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The sliding sleeve holds a pivotal role in regulating fluid flow during hydraulic

fracturing within shale oil extraction processes. However, concerns persist

surrounding its reliability due to repeated attempts at opening the sleeve, resulting

in process ine�ciencies. While downhole cameras can verify sleeve states,

their high cost poses a limitation. This study proposes an alternative approach,

leveraging downhole data analysis for sleeve incident detection in lieu of cameras.

This study introduces “XGSleeve,” a novel machine-learning methodology.

XGSleeve amalgamates hidden Markov model-based clustering with the XGBoost

model, o�ering robust identification of sleeve incidents. This method serves as

an operator-centric tool, addressing the domains of oil and gas, well completion,

sliding sleeves, time series classification, signal processing, XGBoost, and hidden

Markov models. The XGSleeve model exhibits a commendable 86% precision in

detecting sleeve incidents. This outcome significantly curtails the need formultiple

sleeve open-close attempts, thereby enhancing operational e�ciency and safety.

The successful implementation of the XGSleevemodel rectifies existing limitations

in sleeve incident detection, consequently fostering optimization, safety, and

resilience within the oil and gas sector. This innovation further underscores

the potential for data-driven decision-making in the industry. The XGSleeve

model represents a groundbreaking advancement in sleeve incident detection,

demonstrating the potential for broader integration of AI and machine learning in

oil and gas operations. As technology advances, such methodologies are poised

to optimize processes, minimize environmental impact, and promote sustainable

practices. Ultimately, the adoption of XGSleeve contributes to the enduring growth

and responsible management of global oil and gas resources.

KEYWORDS

oil and gas, well completion, sliding sleeves, time series classification, signal processing,

XGBoost, hidden Markov model

1. Background

Canada is a significant player in the global energy market, with its vast natural resources

that allow it to be one of the world’s largest energy producers and exporters (Canada Energy

Center, 2022). The country’s energy exports, particularly its oil and gas products, have

contributed significantly to its economy (Canada Energy Center, 2022). According to the

Canadian Energy Center, in 2020, Canada exported $63.8 billion worth of crude oil and $8.9

billion in natural gas (Canada Energy Center, 2022). This underscores the importance of the

energy sector to the country’s overall economic wellbeing (Canada Energy Center, 2022).
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In recent decades, the Canadian energy sector has witnessed

a notable advancement with the large-scale development of

shale resources (Government of Canada, 2020). Shale resources

encompass unconventional oil and gas reserves found deep

underground within rock formations (Knaus et al., 2010).

Unfortunately, the extraction processes associated with shale

resources often suffer from inefficiencies, resulting in significant

material waste that directly impacts Environmental, Social, and

Corporate governance considerations known as ESG. To address

ESG, the government has placed increased focus on reducing

emissions and improving the efficiency of the oil and gas industry,

aiming to mitigate its impact on climate change (Environment and

Climate Change Canada, 2023).

To improve the efficiency of shale resource extraction, a new

completion technology called coiled tubing-enabled fracturing

sliding sleeve (CTFSS) was proposed in the last decade (Mahmud

et al., 2020). This technology uses coiled tubing to carry a switch

tool that opens or closes the sliding sleeve, allowing for oil well

operations such as fracturing stimulation, selective exploitation,

and closing the seal leakage layer, improving working efficiency.

However, sliding sleeves are known to be unreliable, leading

to incomplete operations and increased costs (Mahmud et al.,

2020). The sleeve’s unreliability often necessitates multiple attempts

to open it or misleads operators into proceeding to the next

step, like starting fracking prematurely. Consequently, this leads

to a less efficient process and a significant waste of material,

amounting to a value of 10,000 to 100,000 USD per sleeve.

These issues are alarmingly common during the completion phase,

requiring approximately twice the processing time for each fracking

operation to be spent recycling the tool due to repeated attempts.

Currently, the only option to capture downhole events during

fracking operations is to deploy a camera inside the well, which is

an exceedingly expensive solution.

In this project, we propose a new algorithm to collect downhole

data, including wellhead vibration (Echo© data), and analyze this

information using a novel machine-learning approach that employs

the XGBoost model to detect incidents where the sleeve fails to

open. This approach will alert field operators when the sleeve is not

open, preventing them from continuing the fracking process and

ultimately leading to improved reliability and efficiency of sliding

sleeves. Therefore, The contributions of this paper are twofold:

• We demonstrate how to successfully preprocess data and

extract features that are meaningful for sleeve incidents.

• We propose a novel approach to collect and process

Guidehawk© and Echo© data onsite and apply XGBoost

model to provide real-time reporting of positive sleeve shifts.

By increasing the certainty of sleeve shifts, this approach

can significantly improve the completion process, leading to

reduced time on location, increased productivity, and lower

costs and environmental impact.

2. Related work

To replace the usage of expensive cameras in downhole

a few researchers have suggested the use of downhole data

to enhance the reliability of sleeve incidents and verify sleeve

openings (Daniels and Williams, 2001). Utilizing downhole data

offers a straightforward and cost-effective solution to enhance

the dependability of sliding sleeve operations. Nonetheless, the

tools employed to acquire this data are incapable of withstanding

jarring loads (Daniels and Williams, 2001). To address this

challenge,Welling et al. (2007) suggested that data analysis could be

conducted upon retrieval to the surface. This analysis can primarily

be utilized for troubleshooting any issues that may arise after

the completion of the fracking process. However, detecting and

troubleshooting sleeve incidents in situ provides even greater value.

Therefore, Kenison et al. (2012) proposed measurements that are

available at the surface during the operation, enabling the operator

to control the shifting tool properly and identify any problems with

the sleeve or shifting tool. The suggestedmeasurements include coil

tubing and annulus pressure, temperature, casing collar locator, and

axial load, all of which can be collected by a tool in the BottomHole

Assembly (BHA). However, the cost of these measurement tools is

high, and the return on investment may not be substantial enough

to encourage companies to incorporate them into their BHA.

Acknowledging these limitations, Kobold Completions Inc.

(2023a) introduces a pioneering alternative that involves utilizing

downhole data and capturing vibration signals on the surface

using an Echo©. The installation and integration of the Echo

and Guidehawk devices are remarkably straightforward, making

them adaptable to various job settings. Both tools utilize familiar

oil field sensors employed by other analogous devices (Kobold

Completions Inc., 2023b). This approach provides a cost-effective

and in situ solution when compared to using a tool in the

BHA. Incorporating a conventional geophone, Echo can be

easily fastened to the wellhead. Despite its specific usage in

identifying acoustic signatures for fracking activity, these devices

find application in monitoring neighboring wells for inter-well

communication during fracks. The Echo device, being located on

the surface, eliminates the need for advanced materials to protect

the device and cable transmitting signals from the pressurized

downhole environment. In addition, since sleeve openings result in

sudden shocks, the Echo© device can record the vibrations related

to the shocks, providing valuable insights into sleeve performance

and potential recycling issues. However, these devices themselves

are not able to identify sleeve incidents—there is a critical need for

a solution to take these time series data as input and identify the

sleeve incidents in open or closed classes.

In this project, we propose a new method for identifying

sleeve incidents using machine learning, both Echo© and downhole

data. Echo© data will be collected from the Echo© device, which

captures vibration signals from the wellhead during operation,

and a machine learning model will be used to confirm sleeve

opening incidents based on these signals. In addition, Guidehawk©

data (downhole data) in the BHA will collect annular pressure

(Pa), strain (N), shock (g), temperature (C), and torque (Nm)

during operation. A machine learning model will be used to

annotate opening incidents after and during operation, helping

operators gain a better understanding of sleeve location during and

after completion.

Due to the novel data set, this will be the first time leveraging

machine learning on data from Echo© and Guidehawk© devices.

However, the use of machine learning for incident detection in

various industries has become increasingly popular due to its
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ability to identify patterns and anomalies in large data sets. In one

example, a Convolutions Self-Attention Mechanism was proposed

to detect rolling bearing faults (Ye et al., 2020). This model was

able to outperform traditional machine learning models by 10%

in precision and has shown promise in improving the efficiency

and accuracy of predictive maintenance for industrial equipment.

Another example is that an XGBoost Model was used for time

series classification of solar flares by employing window-based

feature extraction (McGuire et al., 2019). This model was able

to successfully predict 75% of solar flares in the validation set,

showcasing the potential of machine learning models in detecting

solar flares and other space weather events. Esmael et al. (2012)

proposed a new approach for time series classification problems

such as failure detection. The proposed approach aims to combine

the strengths of the Hidden Markov Model (HMM) in handling

temporal data with other classification techniques to overcome

their weaknesses. The approach is evaluated through a case study

involving the classification of real drilling data generated by rig

sensors, demonstrating its feasibility and effectiveness.

Furthermore, the application of machine learning in detecting

ball bearing failure in offshore naturally flowing wells has also been

explored (Nascimento et al., 2022). The proposed semi-supervised

learning approach only considered nine features through a

sliding window of 60 s and utilized a CNN-LSTM model. This

model achieved an impressive 98% accuracy in the validation

set, suggesting its potential in reducing maintenance costs and

improving equipment reliability. In addition, machine learning has

also been used to detect extreme events occurring in different time

scales using hydrologic time series (Rolim and de Souza Filho,

2020). The authors proposed an HMM to detect regime shifts in

weather data. This model is useful in providing early warning signs

of weather-related incidents, allowing for better preparation and

risk management.

Overall, these examples illustrate the potential of

machine learning for detecting and preventing incidents

in various industries while also highlighting the lack of

data-driven processes in the well completion stage. In this

project, our objective is to introduce a novel machine

learning architecture to predict opening incidents in well

completion by using vibration signals at the wellhead. To

achieve our objective, we employed the Hidden Markov

Model for clustering data points and the XGBoost model

for classification.

3. Materials and methodology

This section provides a comprehensive overview of

the Machine Learning (ML) models integrated into our

project framework. Before delving into the development

of these models, we extensively addressed the crucial data

preprocessing stage. This stage involved a series of tasks,

including gathering data from reliable sources, meticulously

handling missing values and outliers through rigorous data

cleaning procedures, and extracting meaningful features for time

series data.

Upcoming subsections will offer in-depth insights into

the precise methodologies utilized, along with the selected

parameter configurations. These combined efforts significantly

contribute to maintaining the integrity and reliability of

our analysis.

3.1. Data

Kobold Completions Inc. (2023a), an industry leader in

cutting-edge technology, specializes in providing more accurate,

reliable, and efficient operations for sleeves. As the second largest

manufacturer in Canada, their BHA is employed in various well

completion processes. This project collects data from Kobold’s

proprietary technologies during fracking operations, including

Echo© surface monitoring and Guidehawk© downhole memory

tools. Echo© facilitates real-time acoustic monitoring at the

wellhead, delivering surface feedback on downhole events. It

detects wellhead vibrations caused by down-hole activities, such

as sleeve shifts, and presents the vibration signal in real time.

The data is recorded as acceleration in meters per second

squared and subsequently converted to units of gravitational

acceleration on the Earth g = 9.81ms−2. On the other hand,

Guidehawk© is a downhole memory tool that logs multiple

variables, including pressure for both coil and annular pressure

(Pa), strain (N), shock (g), temperature (C), and torque (Nm). We

collect Guidehawk© and Echo© data from various wells at different

locations across Canada.

3.1.1. Guidehawk© data
The Guidehawk© data comprise a multivariate time series

collected over 3 days with a granularity of the minute level

for each fracking operation. Initially, variables such as coil and

annular pressure (Pa), strain (N), shock (g), temperature (C), and

torque (Nm) were recorded at approximately 1,000 samples per

second. However, to reduce data volume, these readings were later

compressed by considering the maximum value and consolidating

them into 1 sample per second. Labeling sleeve incidents using

Guidehawk© data is more convenient than using Echo© data, as

it captures downhole events by recording six features. In this

project, expert knowledge was used to label the data as open and

close incidents using two variables: shock and annular pressure.

This manual labeling process covered 11 fracking operations,

encompassing nearly 2 million data points. Figure 1 illustrates

Guidehawk© data with shock and annular pressure (annP).

The sudden jump in pressure accompanied by a spike in shock

serve as key features to identify sleeve opening during labeling. The

purpose of introducing Guidehawk data in this project is twofold:

• Training Machine Learning model that can identify sleeve

incidents after fracking jobs are finished. This helps engineers

can easily go through data and check for any unexpected

situations instead of manually going through each data point

to find sleeve incidents.

• Labeling Echo data becomes challenging when pinpointing

the exact time of a sleeve incident using only shock values.

However, we can address this issue by utilizing the Guidehawk

model and data, as both record the same event at the same
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FIGURE 1

Guidehawk© data for 2 h. Sleeve opening incidents are highlighted in purple.

timestamp, allowing us to generate accurate labels for the

Echo data.

3.1.2. Echo© data
Echo© data consist of univariate time series collected in

three different orthogonal axes, representing the three-dimensional

Cartesian coordinates (x, y, z) on the surface. These three values

are then converted into the magnitude of a vector by calculating

the geometric values of those axes. The original frequency of the

Echo© data is 3,000 Hz. However, we down-sampled it using the

average method to 1 sample per second in order to reduce the

noise level in the data set. Figure 2 illustrates Echo© data for a

specific job.

One particular challenge is to label the Echo© data as it is

difficult to pinpoint the exact time of a sleeve incident using

only shock values. Thus, we labeled Echo© data by generating

labels using guidehawk data. In addition, field reports from fifteen

fracking operations were employed for labeling purposes in this

project. However, it is crucial to acknowledge that field reports may

not always accurately represent the actual events since they record

multiple attempts to open the sleeve as one event leading to noisy

labeling. Field reports consist of manual entries detailing each well’s

fracking events. Two essential columns in these reports are the

fracking start and end times, which the fracking operator inputs

during the operation. An alternative approach to labeling Echo©

data involves using Guidehawk© data labels and mapping those

labels to Echo© data based on the timestamp in both datasets. This

method can result in more accurate labeling. However, it requires

having both Echo© and Guidehawk© data for the same fracking

operation, which may not always be available. In this project, we

did not have Echo© and Guidehawk© data available for the same

fracking operation.

3.1.3. Data collection challenges
Location and well type can significantly influence data

generalizability. Well type, according to the depth of wells,

can be classified as deep or shallow wells. We conducted a

two-sample Anderson-Darling test to investigate the potential

impact of well depth on data distribution, examining shock

values for both deep and shallow wells. This statistical test

allows us to evaluate the null hypothesis that both samples

are derived from the same population, without needing to

define the distribution function of that population. The test

results led to the rejection of the null hypothesis at the

0.001% level, indicating that the shock distributions for deep

and shallow wells do not originate from the same distribution.

This conclusion was drawn because the returned test value

exceeded the critical value of 0.1% (6.546). To mitigate this

impact during data collection, we diversified our data sources,

gathering data from both deep and shallow types of wells, thus

minimizing the batch effect. This strategy diminishes the influence

of well-type-specific biases.

3.2. Data preprocessing

Proper processing is essential to extract meaningful insights

from the data. The first in data preprocessing for GuideHawk

and Echo data is to ensure that there are no missing values.

Missing or incorrect values in time-series data, especially for

longer horizons (i.e., 1 h), can significantly impact the entire

analysis. Some fracking operations were missing over 10% of

the Echo© data—these fracking operations were removed from

our data set. To ensure data accuracy, we clipped values

within the range of the minimum and maximum values for

our sensors. These sensors record downhole events in binary

format, which are then converted to float values using Kobold’s

software. However, in extreme cases, the conversion process

can result in values that are outside our sensors’ range,

such as NaN or very large float values. In this project, we

implemented value clipping based on the sensors’ range to

facilitate the conversion process. In addition, we normalize the

data to reduce the impact of different scales for each feature
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FIGURE 2

Echo© data for a specific fracking operation. Sleeve opening incidents are highlighted by purple.

in our dataset. We achieved this by converting the data to a

normal distribution.

To prepare both Guidehawk© and Echo© data for time

series prediction using a machine learning model, we used

a window-based sampling method with overlapping sliding

windows, considering all timestamps. The overlapping sliding

window, with a window size of wsample, segments the full time-

series data stream end-to-end. Once we converted the data into

overlapping sliding windows, we split them into separate train

and test sets for both Guidehawk© and Echo© data. This allowed

us to test the model’s performance on unseen data and prevent

the unintentional inclusion of future information or data from

the target variable into the training process, which can lead to

unrealistic model performance and inaccurate prediction. We

ensured that the splitting was performed at the operation level to

avoid data leakage, where a specific number of fracking operations

were randomly selected for the training set (X), while a different

number of operations were selected for the test set (Y). This

approach effectively eliminates any data point from a fracking

operation in the test set that was present in the training set, thus

preventing data leakage. For the Guidehawk© data, we split them

into three sets: the train set, the validation set, and the test set.

We performed this random selection process only once, where we

chose nine fracking jobs for training the machine learning model

and kept one fracking job aside for the validation set. The job

in the validation set was used for hyperparameter tuning. Finally,

the remaining job was used to test the model’s performance on

unseen data.

3.3. Feature extraction

Feature engineering for time series data can be accomplished

considering three aspects: statistical, temporal, and spectral. For

this project, we focused on the statistical and temporal aspects of

the data. It is also important to ensure that time-series data are

stationary for effective feature extraction. To account for variations

in standard magnitude values across different thread-lines or times,

we calculated the differences between data values and their lag

values. This derivative calculation approach helps ensure invariance

over time. After computing the derivatives, statistical features were

extracted for the Guidehawk© data as follows:

• Min: minimum value.

• Max: maximum value.

• Standard Deviation: square root of variance.

• Median: middle value for sliding window.

• Mean: average value.

• Skewness: the measure of symmetry of distribution.

• Kurtosis: the measure of whether the data are heavy-tailed or

light-tailed relative to a normal distribution.

• 1% and 99% quantile: value for 1% and 99% cut point

in distribution.

For Echo© data in addition to statistical features, temporal

features are also calculated, which are as follows:

• Total energy: the total energy of the signal.

• Peak to peak distance: the peak to peak distance.

• Entropy: the entropy of the signal using the Shannon Entropy.

• Area under the curve: The area under the curve of the signal

computed with trapezoid rule.

• Auto-correlation: autocorrelation of the signal.

• Centroid: the centroid along the time axis.

• Negative and positive turning: number of positive and

negative turning points of the signal.

• Distance: computes signal traveled distance.

• Zero cross: computes Zero-crossing rate of the signal.
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3.4. Machine learning models

3.4.1. Hidden Markov model
TheHiddenMarkovModel (HMM) (Ghassempour et al., 2014)

is a probabilistic approach used to model real-world phenomena

that follow theMarkov property. The HiddenMarkovModel serves

as an innovative approach for clustering data by considering both

the underlying probabilistic relationships within the data set and

the hidden states that generate observable patterns (Ghassempour

et al., 2014).

Fracking operations in this project happen in different steps,

like releasing BHA, moving to the next sleeve, opening the sleeve,

and actual fracking. By using HMM clustering, we can find more

information than we can with regular methods. One useful thing we

can find is how likely each time period is to be in each group. This

helps us know which fracking step is happening in a certain data

point. This extra information can help us understand how fracking

steps happen one after another.

First, we train the HMM in the training group using a

library called hmmlearn. We choose a hidden Markov model

with Gaussian distribution because our data looks like a normal

distribution, especially the Echo data. We use the Expectation-

Maximization (EM) way. We start by guessing model settings (like

how likely each step is, how they change, and what the average and

spread are) randomly, along with some real examples. While we

train, the model changes these settings to match the real examples.

We train this Hidden Markov Model for 100 tries.

To find the best number of groups, we use the elbow method.

This helps us pick a good number of groups, and we will talk

more about it in the Section 4. After we train the Hidden Markov

Model using the training data, we obtain the probabilities that

each data point belongs to each group. These probabilities are

added as additional features when we train the XGBoost model for

Echo data.

3.4.2. XGBoost
XGBoost is a machine learning algorithm that uses sequential

decision trees and gradient boosting to predict data classes (Ji

et al., 2019; Yang et al., 2019). It has demonstrated outstanding

performance in predicting structured data in recent years (Wu

et al., 2021).

However, in time-series data, XGBoost requires performing

feature engineering on feature vectors before training. Before

training XGBoost, we conducted feature extraction to capture

temporal and statistical relationships within each sliding window.

Subsequently, we trained XGBoost using the extracted features,

enabling the model to recognize data patterns based on

provided labels. Essentially, XGBoost aims to uncover data

patterns by utilizing the information derived from the extracted

features.

The XGBoost model assesses features obtained from the feature

engineering stage and arranges them in order of their capability to

distinguish instances of sleeve opening incidents. This procedure

empowers the model to concentrate on the most pertinent features,

thus enhancing its predictive performance. To address the issue

of overfitting and determine optimal hyperparameters for the

XGBoost model (such as the number of trees, maximum tree depth,

subsampling and column sampling ratios, and learning rate), we

employed Bayesian search in combination with cross-validation

using the scikit-optimize library.

For the cross-validation process, we opted for 10 fracking jobs

out of 11, each time training XGBoost on 9 of the fracking jobs and

evaluating its performance on the remaining one. The utilization

of Bayesian search with cross-validation allows us to identify the

most suitable combination of hyperparameters with a reduced risk

of overfitting. The final best hyperparameters comprise 100 trees, a

maximum depth of 6, subsample and column sampling ratios of 0.7

each, and a learning rate of 0.1.

3.4.3. LSTM-FCN
The LSTM-FCN (Karim et al., 2018) algorithm uses separate

CNN and LSTM components. The CNN components extract local

and Hierarchical features, while the LSTM component capturing

long-term dependencies from the data. These features are then

concatenated and passed through a dense layer with a softmax

activation function to determine the probability that the input

belongs to class 1 (sleeve opening incident) or class 0 (sleeve

is closing incident). The advantage of using LSTM-FCN lies in

its ability to capture both higher-level temporal patterns (e.g.,

delayed effects of strain on detecting sleeve incidents) and low-level

temporal patterns (e.g., spikes on shock). This hierarchical learning

significantly improves the model’s capability to distinguish between

different classes in the time series.

The input to the LSTM-FCN is X ∈ R
ns×ws×nd , where nd

indicates the number of features for data, ns indicates the number

of samples, and ws is the window size. The LSTM component

uses the default sigmoid activation function, while the CNN part

consists of three convolution layers with sizes of 128, 256, and 128,

followed by global max pooling. In our problem, the LSTM layer

is used to independently capture higher-level temporal patterns in

the data, taking advantage of its memory capabilities to recognize

long-term relationships, such as trends and global peaks in time

series.Meanwhile, CNN layers are used to detect low-level temporal

patterns, such as sudden changes in values. By combining the

strengths of both CNNs and LSTMs, the resulting LSTM-FCN

model is capable of capturing both short-term and long-term

temporal patterns in the data, making it a popular choice for time

series classification tasks.

We extensively delve into the meticulous design decisions

intrinsic to the LSTM-FCN architecture. Employing a univariate

LSTM-FCN model, we conducted one-step ahead predictions

using Echo data. We mainly focus on two important aspects:

finding the right number of layers for the LSTM component

and making thoughtful decisions about the kernel sizes in the

CNN part. The LSTM-FCN framework excels at combining time-

related changes and spatial complexities in data sequences. We

discuss the significant effects of adjusting the LSTM layer count

on the architecture’s predictive power. Through thorough testing,

we find a balance that manages model complexity and prediction

accuracy. This perspective highlights the importance of deeper

LSTM layers in capturing detailed time-related nuances, leading to

excellent predictions.
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Turning our attention to the CNN part, we use a setup with

three successive layers, each having 128, 256, and 128 output

channels. These layers are accompanied by kernel sizes of 8, 5,

and 3, respectively. These carefully chosen settings help the model

extract important features from the input data, enabling it to

identify detailed patterns and broader trends. The input data is

structured as bs × fn × ls, where bs is the batch size, fn is the

feature count, and ls is the sequence length. This format fits well

with how the CNN works, allowing for the retention of important

sequential relationships.

On the other hand, the LSTM module works with data

of dimensions bs × ls × fn, where bs is the batch size, fn is

the feature count, and ls is the sequence length. The LSTM

part consists of 128 layers, each with a hidden dimension of

128. This matches the output dimensions of the CNN, creating

smooth compatibility between the LSTM and CNN segments. This

harmony in dimensions enables the easy combination of their

outputs in later processing stages.

The peak of the architecture’s achievement comes when the

LSTM and CNN outputs are merged, passing through a fully

connected network with 256 input units. This union captures

insights from both time-related and spatial viewpoints, forming a

solid basis for future prediction tasks. The final output layer is finely

tuned to produce two outputs, aligning perfectly with the desired

classification goal. This showcases the architecture’s adaptability

and usefulness across various applications.

To sum up, our detailed examination of the LSTM-FCN

architecture underscores the interplay between LSTM layer

counts and CNN kernel sizes. This sheds light on their crucial

role in achieving top-notch performance. This understanding

enhances the toolkit for shaping the LSTM-FCN architecture,

allowing it to uncover intricate patterns in sequential data.

This marks the beginning of a new era characterized by

enhanced predictive modeling capabilities. Supplementary Figure 1

in the Supplementary material illustrates the LSTM-FCN model

architecture in more detail.

3.4.4. Transformers
Transformers are a type of neural network architecture that

is particularly well-known for their self-attention mechanism,

which allows them to capture complex temporal relationships

in data (Vaswani et al., 2017; Wen et al., 2023). The general

architecture of Transformers consists of two main blocks: an

encoder and a decoder. However, in this project, only the encoder

was utilized to derive a representation of the data based on

its temporal relationships. For the context of the classification

problem, the decoder part was not utilized, as the task involves

predicting a single label without the need for generating a sequence

of outputs, which is the primary purpose of the decoder in

sequence-to-sequence tasks. In our project, the encoder uses a

self-attention mechanism to capture temporal relationships in

data by learning attention scores between each timestep. These

scores indicate the importance of each timestep with respect to

the given timestep. In sensor data, the self-attention mechanism

can detect different patterns, such as sudden changes in one

sensor value or the maximum values for sensors. The output

representation of the encoder can be used in the final layer to

predict labels.

For the multi-head attention mechanism used in this project,

the multi-head attention mechanism enables the model to

selectively focus on different parts of the input sequence based on

their relevance, facilitating the extraction of meaningful features

at various temporal scales. The Gaussian Error Linear Unit

(GELU) activation function was chosen based on previous research

recommendations (Wen et al., 2023). The input to the transformer

model is a tensor X ∈ R
ns×ws×nd , where nd indicates the

number of features for the data, ns indicates the number of

samples, and ws is the window size. The output dimension of the

transformer model is the same as the input dimension. Global

max pooling is used to reduce the output dimension to one.

Finally, a dense layer followed by a softmax activation function

is applied to compute the probability of belonging to either

class 1 (sleeve opening incident) or class 0 (sleeve is closing

incident). In this project, Transformers are capable of identifying

both low-level and high-level patterns and their relationships

concerning sleeve incidents. For instance, through multi-head

attention, Transformers can discern distinct patterns, such as spikes

in shock values and pressure, and their relevance to constant strain

values and temperature.

In line with this project, we adopt a strategic decision to

configure the transformer’s architecture by aligning the number

of attention heads with the number of features, leading us to

employ four attention heads. To enable the model to effectively

capture temporal information inherent in the time series data,

we incorporate positional encoding, an essential element of

transformer models. Our experimentation reveals that a scaling

factor of 100 for the positional encoding optimally contributes to

enhancing the model’s performance. Furthermore, we emphasize

our parameter tuning for the number of transformer blocks, which

we set to four for the current project. Supplementary Figure 2

in the Supplementary material illustrates the transformer model

architecture in more detail.

3.4.5. Time-series image encoding
Themethod of encoding time series data into images (Cao et al.,

2021) introduces an innovative technique that expands beyond the

traditional analysis of 1D signals. Instead, it utilizes Recurrence

Plots (RP) to convert time series data into 2D texture images. This

novel approach incorporates deep CNN classifiers, leveraging the

image representation of time series data. This introduces diverse

feature types that were previously unavailable using conventional

1D signal-based methods. The combination of RP and CNN

in this method offers new avenues for feature extraction and

classification, holding promise for enhancing time series analysis

and recognition tasks.

However, a recent study by Elmir et al. (2023) introduces

an even more advanced method for visualizing ECG signals,

known as the Gramian Angular Field (GAF) technique. Specifically,

they propose the Gramian Angular Field Summation (GAF

Summation), which surpasses the capabilities of Recurrence Plots
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FIGURE 3

Sample of recurrence plot: converting time series to image.

(RP) in analyzing time series data. While RP generates a 2D

representation of temporal dynamics using a binary matrix to show

the recurrence of similar states, GAF Summation provides a more

comprehensive and insightful approach.

GAF Summation offers a superior alternative by capturing

intricate temporal relationships through the construction of a

Gramian matrix. This matrix retains angular distances between

data points, presenting a more detailed representation of patterns

compared to the binary nature of RP. By harnessing GAF

Summation, a deeper andmore nuanced understanding of complex

temporal sequences can be achieved.

Furthermore, GAF Summation excels in revealing intricate

dependencies and non-linearities inherent in time series

data. In contrast to RP, which might miss finer structures

due to its binary nature, GAF Summation maintains the

continuous nature of data relationships. This enhanced

capability enables GAF Summation to detect and highlight

subtle patterns, periodic behaviors, and non-linear trends, thereby

empowering analysts to uncover more profound insights within

the data.

Our methodology pioneers this transformative approach,

utilizing GAF Summation to convert raw time series data into

an easily interpretable visual format. By tapping into GAF

Summation’s capacity to unravel complex temporal dependencies,

we access a superior tool for identifying patterns and trends. This

goes beyond the capabilities of conventional techniques such as

RP, ultimately revealing information that would otherwise remain

concealed. Figure 3 provides a visual representation of sample

Echo data transformed into an image using the GAF Summation

technique. In the resulting image, the two phases of the time series

following a sudden decrease are distinguished by the presence of

blue and red colors.

Our methodology proceeds by exploiting the strengths of

this visually derived information. Each transformed recurrence

plot, functioning as an image, is then fed into a ResNet50

architecture, a robust convolutional neural network designed for

image classification tasks. This integration is particularly innovative

as it capitalizes on the ResNet50’s remarkable ability to recognize

intricate and abstract patterns within images, which, in this

context, are the visual patterns extracted from the GAF Summation

technique. Supplementary Figure 3 illustrates a sample of a batch of

images to ResNet50.

An essential aspect of our strategy involves the complete

training of all the weights within the ResNet50 architecture.
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FIGURE 4

Flowchart of ML model for Guidehawk© data.

This comprehensive training enables the network to adapt and

learn intricate features, correlations, and temporal dependencies

present within the transformed recurrence plot images. The

combined strength of GAF Summation and the ResNet50

architecture contributes to a holistic and complementary approach,

effectively addressing the complexities of time series classification

tasks.

3.5. Proposed framework

In this project, we propose two frameworks: one for

Guidehawk© data (multivariate time series) and one for Echo© data

(univariate time series data). Using HMM clustering for Echo© data

to extract features related to stages of fracking jobs can improve

model training, as it captures the relationship between stages in

events, especially since the raw data has only one feature like Echo

with shock value.

3.5.1. Guidehawk© model
The proposed framework for analyzing Guidehawk©

data, as depicted in Figure 4, aims to train an XGBoost

model for the identification of sleeve opening incidents.

The process commences by collecting data from both

GuideHawk and Echo sources subsequent to the completion

of fracking operations.

GuideHawk data, encompassing coil and annular pressure,

strain, shock, temperature, and torque, along with Echo’s

surface vibration (shock) data, is gathered and transferred

to an edge device. This edge device compiles the collected

data into a structured JSON file, arranging it chronologically

based on timestamps. Subsequently, this JSON file is

uploaded to Cosmos DB, serving as a repository for data

originating from diverse fracking jobs conducted across

Canada.

Within the cloud environment, Guidehawk data undergoes

extraction and subsequent feature engineering procedures.

Temporal and statistical features are extracted to create an

enriched dataset. The XGBoost model, initially trained using

GuideHawk data, then takes on the role of generating labels for

new fracking jobs. These generated labels are integrated with their

respective timestamps. The final dataset incorporates both these

appended labels and the corresponding Echo data.

Concluding this process, the XGSleeve model is trained using

this enhanced dataset. The aim is to augment the predictive

capabilities for upcoming fracking jobs, further enhancing the

understanding and forecasting of sleeve opening incidents.
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FIGURE 5

Flowchart of ML model for Echo© data.

FIGURE 6

Window and derivative size on the performance of the XGBoost model: (A) windows size, (B) annP derivative size, (C) shock derivative size, (D) strain

derivative size.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1243584
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Somi et al. 10.3389/frai.2023.1243584

3.5.2. XGSleeve model for Echo© data
After the completion of XGSleeve model training, its

deployment in the field offers real-time support to field operators

in making informed decisions. The process begins with continuous

recording of shock values on the wellhead by Echo data, which

is then downsampled to one sample per second. This data is

subsequently transmitted to an edge device for the prediction of the

ML model, as depicted in Figure 5.

The XGSleeve model functions on the edge device, beginning

with the utilization of the pre-trained hidden Markov model to

derive cluster probabilities for each timestamp. These probabilities

then serve as inputs for the subsequent XGBoost model.

Subsequently, temporal and statistical features are extracted. In

the subsequent phase of feature engineering, the XGBoost model

assesses the present timestamp using the extracted features, thereby

producing probabilities that are linked with each occurrence of

opening and closing incidents.

These probabilities are then relayed to the operator’s

monitoring device, facilitating real-time visualization of the

ongoing situation. Empowered with these insights, the operator

gains the ability to make well-informed decisions, whether to

reattempt the opening procedure or proceed to the subsequent

steps of the operation. The integration of the XGSleeve model into

field operations significantly bolsters efficiency and safety, offering

crucial assistance for swift and accurate decision-making during

critical fracking procedures.

4. Results

This section evaluates our proposed machine learning model

on the test data set for both Guidehawk© and Echo© data.

Specifically, in this project, we evaluate the model’s performance

using commonly used metrics such as F1 score, Precision,

and Recall. These metrics provide valuable insights into the

classification model’s effectiveness and are widely employed to

assess its accuracy and ability to correctly identify positive and

negative instances within the dataset. Additionally, we compare

our model’s performance with that of several baseline models to

demonstrate its effectiveness in addressing the problem at hand.

Overall, the results suggest that the XGBoost model is a promising

solution for both Guidehawk© and Echo© data.

4.1. Guidehawk use case

We used three different models to analyze the Guidehawk©

data: XGBoost, Bagging SVM (Baseline Model), and Transformers.

We selected thesemodels based on their demonstrated effectiveness

in handling multivariate time series data.

4.1.1. Window and derivative size e�ects on the
performance of the XGBoost model

This section explores the impact of window size on the

performance of the XGBoost model and the determination of

optimal derivative sizes for shock, strain, and annP. We evaluated

four window sizes, finding that a window size of 240 yielded

TABLE 1 F1 score, Recall, and Precision for Guidehawk© data.

Model
name

F1
score

Recall Precision Training
time

(minute)

Bagging SVM 0.46 0.53 0.4 45

Transformers 0.52 0.59 0.46 480

XGBoost 0.6 0.64 0.56 5

The bold values indicate emphasizing the best model result.

the highest F1 score. Our investigations encompassed three

experiments to identify the optimal derivative size for each variable.

Specifically, annP exhibited optimal performance with a derivative

size of 240. Notably, strain’s performance remained unaffected by

derivative size variations. Conversely, for shock, the most effective

derivative size was found to be 1 s, aligned with the rapid changes

observed in shock values within that time frame. The summarized

results for annP, shock, and strain derivative sizes, along with

insightful visualizations, are consolidated in Figure 6, furnishing

a comprehensive perspective on our experimental performance

and findings.

4.1.2. Comparison of XGBoost model with other
models

Table 1 compares the XGBoost, Bagging SVM, and

Transformers models for a 240-s sliding window using

Guidehawk© data. The XGBoost model outperformed the

other models with a 60% F1 score. Training the XGBoost model

on an NVIDIA RTX A6000 took less than 5 min, and only two

microseconds were required to predict the probability of a new

batch sample.

After plotting the results and comparing the true labels with

the predicted ones, we realized that the current performance

metric only considers how well the model predicts the labels

for each point. However, the objective of this project is to find

the time range for the sleeve opening incident. Therefore, we

changed our performancemetric to a range detectionmetric. Tatbul

et al. (2018) recommended using the F1 score metric for range

detection in time series by considering the importance of each

point in the range. In our case, the first point in the range is

very important, and we assigned a weight of 1.0 to that point,

while the remaining points were given equal weight. With the

introduction of the new performance metric, we calculated the

range F1 score only for our previously top-performing model,

XGBoost, which achieved a commendable range F1 score of 0.87.

Figure 7 shows the predicted labels and true labels for the test

data set.

Figure 8 depicts the feature importance of the XGBoost

model, with the y-axis indicating the decrease in the impurity

of each feature. The annular pressure has a significantly higher

importance score than the other features—it has the highest

decrease in impurity and it results in more pure branching in

XGboost. While the annular pressure is the most crucial feature,

other features such as Strain and Shock values also predict the

outcome.
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FIGURE 7

XGBoost predicted labels for test data. Purple parts are labels for a specific range of time.

FIGURE 8

XGBoost feature importance.
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FIGURE 9

BIC value for di�erent cluster number.

4.2. Echo© use case

To train models with Echo© data, we employed the same

window size for models that we experiment with in Guidehawk©

data and evaluated models with F1 scores. It is worth mentioning

that the range F1 score may not be an appropriate performance

metric for Echo© data. Our interest leans more toward accurately

predicting each timestep, rather than merely predicting a range

of timesteps.

As part of this project, we propose a novel model that

combines HiddenMarkovModel (HMM) and XGBoost to enhance

XGBoost’s performance (XGSleeve). HMM is a clustering method

used for analyzing sequence data. The underlying assumption of

HMM is that the system being analyzed follows a Markov process.

In our project, the completion process of sleeve opening involves a

cycling process that follows a Markov process and goes through a

finite number of stages. By incorporating HMM with XGBoost, we

aim to capture the sequential patterns of the data more effectively,

leading to improved performance. We trained HMMwith different

numbers of clusters (1 – 9) to find the appropriate number

of clusters.

The elbow method is a technique used to determine the

reasonable number of clusters for clustering algorithms. It works

by plotting the Bayesian information criterion (BIC) value against

the number of clusters. As the number of clusters increases, the

BIC value decreases. The elbow point is the point at which the rate

of decrease in the BIC starts to diminish significantly, resembling

an “elbow" in the curve. This point represents a reasonable trade-

off between having too few clusters (which might not capture the

underlying structure of the data) and having too many clusters

(which might overfit the data). Figure 9 illustrates the BIC value for

each number of clusters. We can observe that after the fifth cluster,

the BIC value fluctuates around a fixed point, and there is not a

significant drop in the BIC value.

Based on the elbow method, the figure suggests that the

reasonable number of clusters is 5.We then trained anHMMmodel

with 5 clusters and used the resulting probabilities for each cluster

as an additional feature set in combination with temporal and

statistical features. Incorporating clustering information resulted

as the additional input to the XGBoost model in a notable

improvement in the F1 score. Figure 10 shows the target vs.

predicted values for the test data.

Figure 11 illustrates HMM cluster for Echo© data.The green

color highlights the timesteps that belong to each cluster, while

purple highlights the labels. Clusters 3 and 4 may appear identical

due to low resolution, but they represent long-term peaks in signal

interchangeably. Cluster 5 signifies downtime and stage changes

from one well to another. Clusters 2 and 1 represent instances when

the tool is releasing pressure to transition to the next well. We can

observe that clusters 3 and 4 closely represent the labels, which are

highlighted in purple.

Figure 12 depicts the feature importance of the HMM+

XGBoost model, with the y-axis indicating the decrease in the

impurity of each feature. The probability derived from the HMM

model is the most important feature, with a significantly higher

importance score compared to the other features. While the HMM

probability is the most crucial feature, other features such as the

number of zero-cross and quantile values also predict the outcome.

These features are important because they provide additional

information that can help the model differentiate between opening

and non-opening incidents.

4.3. Comparison of XGSleeve with baseline
models

We employed two different models as the baseline models

for the Echo© data: XGBoost and LSTM-FCN to compare with

our proposed XGSleeve model. Table 2 reports F1-score for both

XGBoost and LSTM-FCN models. The table shows that the

XGSleeve model significantly outperforms LSTM-FCN and Time-

Series Image Encoding models. Moreover, adding HMM features

to the data (XGSleeve model) improves F1 score of the XGBoost

model by 10%.

5. Discussion

Throughout this project, we have explored the application of

various ML methods to predict sleeve opening incidents. The best

results were obtained using the XGBoost model for both Echo©

and Guidehawk© data. Due to the unique and complex sensor data

structure, we placed particular emphasis on feature engineering

and window size. We ran several experiments to identify the best

hyper-parameters for window size and derivative values.

We employed two distinct ML methodologies to predict sleeve

opening incidents. The first technique used a flat feature input,

incorporating both historical and current data. XGBoost andHMM

+ XGBoost models were implemented based on this approach.

The second method evaluated the temporal dependencies of

features. We employed LSTM-FCN and Transformer models to

assess the impact of sequential data structures on prediction.

The results indicate that ML models can predict sleeve opening

incidents with relatively good accuracy. The XGBoost and HMM

+ XGBoost model achieved the best performance, with an
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FIGURE 10

HMM+XGBoost predicted labels for test data. Purple parts are labels for a specific range of time.

F1-score of 87% for Guidehawk© and Echo© data, respectively.

After conducting several experiments, we have found that the

performance of recurrent ML and attention methods, including

LSTM and Transformer, was not superior to the flat-feature-

based prediction models. This was likely due to the high data

requirements needed for training these deep-learning models.

Despite the abundance of data points from these five fracking

operations, we need to increase the number of fracking operations

included in the training data for better generalization in our deep

learning model. This is necessary because each fracking operation

contributes to learning complex patterns.

During the data collection process, we discovered that

collecting data for a specific location leads to overfitting. This

can be justified by the fact that wells across Canada differ due

to variations in well depth. Our findings indicate that training

machine learning models on deep wells cause the XGBoost model

to focus heavily on shock values. However, collecting more data

from both types of wells results in different feature importances,

with annP becoming the more critical factor. For this type of

problem, it is crucial to gather data from a diverse range of fracking

operations rather than focusing solely on collecting more data from

the same fracking operation.

Furthermore, the proposed framework was intended to

function as a unified architecture. The initial plan was to train

the XGBoost model on Guidehawk© data. The trained XGBoost

model would then label the remaining Guidehawk© data without

labels in the data warehouse. Subsequently, these labels would be

mapped to Echo© data based on timestamps, and the proposed

HMM+XGBoost model would be trained on this combined dataset.

However, this approach was not implemented as Kobold did not

provide both Guidehawk© and Echo© data for the same job.

This is because collecting Guidehawk© data is more expensive

than Echo© data, and most of their clients do not request its

use.

Moving forward, there are three potential directions for

further exploration. The first area is related to refining our

machine-learning models through further hyperparameter tuning.

Hyperparameters can significantly influence the effectiveness of

our models, and improved tuning can often result in improved

predictive accuracy. This could involve a thorough exploration

of various combinations of hyperparameters to identify those

that are most suitable for our specific task. This procedure

might involve a meticulous adjustment of hyperparameters such

as learning rates, regularization values, and the number of

trees, which could significantly impact the performance of our

models. We would also need to consider strategies such as k-fold

cross-validation to ensure that the results are generalizable and

robust.
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FIGURE 11

Clusters for specific Echo© singles. Green color highlight clusters.

The second area is the reconsideration of the current data

labeling approach. Given that noisy labels can significantly affect

the performance of our models, relabeling the data could be

a useful step to reduce such noise levels. We can investigate

various noise reduction techniques, which could range from

simple filteringmethods to more advancedmachine learning-based

approaches. The refinement of our labels could potentially enhance

the performance of our models.

The third area contemplates diving deeper into the data

to explore additional data features and domain knowledge. A

comprehensive understanding of the domain can often help in

identifying valuable features that might be overlooked with a

purely algorithmic approach. Additionally, we should consider

implementing more advanced machine learning methods such

as auto-encoders. These techniques can be particularly useful

for complex datasets like ours, as they can learn a compressed

representation of the input data, which often leads to more

efficient extraction of meaningful features. This approach may

allow us to discover and exploit better representations of

sensor data, and potentially improve the effectiveness of our
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FIGURE 12

HMM+XGBoost feature importance.

TABLE 2 F1 score, Recall, and Precision for Echo© data.

Model
name

F1
score

Recall Precision Training
time

(minute)

XGSleeve 0.87 0.86 0.89 6

XGBoost 0.77 0.79 0.73 6

LSTM-FCN 0.65 0.68 0.63 300

Time-series

image

encoding

0.49 0.57 0.53 229

The bold values indicate emphasizing the best model result.

models. By focusing on these three areas, we aim to enhance

our understanding of the data and our modeling capabilities,

potentially leading to more powerful and effective machine-

learning solutions.
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