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Multimodal deep learning for liver
cancer applications: a scoping
review
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Md. Rafiul Biswas*, Hazrat Ali and Zubair Shah*

College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Background:Hepatocellular carcinoma is a malignant neoplasm of the liver and a

leading cause of cancer-related deaths worldwide. Themultimodal data combines

several modalities, such as medical images, clinical parameters, and electronic

health record (EHR) reports, from diverse sources to accomplish the diagnosis

of liver cancer. The introduction of deep learning models with multimodal

data can enhance the diagnosis and improve physicians’ decision-making for

cancer patients.

Objective: This scoping review explores the use of multimodal deep learning

techniques (i.e., combining medical images and EHR data) in diagnosing and

prognosis of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA).

Methodology: A comprehensive literature search was conducted in six databases

along with forward and backward references list checking of the included studies.

PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

extension for scoping review guidelines were followed for the study selection

process. The data was extracted and synthesized from the included studies

through thematic analysis.

Results: Ten studies were included in this review. These studies utilized

multimodal deep learning to predict and diagnose hepatocellular carcinoma

(HCC), but no studies examined cholangiocarcinoma (CCA). Four imaging

modalities (CT, MRI, WSI, and DSA) and 51 unique EHR records (clinical

parameters and biomarkers) were used in these studies. The most frequently used

medical imaging modalities were CT scans followed by MRI, whereas the most

common EHR parameters used were age, gender, alpha-fetoprotein AFP, albumin,

coagulation factors, and bilirubin. Ten unique deep-learning techniques were

applied to both EHR modalities and imaging modalities for two main purposes,

prediction and diagnosis.

Conclusion: The use of multimodal data and deep learning techniques can

help in the diagnosis and prediction of HCC. However, there is a limited

number of works and available datasets for liver cancer, thus limiting the overall

advancements of AI for liver cancer applications. Hence, more research should be

undertaken to explore further the potential of multimodal deep learning in liver

cancer applications.
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1. Introduction

Hepatocellular cancer (HCC) and cholangiocarcinoma (CCA) are two types of liver

cancer that are responsible for significant morbidity and mortality worldwide (Lee et al.,

2011). The early detection and diagnosis of these cancers are essential for improving

patient outcomes, as the survival rate decreases with the advancement of the disease
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(Asafo-Agyei and Samant, 2023). Accurate diagnosis and

staging of cancer are crucial for improving patient survival

and treatment outcomes. Hepatocellular carcinoma (HCC) and

cholangiocarcinoma (CCA) are liver cancer types requiring precise

diagnosis and staging. Traditionally, imaging techniques such as

computed tomography (CT), magnetic resonance imaging (MRI),

whole slide image (biopsy), and ultrasound (US) have been used as

the standard of practice for diagnosing and staging HCC and CCA

(Zhou et al., 2019) along with clinical findings, biological markers

and blood test [liver function test, Alfa fetoprotein (AFP) and

inflammation-based index (IBI)] (Asafo-Agyei and Samant, 2023).

These modalities are analyzed by experts, including pathologists,

oncologists, and gastroenterologists, and remain the gold standard

for diagnosis confirmation.

Recently, there has been an increasing interest in using artificial

intelligence (AI) in the medical field, including the cancer and

oncology. With the digitization of healthcare records, AI modes

can efficiently utilize patient data. Electronic Health Record

(EHR) of patients comprises comprehensive information regarding

their medical history, diagnoses, treatments, laboratory results,

radiology images, genetic profiles, and more (Kohli and Tan, 2016).

Harnessing the potential of this vast data deluge is a significant

challenge but also holds tremendous promise for Medical AI

techniques (Mohsen et al., 2022). AI techniques using machine

learning and deep learning models have emerged as powerful tools

for extracting valuable insights from massive EHRs and developing

multimodal AI methods (Zhou et al., 2019). It can utilize multiple

modalities of data concurrently, such as CT, MRI, and US, along

with clinical findings, biological markers, and blood test results,

including liver function tests, Alfa fetoprotein (AFP), and the

inflammation-based index (IBI), and is able to provide a more

comprehensive and accurate picture of the internal structure and

function of the liver (Zhou et al., 2019).

A multimodal AI refers to an AI framework that integrates and

processes information from multiple modalities or sources, such

as text and images. This approach enables the AI-based system

to learn and make predictions based on information extracted

from different data types, allowing for a more comprehensive and

holistic understanding of the underlying information (Audebert

et al., 2020; Mohsen et al., 2022). Multimodal data for HCC

provide the integration of multiple data sources such as

blood test reports, CT, MRI, and liver biopsy, and enables

the chances of higher diagnostic accuracy compared to single

modality data. Similarly, the combination of different data types

helps in building better models of potential risk stratification.

Moreover, by combining multiple modalities, multimodal AI

techniques enhance the extraction of meaningful features and

make accurate predictions (Zhou et al., 2019). Deep learning, a

subset of machine learning, involves artificial neural networks

with multiple layers to learn hierarchical representations of

data. In multimodal AI, deep learning models are designed

to handle and process different data types simultaneously,

capturing their inherent relationships and interactions (Zhou

et al., 2019). A multimodal AI technique is useful in aiding

clinicians in predicting various aspects related to HCC and

CCA. It can assist in extracting mutually exclusive information

from the data that can help in treatment outcome prediction,

prognosis estimation, survival prediction, staging, and diagnosis.

By leveraging diverse data sources, the multimodal AI technique

provides with valuable insights for defining optimal treatment

strategies and personalized patient management plans (Zhou et al.,

2019).

Several studies have investigated the use of multimodal AI

combining different data modalities for diagnosing HCC and CCA.

However, there is a need for a scoping review to summarize and

synthesize the current evidence on this topic. We are confident

that this scoping review will give readers a thorough understanding

of the developments made in multimodal AI combining imaging

data and EHR for liver cancer applications. The reader will also

get knowledge of how deep learning models might be created

to align data from diverse modalities for distinct therapeutic

tasks. Additionally, by highlighting the dearth of multimodal

data resources for medical imaging and EHR for liver cancer

applications, this review will encourage the research community

to produce more multimodal medical data. Since we include

studies on multimodal deep learning-based AI techniques, we

use the terms multimodal deep learning and multimodal AI

interchangeably in this review.

2. Methods

This scoping review focused extensively on the studies that

used multimodal data and deep learning techniques to predict and

diagnose HCC. There are several steps followed in conducting this

review as below.

2.1. Search sources

A comprehensive literature search was conducted in PubMed,

Scopus, Google Scholar, ACM, IEEEXplore, and CINAHL

databases using relevant keywords. The PubMed database also

covers Medline. The search was limited to studies published in the

English language from January 2018 till August 15, 2023, to capture

the most recent developments in multimodal deep learning-based

AI methods using imaging and EHR data. Our search focused

specifically on studies from 2018 due to the significant increase

in HCC multimodal studies during that period. By limiting our

analysis to studies from 2018, we aimed to capture the most

up-to-date and relevant findings in this rapidly evolving area

of research.

2.2. Search terms

The search terms used in this study were: ((“artificial

intelligence”) OR (“deep learning”)) AND ((“multi-modal”) OR

(“multimodal”) OR (“electronic health record”) OR (“image∗”))

AND ((“liver cancer”) OR (“hepatocellular carcinoma”) OR (“bile

duct cancer”) OR (“cholangiocarcinoma”)). Two Boolean operators

were introduced, the OR operator to combine keywords within

each category and the AND operator to merge keywords across

all categories.
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2.3. Study eligibility criteria

We included studies that combined multimodal data, i.e.,

imaging and EHR. The multimodal data combined imaging data

such as MRI and CT scans with clinical parameters such as

laboratory test results and vitals. We included studies that reported

deep learning techniques such as convolutional neural networks

(CNNs), transformers, or neural networks in their methods. The

aim of this study was to identify the use of multimodal deep

learning techniques in liver cancer application. So, we excluded

studies that used only traditional machine-learning techniques. The

types of included studies were peer-reviewed articles, dissertations,

book chapters, and conference proceedings published from 2018

to August 2023. Only English language texts were included. We

excluded studies that did not combine medical imaging and EHR

data and also excluded studies that developed models for diseases

other than liver cancer. We excluded systematic reviews, abstracts,

studies that used languages other than English, and studies that

were published before the year 2018. The study selection process

was carried out by three authors independently. Conflicts among

them were resolved through mutual discussions and through

validation by all the authors.

2.4. Data extraction

The data were extracted from the included studies using a

standardized form, including information on the study design,

sample size, population characteristics, AI methods, interventions,

and outcomes. It was used to ensure accurate and precise

documentation of significant information for each study. The data

extraction form is provided in Appendix A.

3. Results

3.1. Study selection results

Our search terms yielded 363 studies from six different

databases (Google Scholar 60, PubMed and Medline 76, Scopus

143, ACM 77, IEEE 7, CINAHL 0). After going through these

studies’ titles and abstracts, we excluded 276 studies and included

18 studies. The number of excluded studies with their reason for

exclusion are listed in the PRISMA flowchart shown in Figure 1.

After going through the full text of the studies, we excluded 8

studies and were left with a total of 10 studies.

Going through the demographic of the included 10 studies, we

can see that 8 studies were from China and only 2 studies were

from Brazil. During our literature review, we searched for studies

published from 2018 to 2023; however, the final included studies

were only published from 2020 to 2022. All the studies, except one

conference paper, were journal articles.

3.2. Artificial intelligence techniques

The research encompassed multimodal AI techniques that

are capable of identifying not only diagnostic parameters and

biomarkers in EHRs, but also recognizing HCC abnormalities in

medical image modalities. All of the studies focused on HCC, and

no study involved CCA.

The purpose of employing multimodal deep learning models

for HCC can be categorized into two main objectives: disease

prediction and disease classification or diagnosis. Additionally,

these models were utilized for predicting treatment response,

determining survival rates, and staging the disease.

The primary deep learning architecture employed in these

models was CNN. The multimodal deep learning models used a

combination of two different deep learning neural network models

trained on processing two different types of datasets modalities

(medical imaging and EHRs). The included studies used models

like VGG16, VGG19, Inception V3, and ResNet18, to extract and

analyze detailed spatial features of medical images in creating

multimodal AI techniques (Menegotto et al., 2020, 2021; Zhen

et al., 2020; Gao et al., 2021; Hou et al., 2022; Zhang et al., 2022).

Additionally, multi-task deep learning neural networks, UNet,

MTNet, were used to integrate multiple modalities of data in

addition to recurrent neural network (RNN) which can utilize, and

process text information and numerical figures (clinical parameters

and biological markers) derived from EHRs (Fu et al., 2021). Other

techniques like Cox proportional hazards models’ classifiers were

used to develop predictive models from whole slides images (WSI)

and clinical genetic data (Hou et al., 2022).

The studies included in this analysis employ multimodal

deep-learning methods for the diagnosis and prediction of liver

cancer. State-of-the-art deep learning models such as VGG19

and DeepAttnMISL, which is a state-of-the-art are employed

for recognizing image modalities (Hou et al., 2022), while

GhostNet/CNN, a combination of two single deep learning neural

network models, is used for predicting treatment response to trans-

arterial chemoembolization (TACE) (Sun et al., 2021).

Weighted gene co-expression network analysis (WGCNA)

is used to analyze mRNA gene expression data from patients’

files, while Cox-regression utilizes its outcome and the outcome

from VGG16 (WSI processing model) to predict HCC patient

survival (Hou et al., 2022). Multimodal AI techniques such as the

multimodal Xception CNN and the Spatial Extractor-Temporal

Encoder-Integration-Classifier (STIC) models are also used, which

combine different modalities to improve diagnosis performance.

Additionally, AI techniques combining deep learning architectures

with machine learning methods such as SVM, Random Forest, and

Cox regression are employed for survival analysis.

Overall, these models and techniques have the potential to

improve medical diagnosis, prediction, and survival analysis by

integrating different data sources. By combining information

from multiple modalities and utilizing advanced deep learning

techniques, multimodal AI techniques can provide more accurate

and reliable predictions, ultimately leading to improved patient

outcomes. The 10 studies discussed four different types of medical

images, explained in Figure 2. Themost common imagingmodality

used in the studies was CT used in six studies (Liu et al., 2020;

Menegotto et al., 2020, 2021; Fu et al., 2021; Gao et al., 2021; Sun

et al., 2021), followed by MRI used in two studies (Zhen et al.,

2020; Song et al., 2021), WSI used in one study (Hou et al., 2022),

and Digital Subtraction Angiography (DSA) used in one study

(Zhang et al., 2022), respectively. All these studies used single image
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FIGURE 1

Prisma flow chart.

modality and did not report combined use of multiple imaging

modalities. Meanwhile, these multimodal deep learning models

were capable of processingmore than 1 biological marker or clinical

parameter (in somemodels, the number of different types of clinical

parameters was 22).

Prediction was the most common purpose for the use of

multimodal AI techniques, addressed in six studies (Liu et al., 2020;

Fu et al., 2021; Song et al., 2021; Sun et al., 2021; Hou et al., 2022;

Zhang et al., 2022), while four studies (Menegotto et al., 2020, 2021;

Zhen et al., 2020; Gao et al., 2021) used multimodal AI techniques

for the purposes of diagnosis or classification of HCC (Menegotto

et al., 2020, 2021; Zhen et al., 2020; Gao et al., 2021). The HCC

predicting multimodal AI techniques are sub-categorized based on

the type to survival prediction (Hou et al., 2022), Tran’s catheter

arterial chemoembolization (TACE) treatment response prediction

(Sun et al., 2021), and microvascular invasion (MVI) prediction

(Fu et al., 2021; Song et al., 2021). One study (Liu et al., 2020)

introduced a multimodal AI model capable of performing all three
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FIGURE 2

Image modalities used in the included studies.

types of predictions. For prediction purpose, the commonly used

imaging modality was MRI and CT scans used in two studies (Song

et al., 2021; Sun et al., 2021), followed by WSI and DSA, each used

in one study (Hou et al., 2022; Zhang et al., 2022), respectively.

The remaining four studies used multimodal AI for diagnosis

or classification of the HCC. Three of these studies used CT

(Menegotto et al., 2020, 2021; Gao et al., 2021), while one study

usedMRI (Zhen et al., 2020). The summary of the usage of different

imaging modalities is shown in Figure 2.

The included studies reported the use of 51 unique EHR

parameters. Among the EHR related biomarkers and diagnostic

parameters were patients age, gender, platelet (PLT), total bilirubin

(TBIL), alpha fetoprotein (AFP), carbohydrate antigen 19-9 (CA19-

9), carcinoembryonic antigen (CEA), carbohydrate antigen 125

(CA125), hepatitis B surface antigen (HBsAg), and liver function

test. All other parameters are specified in Figure 3.

The most frequently used parameters are gender (reported in

nine studies), age (reported in eight studies), alpha-fetoprotein

(AFP) (reported in seven studies), platelet (PLT) count (reported

in five studies), albumin (reported in six studies), and prothrombin

time (PT) (reported in four studies). These parameters are used

in multiple studies and are considered to be important in the

diagnosis and prediction of liver cancer. Other commonly used

parameters include total bilirubin (reported in four studies),

Child-Pugh classification (reported in four studies), hepatitis

B virus (HBV) (reported in three studies), ALT (reported in

three studies), serum aspartate aminotransferase (AST) (reported

in three studies), tumor marker (AFP, CEA, CA-125, CA19-

9) (reported in two studies), carbohydrate antigen 19-9 (CA19-

9) (reported in two studies), carcinoembryonic antigen (CEA)

(reported in two studies), and carbohydrate antigen 125 (CA125)

(reported in two studies).

Figure 3 shows the unique EHR parameters that various

multimodal deep learning models can process. The Cox

proportional hazards model is capable of processing 3/51

EHR modalities. GhostNet/CNN, a combination of GhostNet

and convolutional neural network (CNN), can process 14 EHR

modalities. Google Inception-ResNet V2 CNN, combined with an

auto encoder neural network CNN, can process 16 EHRmodalities.

CNN+DLC, which combines CNN and deep learning classifier

(DLC), can process 22 EHR modalities. Last but not least, the

multi-task deep learning neural network (MTNet) is capable of

processing 22 EHR parameters.

The model CNN combined with MTNet used the highest

number of EHR parameters employing 22 clinical parameters

(Song et al., 2021). Xception CNN used 20 clinical parameters

(Menegotto et al., 2021), Google Inception-ResNet-V2 CNN used

16 clinical parameters (Zhen et al., 2020). GhostNet/CNN used

14 clinical parameters (Sun et al., 2021). Cox-Proportional Hazard

(Cox-PH), CNN + Gated recurrent neural network (RNN) Spatial

Extractor-Temporal Encoder-Integration-Classifier (STIC), and

Cox proportional hazards model had the lowest number of EHR

modalities, i.e., 9, 8, and 3, reported in Liu et al. (2020), Gao et al.

(2021), andHou et al. (2022), respectively. Table 1 summarizes each

multimodal AI technique and the unique EHR parameters used to

train the multi-modal deep learning model. Appendix explains the

technical terms and the various names of deep learningmodels used

in this text.

3.2.1. Implementation
The softwares used for the implementation of the multimodal

deep learning models were Pytorch reported in three studies (Liu

et al., 2020; Song et al., 2021; Hou et al., 2022) and TensorFlow

reported in three studies (Zhen et al., 2020; Gao et al., 2021;

Menegotto et al., 2021). One study also reported the use of LabelMe

software tool (Zhang et al., 2022).

3.3. Datasets

3.3.1. Data sources
The average number of samples for all the studies was 7,984,

where the highest number was 38,424 MRI combined with 16

different clinical parameters per dataset, used in Zhen et al. (2020),

and 37,084 CT scans combined with 20 clinical parameters per

dataset, used in Menegotto et al. (2021). The size of the datasets of

the remaining studies was between 145 and 766 with an average of

492 after removing the two extremes (Zhen et al., 2020; Menegotto

et al., 2021). Four studies used datasets from open sources whereas

the rest used datasets from private sources (Liu et al., 2020; Gao

et al., 2021; Menegotto et al., 2021; Hou et al., 2022).

3.3.2. Data sizes/training and testing
The training datasets were mentioned in all studies while

validation and testing sets were not specified in some studies. Seven

studies mentioned the validation set size (Menegotto et al., 2020,

2021; Zhen et al., 2020; Fu et al., 2021; Gao et al., 2021; Sun et al.,

2021; Zhang et al., 2022) while only five studies mentioned the

test set size (Menegotto et al., 2020, 2021; Gao et al., 2021; Song

et al., 2021; Hou et al., 2022). The training time was mentioned

in only five studies whereas it was not provided in the remaining

studies. The highest epoch documented was 1,000, and the lowest

was 20.
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FIGURE 3

Summary of the number of studies using unique EHR parameters.

3.3.3. Code availability
Only four studies provided links for the source code used

for the development of multimodal deep learning models (Fu

et al., 2021; Gao et al., 2021; Song et al., 2021; Hou et al.,

2022). Table 2 summarizes the datasets categorization and how

they were processed by the multimodal deep learning models

(training, validation, and testing). The table also provides the

data sources, training time, and type of modalities reported in

each study.

3.4. Validation/evaluation metrics

3.4.1. Type of validation
Variousmetrics and validation techniques were used to evaluate

the performance of the multimodal AI models. Six studies have

mentioned the validation type namely, three studies reported 5-

fold cross-validation (Zhen et al., 2020; Gao et al., 2021; Hou et al.,

2022), two studies reported external validation (Fu et al., 2021;

Gao et al., 2021) and one study reported 10-fold cross-validation
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TABLE 1 Multimodal deep learning techniques.

References Deep learning
models

Image
modality
used

EHR modality used (clinical
parameters and biological
markers)

Number of
unique EHR
parameters

Purposes of
study

Hou et al. (2022) VGG19, Cox

proportional hazards

model (Cox-regression)

Whole slide images

(WSI)

Gene expression (DCAF13, ELAC2,

ZNF320, KIF18B, FERMT3)/gender and

age.

3 Prediction: survival

prediction

Sun et al. (2021) GhostNet/CNN MRI Age, Gender, ALT, AST, HBsAg status,

Child–Pugh classification, AFP (ng/ml),

hepatocirrhosis status, response to

therapy/inflammation-based indexes IBI

(platelet, Lymphocyte, Monocite <

neutrophil). Neutrophil-to-lymphocyte

ratio (NLR), platelet-to-lymphocyte

ratio (PLR), monocyte-to-lymphocyte

ratio (MLR), systemic

immune-inflammation index (SII), and

neutrophil-to-lymphocyte ratio (SIRI)

(clinical indexes are lymphocytes,

platelets, monocytes, and neutrophils)

(inflammatory indexes NLR, MLR, PLR,

SII, and SIRI).

14 Prediction:

treatment response

(TACE)

Zhen et al. (2020) Google

Inception-ResNet V2

CNN+ autoencoder

neural network CNN

MRI Clinical data was encoded using one-hot

encoding. For example, gender. Age,

gender, cirrhosis-related history, other

cancers, tumor marker (AFP, CEA,

CA-125, CA19-9, PSA, and Ferritin),

and liver function (albumin, total

bilirubin, prolonged prothrombin time,

hepatic encephalopathy, and ascites).

16 Diagnosis: HCC

Song et al. (2021) Radiomics, CNN MRI Age, gender, HBV hepatitis B virus, TB

total bilirubin, ALB albumin, ALT

alanine aminotransferase, GGT

glutamyl transpeptidase, PT

prothrombin time, AFP alpha

fetoprotein, MVI microvascular

invasion [The minimum Akaike

information criterion (AIC) index was

used as the stop criterion to determine

the optimal characteristics. Then, the

selected parameters were incorporated

into the deep learning model to form

the DLC model (Figure 1). Notably, for

the selected parameters, categorical

variables were encoded by one digit (i.e.,

−1 or 1 for each state), and continuous

variables were normalized to (−0.5,

0.5)]. Neutrophils count, Lymphocytes

count, INR, lob10AFP, and tumor size.

Clinical parameters were collected,

including sex, age, routine blood test,

blood biochemical test, blood

coagulation function test, markers of

hepatic fibrosis, hepatitis virus B

carriers, AFP, and tumor size. Serum

component index, such as

platelet-lymphocyte ratio (PLR),

neutrophil-lymphocyte ratio (NLR),

lymphocyte-to-monocyte ratio (LMR),

prognostic nutritional index (PNI),

aspartate aminotransferase-to-platelet

ratio index (APRI), aspartate

aminotransferase-to-neutrophil ratio

index (ANRI) and aspartate

aminotransferase-lymphocyte ratio

(ALR), were calculated as previous

reported.

22 Prediction: MVI

(micro vascular

invasion)

(Continued)
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TABLE 1 (Continued)

References Deep learning
models

Image
modality
used

EHR modality used (clinical
parameters and biological
markers)

Number of
unique EHR
parameters

Purposes of
study

Fu et al. (2021) UNet, radiomics,

multi-task deep learning

neural network (MTNet)

CT Age, gender, initial treatment, HBV,

Child-Pugh class, number of lesions,

AFP level, Barcelona clinic liver cancer

BCLC stages. Age, sex, Child-Pugh

grade, HBV infection, and CT identified

cirrhosis; tumor burden (location, lesion

number, maximum diameters, alpha

fetoprotein level, and BCLC stages); and

initial treatments. We added nine

qualitative radiological characteristics as

previously reported: (22) fusion lesions,

invasive shape, HCC capsule, HCC

capsule breakthrough, corona

enhancement, corona with low

attenuation, mosaic architecture,

nodule-in-nodule architecture, and

enhancement ratio of the HCC lesions.

22 Prediction: MVI

(micro vascular

invasion)

Menegotto et al. (2020) Deep convolutional

neural network (DCNN)

CT Anthropometric and sociodemographic:

gender, age at diagnosis, height, weight,

race E ethnicity—clinical: other

malignancy, family history cancer

indicator, family history cancer number

relatives, alcohol consumption,

hemochromatosis, hepatitis,

non-alcoholic fatty liver disease, other

liver disease—laboratory tests results:

alpha-fetoprotein, platelets,

prothrombin time, albumin, bilirubin,

creatinine.

20 Diagnosis: HCC

Gao et al. (2021) VGG16, Imagenet, CNN,

Gated RNN

CT Age, gender, platelet (PLT), total

bilirubin (TBIL), alpha fetoprotein

(AFP), carbohydrate antigen 19-9

(CA19-9), carcinoembryonic antigen

(CEA), carbohydrate antigen 125

(CA125) and hepatitis B surface antigen

(HBsAg).

8 Diagnosis: HCC

Menegotto et al. (2021) Xception CNN CT Alpha-fetoprotein, bilirubin, platelets,

weight, ethnicity, family history cancer

number relatives, family history cancer

indicator, other malignancy, race,

gender, other liver disease, alcohol

consumption, hepatitis, height, albumin,

age at diagnosis, hemochromatosis,

creatinine, prothrombin time,

non-alcoholic fatty liver disease.

20 Diagnosis: HCC

Liu et al. (2020) Cox-proportional hazard

(Cox-PH)

CT Age, sex, history of hepatic virus

infection, Child-Pugh class, AFP, serum

aspartate aminotransferase (AST),

albumin-bilirubin (ALBI) score (39),

treatment histories, and tumor response

(CR, PR, PD, and SD).

9 Prediction: survival

prediction

Zhang et al. (2022) UNet model, ResNet,

CNN

Digital subtraction

angiography (DSA)

Clinical characteristics included age, sex,

hepatitis B virus (HBV), a-Fetoprotein

(AFP), prothrombin time (PT), and

liver function parameters, which

included Child–Pugh score, ascites, total

bilirubin (TBIL), albumin (ALB),

aspartate aminotransferase (AST),

alanine aminotransferase (ALT), and

C-reactive protein (CRP). All laboratory

data were obtained within the 3 days

before the first TACE session.

11 Prediction:

treatment response

(TACE)
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TABLE 2 Description of datasets of liver cancer.

Data sources
(public or
private)

Dataset size (number of samples) Modality
(type of
images
and the
number
of clinical
parameters
from
EHR)

Number
of epochs
for
training
the model

References

Training
set

Validation
set

Test set Total

Public

https://github.com/

Houjiaxin123/

Integrative-

Histology-

Genomic-HCC-

Prognosis-Analysis

220 N/A 107 327 WSI+ 3

clinical

parameters

N/A Hou et al., 2022

Private 319 80 N/A 399 MRI+ 14

biological

markers

50 Sun et al., 2021

Private 31,608 6816 N/A 38424 MRI+ 16

biological

markers

20 Zhen et al., 2020

Private 461 N/A 140 601 MRI+ 22

clinical

parameters

1,000 Song et al., 2021

Private 281 85 N/A 366 CT+ 22

biological

markers

N/A Fu et al., 2021

Private 536 153 77 766 CT+ 20

biological

markers

N/A Menegotto et al.,

2020

Public

https://github.com/

ruitian-olivia/

STIC-model

499 111 113 723 CT+ 8 clinical

parameters

50 Gao et al., 2021

Public

https://github.com/

amenegotto/

pyLiver/blob/

master/csv/

clinical_data.csv

29,104 3,816 4,164 37,084 CT+ 20

clinical

parameters

500 Menegotto et al.,

2021

Public

https://github.com/

havakv/pycox/

145 N/A N/A 145 CT+ 9 clinical

parameters

N/A Liu et al., 2020

Private 360 245 N/A 605 DSA+ 11

clinical

parameters

N/A Zhang et al., 2022

N/A, not available.

(Menegotto et al., 2021). One study used both external validations

along with 5-fold cross-validation (Gao et al., 2021).

3.4.2. Evaluation metrics
To evaluate the performance of the multimodal AI models,

various metrics and validation techniques were used for this

purpose. The twomost commonly utilized evaluationmetrics in the

included studies were AUC (Area under the Curve) and accuracy.

AUCwas used in seven studies (Liu et al., 2020; Zhen et al., 2020; Fu

et al., 2021; Gao et al., 2021; Song et al., 2021; Sun et al., 2021; Hou

et al., 2022) and accuracy was used in six studies (Zhen et al., 2020;

Gao et al., 2021; Menegotto et al., 2021; Song et al., 2021; Sun et al.,

2021; Zhang et al., 2022). Sensitivity was used in five studies (Zhen

et al., 2020; Fu et al., 2021; Gao et al., 2021; Song et al., 2021; Zhang

et al., 2022), and specificity was reported in five (Zhen et al., 2020;

Fu et al., 2021; Gao et al., 2021; Song et al., 2021; Zhang et al., 2022).

The performance of predicting HCC was mostly measured using

the AUC (reported in five studies) (Liu et al., 2020; Fu et al., 2021;

Song et al., 2021; Sun et al., 2021; Hou et al., 2022), followed by

accuracy (Song et al., 2021; Sun et al., 2021; Zhang et al., 2022) and

sensitivity (Fu et al., 2021; Song et al., 2021; Zhang et al., 2022) (each
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reported in three studies). The performance of HCC diagnosis was

mainly tested using accuracy (reported in three studies) (Zhen et al.,

2020; Gao et al., 2021; Menegotto et al., 2021), followed by AUC,

sensitivity, and specificity (each reported in two studies) (Zhen

et al., 2020; Gao et al., 2021). A summary of the commonly used

metrics is shown in Figure 4.

Decision curve analysis (DCA) is a method used to evaluate

the clinical value of the AI models. It involves comparing the

net benefit of using the model to make clinical decisions with

the net benefit of using a different decision-making strategy.

Additionally, the use of various statistical tests like NRI (Net

Reclassification Index), Integrated Discrimination Improvement

(IDI), and calibration helped assess the models’ performance. The

use of different evaluationmetrics is summarized in Table 3. Table 3

shows the minimum to maximum performance reported in the

included studies for each evaluation metric.

4. Discussion

4.1. Research implications

There are certain challenges related to the multimodal deep

learning models developed in the included studies (Sun et al.,

2021; Hou et al., 2022). Firstly, the models lack enough multi-

centers data, which hinders the ability to evaluate its performance

effectively. This insufficiency in diverse and representative data sets

reduces the reliability and generalizability of the model’s results.

Secondly, the potential relationship between different modalities

within the multimodal deep learning model is not adequately

understood or clearly defined. The model’s ability to accurately

represent complex relationships and phenomena is compromised

without a comprehensive understanding of how these modalities

interact and influence each other. Furthermore, the research

results primarily focus on the application level, meaning that they

predominantly address practical uses rather than investigating the

underlying mechanisms responsible for the observed outcomes.

This limitation restricts the depth of understanding achieved by

the study and leaves gaps in the comprehension of the fundamental

processes involved (Hou et al., 2022).

To address these shortcomings, several suggestions are

reported. Firstly, exploring effective algorithms that can extract

relevant and meaningful information from multimodal data is

recommended. This step is crucial for improving the model’s

performance and enhancing its ability to leverage the diverse

information contained within different modalities. Secondly, this

study emphasizes the need to model the connections between

modalities. Researchers can improve the model’s accuracy and

predictive capabilities by establishing clear and comprehensive

models that capture the relationships and interactions between

different modalities. Lastly, the study proposes the use of

computational representations grounded in biological discoveries.

Biological insights and principles can enhance the model’s

validity and align it more closely with natural systems’ underlying

mechanisms and processes. Addressing these challenges and

implementing the suggested solutions would strengthen the

multimodal deep learning model, enhancing its reliability,

explanatory power, and potential for advancing scientific

understanding in the field.

Three of the included studies were conducted retrospectively,

meaning that they analyzed past data and events to draw

conclusions (Liu et al., 2020; Zhen et al., 2020; Sun et al., 2021).

To ensure the applicability of the findings across the entire range

of liver diseases encountered in clinical practice, future training

should include a larger number of patients with specific types of

focal liver diseases. To broaden the scope of the research, it would

be ideal to include less common liver masses in future studies.

Examples of such masses could be abscesses, adenomas, and rare

malignancies. By incorporating these less frequent liver masses,

a more comprehensive understanding of the diverse spectrum of

liver diseases can be achieved, leading to improved diagnostic

and treatment approaches. Furthermore, conducting high-quality

prospective studies involving multiple medical centers is crucial.

These studies should be designed to gather data in real time,

allowing for more accurate and up-to-date assessments of the

effectiveness and outcomes of different diagnostic and treatment

approaches. This is particularly important for high-risk patients

with cirrhosis, as their specific needs and challenges warrant

specialized attention and investigation. By incorporating these

recommendations, future research efforts can enhance the breadth

and depth of knowledge in the field of liver diseases, enabling more

precise and effective management strategies for patients across the

full range of liver pathologies encountered in clinical practice.

Two studies acknowledge that the deep learning architectures

are often perceived as a “black box” due to their complex and

intricate nature (Fu et al., 2021; Song et al., 2021). This means

that the inner workings of a deep learning model and the

specific correlation between the features used in the model and

TS results are not easily explainable or interpretable. Despite

demonstrating the stability of their final deep learning model, the

study recognizes the limitation of not being able to provide a

pathological interpretation for deep learning radiomics. This refers

to the inability to directly relate the outputs or predictions of the

deep learning models to specific pathological changes observed

in cases of HCC. The “black box” effect commonly encountered

in deep learning studies implies that the model’s decision-making

process and the reasons behind its predictions are not transparent

or easily understood. Therefore, it becomes challenging to establish

a clear connection between the features used in the deep learning

model and the pathological changes that occur in HCC.

To address this challenge, further research is needed to explore

and establish the relationship between the deep learning model’s

predictions and the actual pathological changes observed in HCC.

This indicates the need to delve deeper into understanding how

the deep learning model’s outputs align with the underlying

pathological mechanisms and processes associated with the disease.

By conducting additional research and investigations, researchers

should shed light on the “black box” nature of the deep learning

method, elucidate the correlation between relevant features used

in the model and the outcomes, and ultimately provide a clearer

pathological interpretation of the deep learning radiomics in the

context of HCC.

The studies utilized different deep learning models for

processing medical images and electronic health record (EHR)

data separately and then combined the results with building the
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FIGURE 4

Evaluation metrics used in the studies.

TABLE 3 Summary of evaluation metrics used in included studies.

Evaluation metrics Performance result (%) Number of studies References

Decision curve analysis N/A 2 Fu et al., 2021; Hou et al., 2022

AUC 0.72–0.99 7 Liu et al., 2020; Zhen et al., 2020; Fu et al., 2021; Gao et al.,

2021; Song et al., 2021; Sun et al., 2021; Hou et al., 2022

C-index 0.746 1 Hou et al., 2022

ROC N/A 2 Fu et al., 2021; Hou et al., 2022

Accuracy 0.72–0.98 6 Zhen et al., 2020; Gao et al., 2021; Menegotto et al., 2021;

Song et al., 2021; Hou et al., 2022; Zhang et al., 2022

Precision 0.89–0.97 2 Menegotto et al., 2021; Hou et al., 2022

F1 Score 0.86–0.98 2 Menegotto et al., 2021; Sun et al., 2021

Specificity 0.78–0.83 4 Zhen et al., 2020; Gao et al., 2021; Song et al., 2021; Zhang

et al., 2022

Sensitivity 0.50–0.89 5 Zhen et al., 2020; Fu et al., 2021; Gao et al., 2021; Song et al.,

2021; Zhang et al., 2022

NRI N/A 1 Fu et al., 2021

IDI N/A 1 Fu et al., 2021

Decision curve N/A 2 Fu et al., 2021; Hou et al., 2022

Recall 0.75–0.86 1 Menegotto et al., 2021

Range of values show performance from minimum to maximum as reported in the included studies. N/A, not available.

multimodal AI model. There was no single variant of CNN

architecture used across all the studies. CT scans were the most

commonly used medical imaging modality, followed by MRI. We

identified more than 50 clinical parameters and biomarkers related

to HCC that were used to train and test the multimodal AI models.

However, none of the studies included the history of jaundice or

bile duct disorders as part of the clinical parameters, despite their

importance as signs of liver abnormalities.

It is worth noting that the number of EHR

modalities processed does not necessarily correspond

to the performance of the deep learning model. Other

factors, such as the model architecture and training

data also play important roles in determining the

model’s performance.

The multimodal AI techniques lacked multi-centers data

and the potential relationship between modalities was not clear.

To address these challenges, effective algorithms for extracting

multimodal data information should be explored, computational

representations based on biological discoveries should be used,

larger populations and multicenter studies should be conducted,

and feature selection techniques and clinical indexes should

be employed.

However, this scoping review allows researchers to investigate

more uses of multimodal AI for the diagnosis of HCC and to
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study multimodal AI techniques developed for recognizing more

medical imaging modalities. It also encourages researchers to study

multimodal AI techniques for purposes other than thosementioned

in this paper and to start conducting similar studies in CCA.

Datasets utilized by the included studies are mainly from private

sources and are used as training and validation datasets. Some

studies do not mention the type of validation adopted for the model

training and evaluation.

4.2. Limitations

While our scoping review offers valuable insights into the

use of multimodal AI in liver cancer research, it is important to

acknowledge the limitations of our study. One major limitation

is that some of the datasets used in the studies were not

fully described, leaving questions about their labeling and

generalizability. Additionally, the lack of specificity regarding data

sources used in the studies could make it difficult to reproduce or

compare the models’ performances. Finally, we focused on studies

published within the past 5 years, which may have limited the scope

of our analysis but captured the most recent development in the

field of multimodal deep learning for the detection and diagnosis

of liver cancer. The specific inclusion criteria on EHR+images data

also limited the number of studies.

Despite these limitations, our review provides a foundation for

understanding the application of Multimodal AI techniques in liver

cancer research. By identifying common variables and models used

across studies, we can better assess the potential of these models in

improving HCC prediction and treatment response.

5. Conclusion

The detection and prognosis of liver cancer, or HCC, have

recently been facilitated by recent advancements in deep learning-

based AI techniques. In this scoping review, we analyzed 10

studies that investigated the application of multimodal deep

learning models in HCC. We did not find any studies related

to the use of multimodal deep learning models for CCA.

The studies focused primarily on HCC prediction rather than

HCC classification or diagnosis, with a particular emphasis on

predicting response to TACE treatment. Overall, the studies

highlighted the potential of multimodal AI for improving

HCC prediction and treatment response assessment, but more

research is needed to explore their effectiveness in other areas

of liver cancer research. Multimodal AI techniques have the

capacity to simultaneously evaluate vast quantities of complex

data, including medical images and electronic health records,

and infer useful patterns and insights. With the use of this

technology, HCC diagnoses might be made more accurately,

and the course of the disease could be predicted, which may

ultimately lead to better outcomes and a higher survival rate.

However, these models face limitations such as the lack of

diverse data sets, unclear relationships between modalities, and

a focus on explanations and understanding of the underlying

mechanisms. Suggestions include exploring effective algorithms,

establishing clear inter-modality relationships, and incorporating

biological insights. In the context of HCC, the studies reviewed

in this work primarily focused on HCC prediction and treatment

response assessment using different multimodal AI techniques.

However, limitations such as the “black box” nature of deep

learning and the need for pathological interpretations persist.

Future research should address these limitations, expand to other

liver diseases, and incorporate larger populations and multicenter

studies for comprehensive understanding and improved diagnostic

and treatment approaches.
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