological operations. In this study, all operations were
activated simultaneously, and a single morphological layer was
used. Future work is required to investigate this aspect more
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comprehensively. Additionally, there were limitations in terms of
computational resources. The ELM optimizer, although efficient
and effective, requires a higher amount of memory compared to
other optimizers, which posed limitations on its usage. Moreover,
training CNNs from scratch proved to be time-consuming, with
each run taking up to 24 h. As a result, we reduced the number
of samples of the ISIC and GTSRB datasets. Furthermore, it is
important to note that our method did not achieve the state-of-
the-art accuracy and AUC for glaucoma classification with the
ORIGA dataset, which is reported as 78.32% and 0.874, respectively
(Bajwa et al., 2019; Elangovan and Nath, 2021). However, it is
worth considering that the common approach in the literature
for glaucoma classification involves segmenting the optic disk
(Sengupta et al., 2020), whereas, in this study, complete fundus
images were utilized. Given that the necessary information for
detecting glaucoma is exclusively contained within the optic disk,
there is a suspicion that the additional information present in the
remaining portion of the image might be affecting the training
process. Additionally, the extreme resizing –going from 2048 ×

3072 to 256× 256 – influences the final outcome. Upon examining
the classification results from the other CNN methods in Table 3,
it becomes apparent that the outcomes fall within a similar range
as those achieved by the MCNN method. The balanced accuracy
spans from 0.49 (0.42, 0.56) 95% CI to 0.57 (0.50, 0.64) 95% CI,
and the AUC score ranges from 0.52 (0.43, 0.60) 95% CI to 0.70
(0.61, 0.79) 95% CI. This leads to the conclusion that the poor
performance stems more from inadequate dataset preprocessing
rather than inherent limitations of the MCNN method. It would
be interesting to explore the capability of MCNN for glaucoma
classification using the optic disk segmentation approach and
compare its performance accordingly. Lastly, although we opted
for a simple architecture to manage small datasets, we suspect
that optimizing the architecture specifically for each medical case
would improve performance. Researchers should explore this
aspect to gain a better understanding of the overall effectiveness of
the method.

5. Conclusion

In this study, it was introduced a novel hybrid ML approach
called morphological-convolutional neural network (MCNN) for
medical image diagnosis. By incorporating the extreme learning
machine (ELM) for optimization and a Random Forest (RF)
as the final classifier, our method demonstrated enhanced
diagnostic capabilities. The combination of ELM and RF with
the RBG layers of the network eliminates the need for a
deep structure and reduces the data requirements for effective
training. To evaluate the performance of our MCNN method,
we conducted experiments on two medical diagnosis tasks:
glaucoma identification using the ORIGA dataset and melanoma
identification using the ISIC dataset. As points of comparison,
three widely used CNN architectures were included: ResNet-
18, ShuffleNet-V2, and MobileNet-V2, utilizing full training
and transfer learning approaches. Our findings revealed that
the MCNN method surpassed the performance of conventional
CNN architectures when trained from scratch. Moreover, when
compared to methods trained using transfer learning on small
datasets, the MCNN method achieved comparable results. These

results highlight the effectiveness of our MCNN approach in
addressing the challenges posed by medical image diagnosis tasks.
By leveraging the advantages of morphological operations, the
ELM optimizer, and the RF classifier, our MCNN method offers a
promising avenue for accurate and efficient medical image analysis.
Further research should explore the potential of optimizing the
MCNN architecture for specific medical cases and investigate its
applicability to other medical image diagnosis tasks.
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