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Volatility and uncertainty of today’s value chains along with the market’s

demands for low-batch customized products mandate production systems

to become smarter and more resilient, dynamically and even autonomously

adapting to both external and internal disturbances. Such resilient behavior

can be partially enabled by highly interconnected Cyber-Physical Production

Systems (CPPS) incorporating advanced Artificial Intelligence (AI) technologies.

Multi-agent solutions can provide better planning and control, improving

flexibility and responsiveness in production systems. Small modular parts can

autonomously take intelligent decisions and react to local events. Themain goal of

decentralization and interconnectivity is to enable autonomous and cooperative

decision-making. Nevertheless, a more e�cient orchestration of various AI

components and deeper human integration are required. In addition, global

behaviors of coalitions of autonomous agents are not easily comprehensible by

workers. Furthermore, it is challenging to implement an Industry 4.0 paradigm

where a human should be in charge of decision-making and execution. This paper

discusses a Multi-Agent System (MAS) where several software agents cooperate

with smart workers to enable a dynamic and reconfigurable production paradigm.

Asset Administration Shell (AAS) submodels hold smart workers’ descriptions in

machine-readable format, serving as an integration layer between various system’s

components. The self-description capability of the AAS supports the system’s

adaptability and self-configuration. The proposed concept supports the plug-and-

produce functionality of the production modules and improves human-machine

integration in the shared assembly tasks.

KEYWORDS

Artificial Intelligence, Asset Administration Shell, human-centered AI,multi-agent system,

Human Digital Holon, self-configuration, shared assembly

1. Introduction

The increasing advancements in automation and Artificial Intelligence (AI) improve

efficiency, accuracy, and consistency in modern production systems (Felsberger et al., 2022).

Automation of routine tasks allows employees to tackle more creative activities, increasing

their work satisfaction (Kolade and Owoseni, 2022). Robots are already performing

repetitive and hazardous tasks, while the latest AI solutions extend this transformation to

the white-collar service sector. Automation and AI allow machines to accurately perform

tasks previously done only by humans (Spring et al., 2022). This increases product quality

by eliminating the risk of human error. However, humans remain the organization’s most
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flexible and adaptable elements. Human knowledge, experience,

innovative thinking, and creativity are the main factors of success

for an organization (Azeem et al., 2021). Hence, it becomes critical

for the factories to manage their digital transition in a balanced and

inclusive way toward their workers.

Effective and autonomous control in smart manufacturing

includes the successful integration of advanced AI technologies in

the existing production processes and equipment (Arinez et al.,

2020; Jan et al., 2022). Considering active control as a key

requirement in this context, data processing at the edge along

with the offline decision-making capabilities are necessary, as

the connection to the cloud may be intercepted or lost. Such

complex production systems, distributed and concurrent in nature,

are expected to be flexible and adaptable. They will operate

at increased speeds, and exhibit better robustness, scalability,

and reusability. For the aforementioned reasons, cloud-based or

hybrid platform solutions do not seem suitable. In contrast, the

software agent technology is one approach for the development of

interoperable software applications in distributed, heterogeneous

and even unreliable environments (Tello-Leal et al., 2014), such

as modern production systems. Multi-Agent Systems (MASs) are

suggested as suitable for implementing Industry4.0 components

(Sakurada and Leitão, 2020).

Though MASs are very common in the field of human-

assistance control (Marks et al., 2018), there are some limitations

in recent approaches to applying MASs in manufacturing systems.

For example, the user interfaces are mostly allocated to the system

level and not to the specific agents, which could provide their

own interfaces if necessary. Moreover, the coordinating agents

are mostly centralized in their architectures, which can hinder

modularity and flexibility. Furthermore, agent-based assistance

systems often provide only a low level of automation, i.e., the

computer offers a complete set of decision/action alternatives

without narrowing down the selection or supporting the action.

Additionally, the number of supported levels in the automation

pyramid is very low and the interoperability with existing industrial

software frameworks is very limited due to missing or partially

implemented industrial standards (Lu et al., 2020). Summing up,

the seamless integration of human factors inMAS architectures and

the implementation of such systems are still very challenging.

In this work, we focus on the following questions. How can the

existing MAS-based approaches for reconfigurable manufacturing

systems be improved under consideration of Industry 4.0 concepts

to ensure collaboration among heterogeneous production assets,

including humans and AI components? How to make human

characteristics available to the production system in order to

improve its interaction with the workers? How to realize functional

decomposition in distributed control architectures for effective

sharing of tasks between humans and machines? By addressing

these questions, we contribute to the transition to a human-centric

and resilient manufacturing paradigm.

The paper presents a multi-agent framework that extends

the existing approaches for designing reconfigurable modular

production systems by proposing a concept of Human Digital

Holon for improving human-system integration. The proposed

framework is based on the RAMI4.0 reference architectural model

for the effective utilization of the Industry4.0 enabling technologies

(Frysak et al., 2018). The Asset Administration Shell (AAS) is

used for the digital representation of all the assets, as well as

the MAS elements. This increases interoperability between the

system’s components and potentially lowers the integration efforts.

The human-system integration is achieved by modeling various

human aspects as AAS submodels and by augmenting human

behavior with a digital holon. The framework is conceptualized

in a prototype and is currently being tested in several industrial

use-cases, though without providing a final evaluation yet. Two

scenarios described in the paper support the main findings and

show how humans can be integrated into the shared human-

machine tasks.

This paper is structured as follows. A literature review is

presented in Section 2. It gives some theoretical foundations of

the proposed framework and analyzes the current approaches

for enhancing systems reconfigurability and integration of

humans into production. The topics of multi-agent and

holonic manufacturing systems are discussed in Section 2.1,

Digital Twins, Cyber-Physical Systems and Holons—in Section

2.2, service-oriented applications in the context of industrial

automation domain—in Section 2.3. Finally, Section 2.4, outlines

recommendations and challenges for the design of human-centered

Cyber-Physical Systems, as well as discusses the current research

gaps and the main focus of this study. The key concepts for

human-centered and smart manufacturing, which are central to

our framework, are introduced in Section 3. Semantic modeling

and the asset administration shell for a smart worker are explored

in Sections 3.1 and 3.2, respectively. The concept of a Human

Digital Holon is presented in Section 3.3. Section 4 describes the

proposed framework, which is outlined in Section 4.1. Section 4.2

elaborates on how to build a holon in the context of the framework.

In Section 4.3, we discuss the testing aspects of the system’s

prototypes. Section 5 describes two case studies of integrating

a smart worker into modular reconfigurable production lines

using our approach. Section 5.1 gives the testbed description.

The first scenario in Section 5.2 shows how the self-description

capability of the AAS can support plug-and-produce and self-

configuration functionalities of the system. The second scenario

in Section 5.3 explores the use of holons and Behavior Trees

for human-robot coordination in the shared assembly tasks. In

Section 6, we discuss the proposed framework in the context of

reconfigurable production and human-system symbiosis, including

some challenges and open questions. Section 7 concludes the work

and outlines the next steps of the current study.

2. Literature review

The proposed framework builds upon the RAMI4.0 reference

architecture (DIN SPEC 91345, 2016) and the core enablers of

the Industry 4.0, such as Cyber-Physical Systems, multi-agent

and service-oriented architectures and semantic interoperability.

In this section, we give some theoretical foundations, as well as

analyze current approaches for enhancing manufacturing systems

reconfigurability and human system integration. In Section 2.1, we

review the agent- and holon- based approaches in manufacturing,

and how these concepts influence our architecture. In Section 2.2,

we define Cyber-Physical Systems and Digital Twins, and their

role in the modern Cyber-Physical Production Systems. Section
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2.3 reviews the Service-Oriented Architectures and how the skill-

based approach can be used to encapsulate complexity and separate

implementation from the business logic. Lastly, in Section 2.4, we

examine the current approaches for incorporating humans into

production systems.

2.1. Multi-agent and Holonic
manufacturing systems

Over the years, many definitions of agents have been proposed,

focusing on different aspects of the concept. Russell and Norvig

(2020) give amore CPS-oriented definition of an agent as “anything

that can be viewed as perceiving its environment through sensors

and acting upon that environment through actuators”. Leitão

(2009) focuses on autonomy and interacting capabilities of agents:

“An autonomous component that represents physical or logical

objects in the system, capable to act in order to achieve its goals,

and being able to interact with other agents, when it does not

possess knowledge and skills to reach alone its objectives”. A

Multi-Agent System (MAS) is a federation of (semi-)autonomous

problem solvers that cooperate to achieve their goals and also the

global system’s goal. To succeed, they rely on communication,

collaboration, negotiation, and responsibility delegation (Leitao

and Karnouskos, 2015). As a general technology focused on

intelligence, autonomy, and cooperation, MAS is widely applicable

in the manufacturing domain. Over several decades of applying

multi-agent approaches in industrial applications, many MAS

architectures have been proposed. Leitao and Karnouskos (2015),

Leitão et al. (2016), and Cruz Salazar et al. (2019) give good

overviews of some of them.

Holonic manufacturing systems (HMS) is a manufacturing

paradigm proposed at the beginning of the 1990s as an attempt

to improve the ability of manufacturing systems to deal with

the evolution of products and make them more adaptable to

abnormal operating conditions (Giret and Botti, 2004). This

paradigm suggests that besides autonomy and interaction, which

the classical MASs focus on, manufacturing systems will continue

to need hierarchical structures to lower complexity and resolve

conflicts between different agents (Leitão, 2009). A holon is an

autonomous, intelligent, and cooperative building block of a

manufacturing system that serves transformation, transportation,

or other industrial tasks (Van Leeuwen and Norrie, 1997). A

manufacturing holon consists of an information processing part

and can also have a physical processing part. A holarchy, being a

system of holons, defines the rules for interaction between holons

and thus limits their autonomy. Each holon can be simultaneously

a part of several holarchies and be a holarchy itself (Christensen,

1994). This enables very complex and flexible control structures,

also called flexible hierarchies. Christensen (1994) also presents

the integration of humans into HMS, who can enter or exit a

holon like other resources, though such ideas can be difficult to

implement technically.

One of the earliest and well-known architectures describing

holonic production systems is the reference architecture PROSA

(Van Brussel et al., 1998). It aimed to provide production

systems with greater flexibility and reconfigurability with the

vision of creating an operating system for a factory (Valckenaers,

2020). ADACOR—an agile and adaptive holonic architecture

for manufacturing control—can be treated as PROSA sibling

and is PROSA compliant. It provides a multi-layer approach

for distributed production and balance between centralized

and decentralized structures to combine global production

optimization with flexible responses to disturbances (Leitão and

Restivo, 2006). Although, many holonic architectures have been

proposed, they aremostly variations of themain patterns, described

in PROSA and ADACOR. These two architectures also influenced

many of our design decisions.

The concepts of agents and holons are very close. As Giret put

it in Giret and Botti (2004), “a holon is a special type of agent, and

the technology which is used by most people who are dedicated

to holonic systems research is the MAS”. The MAS4AI project

treats a holon as a special type of agent as well. Agents together

with production modules build so-called resource holons. Agents

associated with products and their models are called product holons.

How agents together with humans can create Human Digital

Holons will be shown in the following sections.

Agents, as well as holons, fit very well to designing

reconfigurable manufacturing systems thanks to their inherent

modularity, intelligence and cooperative capabilities. Several

questions must be addressed, though, e.g., how can agents find each

other to form a particular configuration, and how do they efficiently

coordinate each other to reliably complete a production task? A

common approach for tracking agents and their functionalities

is to use a so-called Directory Facilitator, as defined in FIPA

specification.1 For example, a Yellow Pages Agent from Ribeiro

and Barata (2013) keeps track of the services each agent in the

system offers, so that others could locate it and its services. The

information and the services provided by Yellow Pages are not

standardized, which hinders the system’s interoperability. We use

the AAS standard model to provide the discovery functionality

for the agents. To form the production configuration, one popular

approach is to use some auction-based distributed scheduling

protocol, e.g., as in Bussmann and Schild (2001), Knabe et al.

(2002), Leitão and Restivo (2006), and Jungbluth et al. (2022).

Another, bio-inspired planning ahead approach of the Delegate-

MAS (DMAS) from Valckenaers (2019), uses lightweight agents,

called ants, for looking ahead and evaluating different production

possibilities before the actual resource allocation happens. These

elaborate algorithms focus more on flexible production scheduling,

leaving the execution to the resources. Though, a real production

task is an interplay of many sensors and actuators, which must

be perfectly synchronized. That is why, the resource allocation is

only one part of the assembly task in our approach, as it will be

shown in Section 5.3. Leitão et al. (2003) propose to use Petri Nets

(PN) to formally model the behavior of each holon. This enables

analysis and formal validation of holon’s behaviors. Though the PN

is a well-established formalism for modeling discrete event systems,

it has some weak points when it comes to the composition of

the agents’ behaviors. The composed PN model becomes quickly

very complex and incomprehensible by humans. In our solution,

we use the formalism called Behavior Trees (BTs) which has some

1 http://www.fipa.org/specs/fipa00023/XC00023H.html#_Toc526742625
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nice properties of improved modularity, hierarchical structure and

reactivity (Colledanchise and Ögren, 2018). The BTs have been

designed to be intuitive for humans and are very expressive.

2.2. Digital twins, cyber-physical systems,
and Holons

As Ribeiro points out in Ribeiro (2020) there are two

emerging trends in designing smart factories, namely Cyber-

Physical Systems (CPSs) and Digital Twins (DTs). While Cyber-

Physical Systems (CPSs) emphasize a tight intertwinement of a

system’s computational, physical, and logical parts, DTs are virtual

models of physical world objects. Another distinct difference lies

in the focus of systems design. CPSs focus on interdependencies

and interconnections between physical and cyber, and between

different possible autonomous CPSs to collectively create complex

behavior. DTs focus more on the synchronization of the real world

and its digital model. A CPS autonomously controls the world,

while in the case of DTs equipment gets the relevant instructions

from its DT (Ribeiro, 2020). The concept of holon can contribute

to both approaches. As it was noted in Section 2.1, a holon always

consists of an information processing part and, in the case of a

resource holon, a physical part. Hence, resource holons fit very

well for the implementation of CPSs. Application of CPSs into the

manufacturing domain manifests in the concept of Cyber-Physical

Production Modules (CPPMs) as the architectural components of

the flexible and modular production environments, which provide

standardized interfaces to offer different functionalities as services

(Kolberg et al., 2018). CPPMs combine with other CPSs and

humans to build Cyber-Physical Production Systems (CPPSs).

The concept of AAS as a standardized asset description is

widely recognized as a type of DT in the context of Industry

4.0 (Wagner et al., 2017). An AAS consists of several submodels,

in which all the information and functionalities of a given

asset (features, characteristics, properties, status, parameters,

measurement data and capabilities) are described. The AAS serves

as the link between the assets and the connected, digital and

distributed world, as described by the Platform I4.0.2 The AAS

provides the assets with the self-description capabilities through

the common information model, as well as the standard API to

interact with this model. Vogel-Heuser et al. (2021) use the AAS for

the initialization of the agents in MAS. In our framework, the AAS

plays one of the major roles. We use it to describe every component

of CPPS, as well as MAS. We also use the AAS and its API to

describe and get access to the parametrization and management

services of our MAS. This increases interoperability of our solution

through standardization.

A role-based approach for integrating workers into the Industry

4.0-compliant environments by using the AAS to describe the

role-related information requirements is presented by Birtel

et al. (2019). We extend this approach in our framework

by using additionally other worker’s characteristics, such as

2 https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/

Publikation/VWSiD%20V2.0.html

qualification, skills, performance, for better integration of humans

into manufacturing environments.

Similar to the AAS model, the modeling approach taken

by the Semantic Web and its Resource Description Framework

(RDF) from RDF Working Group (2014) should help solve

interoperability issues. Although their goals are similar, both the

AAS and RDF-based models have their specific strengths. Whereas

AAS models are easier to integrate with operational technologies in

a production environment, RDF-based models offer more semantic

expressiveness for modeling the smart worker and advanced

querying. Different approaches have been proposed to bridge the

gap between both modeling paradigms. Grangel-Gonzalez et al.

(2016) create an RDF representation of an AAS (Semantic AAS)

and Bader and Maleshkova (2019) map an AAS model onto an

RDF-based schema. In our framework, we propose a method on

howAASmodels can be created from RDF-based schemas (Rongen

et al., 2023). That allows us to reuse the large amount of already

existing semantic models in RDF and reference to their URIs

directly. We also focus on using both AAS and RDF models in

parallel to combine the benefits of both metamodels, by reusing

data and functionalities offered by the other metamodel.

2.3. Capabilities and skills for the flexible
production

A Service-Oriented Architecture (SOA) paradigm as a way of

distributed systems is being progressively adopted in the industrial

automation domain. SOA is based on the idea of providing

and requesting services. A service is a piece of software that

encapsulates the functionality of some entity and provides it

through the well-defined interface (Leitao and Karnouskos, 2015).

Service provider and requestor do not need to know each other,

but only the service description. This enables distributed and

loosely coupled architectures. Jammes et al. (2007) proposed to use

web services for the embedded devices. The project SOCRADES

(Cannata et al., 2008) followed these ideas and applied SOA

principals in the industrial automation domain. The projects that

followed continued to develop the pattern of using adapters to

integrate non-service low-level logic of devices to some service-

oriented middleware.

The SOA paradigm has found its extension in the industrial

automation domain as a skill-based approach, as Dorofeev (2020)

calls a skill “a control-level service”. The skill-based engineering

paradigm is closely related to a so-called product, process, resource

model (PPR), which was introduced to enhance the separation of

concern between products, processes, and resources. Motsch et al.

(2021) show that the PPR-model enables to focus separately on

the capabilities needed to produce a product and those provided

by the resources, which are currently available in production. This

allows the matching of the required and available capabilities by

their functional descriptions and the creation of a production plan

that can be dynamically executed by the resources providing the

required skills. The latest extension of the PPR model is called

a capability-skill-service model (CSS) and was presented by the

Platform Industry 4.0 in Köcher et al. (2023). It defines a capability

as “an implementation-independent specification of a function in

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2023.1241522
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/VWSiD%20V2.0.html
https://www.plattform-i40.de/IP/Redaktion/EN/Downloads/Publikation/VWSiD%20V2.0.html
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Sidorenko et al. 10.3389/frai.2023.1241522

industrial production to achieve an effect in the physical or virtual

world”; a skill is “an executable implementation of an encapsulated

(automation) function specified by a capability”. We have applied

the concepts of capabilities and skills also to all of our holons.

This enables a user to find the required holons based on their

capabilities. As we describe later, it is also possible to quickly

change the implementation of the holon’s capability by swapping

the corresponding skills.

Ribeiro and Barata (2013) focus on the rapid device deployment

for the plug-and-produce scenarios. Their Mechatronic Agent, as

the lowest abstraction entity in the framework, directly interacts

with the controllers and ensures synchronization between the agent

platform and the low-level execution code. The authors admit

some shortcomings of their approach, such as, heavy reliance

on Java technology and the performance issues that may hinder

the system’s scalability. In our framework, the lowest abstraction

entity is the atomic skill, which is implemented using the OPC

UA technology, as in Dorofeev and Zoitl (2018), Zimmermann

et al. (2019), and Volkmann et al. (2021). This is an application

of the SOA-based paradigm and is aligned with the concept of

CPPMs by providing their functionalities as the standardized skills.

The producers of the equipment have no need to implement

agents or some “harmonization” libraries, instead they focus on

the implementation of the standardized skill interface using the

OPC UA, which is a de facto standard in the industrial automation

world. Thus, we combine skill-based/SOA and MAS approaches.

On the execution level, CPPMs provide standardized OPC UA

skills. Agents create the intelligence layer and together with CPPMs

build the ResourceHolons, as it was initially proposed in Ruskowski

et al. (2020).

2.4. Human-centered cyber-physical
systems

The era of computer-integrated manufacturing (CIM) of the

1980s, with the vision of fully automated plants that would

make human workers obsolete, has proved the very opposite: the

need to build manufacturing around and for humans (Zuehlke,

2010). Another, so-called “techno-centered” approach, places a

human in charge of making all the decisions. The “magic human”

in Trentesaux and Millot (2016) is assumed to solve all the

problems that may appear during manufacturing. The authors

provide several examples that highlight the overestimation of

such assumptions. They also propose some recommendations for

designing more “human-centered” manufacturing systems:

• Humans must always be aware of the situation;

• Repetitive actions/decisions must be avoided;

• Rare situations, for which an operator is not well-prepared,

must be cleared as soon and as much as possible;

• The human mental workload must be carefully regulated to

avoid mental overload, stress, fatigue, or boredom;

• The level of system automation must adapt to situation and

human competence.

Zhou et al. (2019) argue that intelligent manufacturing systems

are always Human-Cyber-Physical Systems (HCPS) and that

humans must be seen as an integral part of such systems.

Though, in their work the authors describe mostly high-level

concepts, enabling technologies and challenges for building the

new generation of intelligent manufacturing systems. Romero

et al. (2016) explore the vision of Operator 4.0 in the context of

HCPS and discuss the main concepts and enabling technologies

for the development of such systems. The authors propose a

strategy to attain human-automation symbiosis between humans

and machines through hybrid agents. Such agents would succeed

in the situations where neither human agents nor machine agents

can do alone. Peruzzini et al. (2020) stress the importance of

human-centered design and human factors for human-machine

interactions in Operator 4.0. Sparrow et al. (2022) present an

architecture to facilitate the integration of human workers into

Industry4.0 environments. Their solution combines the AAS,

as described by the RAMI4.0 (DIN SPEC 91345, 2016), the

holonic architecture in accordance with the ARTI design principles

(Valckenaers, 2019) and the concepts from Operator 4.0 (Romero

et al., 2016). Conceptually, this work is the closest to our

approach. The authors focus on the implementation of the AAS

for a human worker, but it is not clear, if they follow the

set of specifications, defined by the platform Industry 4.0.3 In

our solution, standardization plays the major role in ensuring

interoperability between the system’s components. We rely on the

standard AAS metamodel and the set of APIs, defined in the

specifications. The focus is made on the semantic modeling aspects

for the AAS and its combination with the holons. The worker’s AAS

is seen as the human’s passive digital twin, while the holon actively

represents the human in the system. Furthermore, the skill-based

concept allows designing the main elements and interfaces in an

implementation-neutral way.

To sum up, the main objective of this work is to investigate

how the methodology developed in our project for integration of

various AI technologies into distributed production environments

can be applied to improve the interaction between humans and

machines. By realizing the vision of Operator 4.0 we benefit from

the complementarity of humans with AI technologies for solving

problems that seemed unattainable before.

3. Key concepts for human-centered
smart manufacturing

The goal of the MAS4AI project is to develop and test a

distributed and interoperable architecture based onAImulti-agents

technology. AI-powered production systems in cooperation with

humans can improve planning and execution and help to increase

the quality of products and processes. This will contribute to

the hyper-agility of European factories through human-assisted

autonomous, modular, and reconfigurable production while at the

same time keeping humans in control of AI technology.

3 https://www.plattform-i40.de/IP/Redaktion/EN/Standardartikel/

specification-administrationshell.html
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As discussed in Section 1 on of the main challenges toward

effective smart manufacturing is to integrate different state-of-

the-art AI technologies with advanced manufacturing control,

respecting safety, security and ethical aspects. To face this

challenge, we employ a holonic multi-agent system, based on

the RAMI4.0 reference architectural model and the use of AAS.

The AAS is envisioned to facilitate the digital representation of

all the components in the system: production resources, agents,

AI-algorithms and smart workers. This enables monitoring and

information exchange in a unified and interoperable manner.

Figure 1 shows how the MAS4AI solution aligns with the

RAMI4.0 reference architecture model. MAS4AI agents and

holons find themselves on the three upper layers of the “Layers”

architecture axis of the model. On the information layer, all

the assets are uniformly described by their AASs to enhance

interoperability. On the one hand, agents utilize the structure of

the AAS to autonomously get the required information, on the

other, they are also described by their AASs in a standardized way.

AI algorithms may be part of agents, but can also be provided as

services of the functional layer. Agents can both provide and use

these services. The business layer is driven by different business use

cases, e.g., monitoring or production orchestration, where agents

and holons take active part. MAS4AI agents are present on all

the levels of the “Hierarchy” axis of the RAMI4.0 model. Product

holons ensure proper production of products, while resource

holons represent production resources, e.g., devices, stations or

work centers. Holons of the Enterprise and ConnectedWorld levels

take part in the Shared Production scenarios.4 The “Life cycle &

value stream” axis is also represented in the MAS4AI solution

through type and instance AASs of assets and agents (not shown

in the figure).

Finding effective ways for collaboration between humans and

AI systems, and exploiting the strengths of both humans and

machines while keeping the human in control, is one of the core

research topics of the project. For better integration of humans,

whom we call smart workers, into production systems, we use key

concepts that are described in the following sections. Section 3.1

discusses human’s semantic models to describe a smart worker

precisely and unambiguously. The smart worker’s AAS, described

in Section 3.2, enables the standardized and secure access to all

the information a system needs about a worker. In Section 3.3, we

clarify the concept of the Human Digital Holon for the symbiotic

integration of humans into holonic multi-agent systems.

3.1. Semantic models of a smart worker

Formal semantics offer a precise and unambiguous way of

representing information regarding the human worker. They allow

for automated interpretation by machines and reasoning over

knowledge about the worker. Semantic models of the smart worker

aim to capture concepts that allow the human to effectively

collaborate with other agents andmachines. Themodel of the smart

4 https://www.bmwk.de/Redaktion/EN/Artikel/Digital-World/GAIA-X-

Use-Cases/shared-production.html

worker contains descriptions of concepts, all made available via the

digital persona (representations) of the human. These include:

• Skill model: representing the technical knowledge and skills

possessed by the worker. This includes information about the

worker’s education, training, and work experience, as well

as specific competencies and certifications they have earned.

Standards that express concepts for this model include ESCO5

and O*NET.6

• Qualification model: representing qualifications required for

the worker to perform their job, such as professional licenses

or degrees. It could also include information about the

worker’s language proficiency and other soft skills that are

necessary for effective communication and collaboration.

• Personality model: representing the affective state of the

worker, including their personality traits, motivation levels,

and stress tolerance. It could be used to predict how the worker

might respond to different types of work environments or

situations.

• Performance model: representing the worker’s performance

metrics, such as productivity, quality, and safety. It could be

used to identify areas for improvement and to monitor the

worker’s progress over time.

• Context model: representing the context in which the worker

is operating, including the specific task they are performing,

the equipment and/or resources they are using, and the

environment in which they are working. It could be used to

optimize the work environment for maximum efficiency and

safety.

• Cognitive model: representing cognitive abilities of the

worker, such as attention, memory, and perception. It could

be used to design tasks and training programs that are tailored

to the worker’s cognitive strengths and weaknesses.

An ontology for the smart worker that includes the concepts

of the above can be defined by extending ontologies available in

the manufacturing domain in order to reuse existing and well-

founded knowledge models. Figure 2 shows the main concepts

of the smart worker and relations between concepts defined in

such an ontology. MASON (Lemaignan et al., 2006) provides a

core model that conceptualizes core concepts of the PPR model

(Cao et al., 2019), defined as Entities, Operations and Resources.

A MAS4AI ontology for the smart worker then implements the

notions of an Agent as a specific representation of Resources, it

adds Task to describe the context of the worker, as well as Skill

required to execute the tasks, the Qualification models, models

of the Affective state (AffectiveStateModel), PerformanceModel

that registers performance metrics and the representation of

the CognitiveAbility of a human worker. The RAMI Ontology7

represents the Reference Architecture Model for Industry 4.0

(RAMI), including the concept of an Administration Shell I4.0

Component (AdminShell) for a smart worker.

5 https://esco.ec.europa.eu/en/about-esco/what-esco

6 https://www.onetcenter.org/overview.html

7 https://github.com/i40-Tools/RAMIOntology
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FIGURE 1

Alignment of the MAS4AI Solution with the RAMI4.0 Architecture (based on DIN SPEC 91345, 2016; Alexopoulos et al., 2020; Popper et al., 2021).

Describing these models as reusable components (submodels)

within the framework of the AAS, allows the creation of new open

models of the smart worker which are interoperable with already

existing models and fit the MAS4AI framework.

3.2. Asset Administration Shell for smart
worker

In the proposed framework, each asset, e.g., a CPPM, a smart

worker or an agent, is described in a standardized way by its

AAS. The MAS4AI agents use the standard AAS API to get all the

required information about the assets. In this section, two types of

AAS are described—a smart worker AAS and an agent AAS.

Figure 3 shows the main submodels of the smart worker AAS.

Some submodels, such as Identification are common for all the

assets, others are unique for specific AAS types. The smart worker

AAS provides information about a worker’s role, qualifications,

capabilities, and skills. Some semantic models described in Section

3.1 have not yet been included in the current version of the

smart worker AAS and need more elaboration and standardization.

The Role submodel describes which role a person has in the

organization. The system uses the role information for the proper

interaction with the human. For example, different roles imply

different access levels or different agents associated with the

person. The worker’s role in the production can change depending

on his/her location or task. The system can monitor both and

accordingly update the worker’s capabilities and performance.

Moreover, due to the worker’s physical conditions, e.g., fatigue,

his/her capabilities and performance can also deteriorate. This can

lead not only to quality issues, but also to potentially dangerous

situations and accidents. To prevent such situations, the system

must carefully monitor the worker’s conditions and promptly

update the corresponding AAS submodels, and, if needed, raise

an alarm. The Qualification and Skills submodels provide insight

into the worker’s ability to perform a certain task and can hold

the results of performance monitoring/evaluation and various tests.

The Capabilities and skills submodels are common for the resource

assets and are used to realize the PPRmodel as described in Section

2.3. The Interfaces submodel lists the interfaces, which are currently

available to interact with the smart worker, e.g., cameras, tables,

AR-glasses, etc. This information is also sensitive to the worker’s

location. As it will be shown later, these interfaces are normally not

just devices, but so-called Human Interface Holons.

Figure 3 also shows the AAS for the MAS4AI agent. The

MAS4AI_Agent submodel is used to describe a particular type of the

MAS4AI agent and has a reference to the agent’s semantic model.

It also indicates if the agent has holonic properties, i.e., consists of

the other agents. If an agent is a holon, then the Available Agents

submodel lists the subordinate agents. The Resources submodel

shows all the resources available to the holon, e.g., production

resources or human resources. The Task submodel describes the

production tasks that are currently running or scheduled in the

holons agenda. The Interfaces submodel describes all the interfaces

available to the agent. It includes the communication channels, e.g.,

MQTT, OPC UA, or REST, as well as interaction protocols, e.g., the

FIPA ACL8 or the I4.0 language (VDI/VDE-GMA, 2020a).

8 http://www.fipa.org/repository/aclspecs.html
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FIGURE 2

High-level ontology for a smart worker.

FIGURE 3

AASs for a smart worker and a MAS4AI agent.

In the proposed framework, both RDF-based and AAS models

are used in parallel to reinforce each other. RDF is used to

build powerful descriptive models, whereas AAS provides standard

structure, interface, and better integration with the physical world.

The semantic model shown in Figure 2 together with the SPARQL

technology9 can be used to improve the discoverability of assets

in the distributed MAS environment. Each holon and asset in

the framework is represented by its AAS, which provides the

9 https://www.w3.org/TR/rdf-sparql-query/

connection to the physical or virtual entity. Though, to find the

holon with the exact required capability can be a non-trivial task

because the AAS lacks the querying functionalities, as provided by

the RDF framework. Rongen et al. (2023) describe a method how

one can use the RDF store and the dedicated knowledge graph

for creating a query to find the required AAS for further use by

utilizing the standard AAS’s mechanisms. In the context of the

Human Digital Holon, which will be described in the next section,

the agent’s AAS serves two main purposes: to describe the holon in

a standardized way and to interface with the smart worker context
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as described in Section 3.1. The knowledge graphs, based on the

model shown in Figure 2, enable the holons to reason about the

smart worker and to make informed decisions.

3.3. A Human Digital Holon

As discussed in Section 2.4 the need for better integration of

humans in the industrial environment in sense of human-machine

symbiosis has been identified bymany authors (Romero et al., 2016;

Trentesaux andMillot, 2016; Peruzzini et al., 2020). While personal

digital assistants play a subordinate role to humans by executing

human requests, a vision of Human Digital Holons lies in a more

symbiotic relationship between human agents and artificial agents

and in the creation of hybrid agents. Such agents will succeed where

neither of the former ones can produce sufficiently good results

(Romero et al., 2016).

Sousa et al. (2007) note that HMSs can “effectively integrate

human operators in the manufacturing process” and will require

bidirectional Person-Machine Interfaces. On the other hand,

Valckenaers (2019) argues that humans lack presence in the digital

world and thus cannot effectively communicate with other holons.

Sparrow et al. (2022) also point out that though humans are a good

example of holons, they cannot be easily integrated with digital

holons and need some extensions. According to them, there are tree

main responsibilities of the human digital holon:

• To represent a human in holarchy and to interact with other

holons on a human’s behalf;

• To provide a human with only necessary information to avoid

cognitive overload;

• To establish an efficient interface between a human and a

system.

Our approach is to combine the worker’s AAS as human’s

passive DT with the Human Digital Holon, which actively

represents a human in the system. To augment humans with

necessary information and build with them the efficient interfaces,

the specialized holons are used, called Human Interface Holons.

Figure 4 shows a high-level structure of the human digital holon.

To interact with the other holons on behalf of the smart worker, the

Human Digital Holon needs necessary information about a person.

The human AAS described in Section 3.2 serves as the single source

of truth about the worker and is a part of the Human Digital Holon.

The holon uses the standard structure of the AAS submodels to

take part in the negotiations, e.g., in the contract-net-protocol

(CNP) (VDI/VDE-GMA, 2020b) for the resource allocation. It also

updates the AAS depending on the actual situation. For example,

the role of the worker in the production process may change

depending on the person’s location. The holon tracks the worker’s

location and updates the role in the AAS. Depending on the

worker’s qualification and role, the type of the holon can also differ,

e.g., an assembly module operator is represented by a Resource

Holon, whereas a process expert can take part in planning or

optimization activities as a Supervisor Holon.

To provide humans with only necessary information and

support them inmaking decisions, the specialized holons inside the

Human Digital Holon, the Human Interface Holons, get data from

the smart sensors, analyze the current situation and the production

goal and make the worker to selectively perceive the information

that is important in the current moment to make quality decision.

In general, it is difficult to integrate human beings and digital

holons by directly connecting them. The traditional means such as

graphical user interfaces (GUI) or mechanical buttons may not be

enough for sufficient integration of humans and holons. The task of

the Human Interface Holons is to indirectly interface with humans

by using AI algorithms and data from smart sensors.

4. Proposed architecture

4.1. Overview

The proposed framework as described in Sidorenko et al. (2023)

consists of several components that are combined to build a holonic

architecture to facilitate the integration of AI technologies, CPPMs

and humans with the concept of the AAS. An overview of the

framework is illustrated in Figure 5. The AAS-hosting platform

provides the AASs for all the assets including CPPMs, humans,

agents, as well as algorithms. The self-description capability of the

AAS is used for the system’s configuration and parametrization. All

the components of the framework can be exchanged if they follow

the general architecture of how the components and their interfaces

are structured and described. The MAS used in the project is

based on the Janus runtime for the general-purpose agent-oriented

programming language SARL (Galland et al., 2020). The decision

in favor of SARL has been made because of its explicit support of

holonic architectures. SARL also provides useful abstractions, such

as capacities, skills, and behaviors, to model agents’ functionalities.

These constructs follow the skill-oriented approach, which was

discussed in Section 2.3, and ease the agents’ development, as

it was evaluated in the prototypical testbed environment of the

SmartFactory-KL (Motsch et al., 2023).

The MAS4AI framework provides the templates for the

commonly used holons, as well as their standard description in the

form of the AAS. This allows to quickly deploy the required holon

types for different applications, for example, resource control,

monitoring or production planning, as well as to realize complex

holonic control structures, which can consist of several MAS

runtimes, each representing the subset of the system’s holons.

The integration of different components into the MAS is based

on the standard AAS model, as well as on the infrastructure

and the APIs defined by the AAS standard. The MAS4AI holons

implement the AAS REST API to interact with the AAS-hosting

platform and use the standardized structure of the AAS submodels

to describe themselves, as well as to get the required information

about others. The AAS model is also used as a facade to the

configuration and execution services of the MAS4AI framework.

This ensures independence from the implementation technologies

and conformance to the Industry 4.0 standards. Two AAS-

hosting platforms, BaSyx10 and Dimofac,11 have been used in the

framework, and the MAS4AI agents could work with both of them

10 https://eclipse.dev/basyx/?target=blank

11 https://dimofac.eu/
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FIGURE 4

Human Digital Holon.

FIGURE 5

MAS4AI framework overview.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1241522
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Sidorenko et al. 10.3389/frai.2023.1241522

by using the proper skills. This shows the extensibility of the

framework and its ability to work with different AAS technologies.

4.2. Building a Holon in the MAS4AI

This section describes how the holons are built in the MAS4AI

framework, as well as different ways of integrating AI-algorithms as

the holons’ programs.

A Resource Holon usually represents some production

resource, for example, a production module, transportation vehicle

or a smart worker. Figure 6 shows a block diagram of the resource

holon, which represents a CPPM. The CPPM typically consists of

a set of actuators and sensors, which interact with the environment

to complete some task. It also has its own computation platform

and a software layer, or a native cyber layer, which controls its

hardware and provides the interfaces for the external users. We

follow the skill-based approach for designing CPPM’s control

architecture and encapsulate the module’s functionalities as skills

with standard interface and behavior. For example, for the robot

in Figure 6 such a skill can be “pick and place” and is provided

as an OPC UA skill model presented in Volkmann et al. (2021).

To be a part of the I4.0 ecosystem, the CPPM needs to have

the standard digital representation in the form of the AAS. This

makes the module a so called I4.0 component. The module’s AAS

synchronizes with its native cyber layer to provide the module’s

status and services to the other I4.0 components. Some of the most

important AAS submodels used in the project are Capabilities and

Skills to follow the CSS model described in Section 2.3, as well

as assetInterfaceDescription,12 which provides the description of

the asset’s native interfaces to enable the automatic configuration

of the communication channels. Agents build the intelligent layer

of the CPPM. The SARL agents also have skills as part of their

model. A SARL skill consists of actions, which implement some

algorithms or call external services. In the Figure 6, the agent’s

skill has a sequence of actions to use the underlying module’s

skill. The actions use the information from the AAS submodels

to connect, configure and properly use the skill. The SARL agent

also has a set of behaviors, which consist of event handlers and

event emitters. This enables to implement different interaction

protocols, e.g., contract-net-protocol (CNP), which can be used for

dynamic planning and resource allocation (Jungbluth et al., 2022).

The resource agent, together with the CPPM and the AAS, builds

up the Resource Holon.

An agent’s function describes an algorithm that maps the

agent’s perceptions to its actions. An agent’s program is the

implementation of this function, which runs on a specific

computational platform. Figure 7 shows the possible integrations

of the AI-algorithms as the MAS4AI agents’ programs. There are

three integration mechanisms that we use:

• The agent’s program is implemented and deployed externally,

and the agents use it through a set of services;

12 https://github.com/admin-shell-io/submodel-templates/tree/main/

development/Asset%20Interface%20Description/1/0

• The agent’s program is implemented using SARL language

abstractions and directly integrated into the agent;

• A combination of the two previous variants is also possible.

The first variant assumes that an agent’s program is

implemented and deployed externally, and is provided as a

service. In Figure 7, an exemplary pattern recognition algorithm

runs on an edge device and provides its service via REST API. A

quality check agent has a skill that uses its actions to make direct

calls to that service to query the algorithm. This approach separates

the algorithm’s development from the agent’s development. The

agent’s program implementation can be freely changed as long

as the interface stays the same. The skill-based approach can

also be used in that case. For example, a functionality of an ML

algorithm, which is provided by the pattern recognition system, is

implemented as a skill with the standard skill model and the agent

knows how to use it. The AI algorithms are also treated as the

assets in the MAS4AI and thus are provided with the AAS.

In the second case, the SARL constructs of capacity, skill, and

action are used for the implementation of the agent’s program. A

SARL capacity is the specification of a collection of actions, whereas

a skill is the implementation of this capacity. It should be noted that

SARL capacity is conceptually very close to the notion of capability,

which we used before. We use capacity here to be consistent with

the SARL terminology. The actions of the skill can be executed as

a reaction to some external events or proactively, i.e., triggered by

an internal event. The combination of the actions and the events

that trigger these actions builds the actual agent’s program. Skills

and capacities enable code reuse and modularity. In the Figure 7, a

planning agent has a planning capacity that defines an interface for

a planning skill. This capacity can be implemented by several skills,

each representing a different planning algorithm, as long as the

capacity’s actions specifications are respected. Thus, the agent can

change the algorithm it uses by simply instantiating the proper skill.

4.3. Testing the framework

During the project lifetime, several prototypes have been

developed for testing different aspects of the proposed framework,

such as integration with the CPPMs, interactions between holons

and with the external services, scalability, integration of different

AI-algorithms and technologies (Motsch et al., 2023). Integration

with the CPPMs follows the same principle, as shown in Figure 6.

Every CPPM provides its functionalities as the OPC UA skills

with the standard interface and behavior. They are exposed by

an OPC UA server, either built into a PLC or provided by an

OPC UA adapter (Native Cyber Layer and Asset Skill blocks in

Figure 6). For the interactions inside one runtime, the holons

use Janus native event-based mechanism. To increase scalability

of the framework, we run different holons in separate runtimes

inside Docker containers. For the communication between such

holons we use Kafka13 to build a robust agent messaging

system. The I4.0 language is used as the agent communication

language. we have tested our framework on several demonstrators

13 https://kafka.apache.org/
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FIGURE 6

Resource Holon. The asterisk * denotes unlimited number of elements in the upper bound of the UML multiplicity.

FIGURE 7

Integration of AI-algorithms with the MAS4AI agents. The asterisk * denotes unlimited number of elements in the upper bound of the UML multiplicity.

and with the different industrial automation hardware. As it

was mentioned in Section 4.1 two different AAS platforms,

BaSyx and Dimofac, have been used as the AAS infrastructures.

Though, the demonstrators are still only the lab-scale proof-of-

concept prototypes and cannot provide the real production data

and results.

MAS4AI involves challenging use cases to demonstrate

feasibility, scalability, and flexibility of the framework for the

deployment of AI solutions in different hierarchical layers of

modular production in a wide range of sectors (automotive, wood,

bicycles, bearings, and metal). Various AI technologies have been

used to create agents for the pilot-lines use-cases, e.g., hierarchical
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planning, model-based machine learning, reinforcement learning,

etc. The algorithms have been implemented using different software

frameworks and integrated in the MAS4AI platform following the

approach described in Section 4.2. As the project is still running, the

pilot-lines are currently in the final stages of deployment phase. In

the following verification and validation phase, the framework can

be evaluated against the KPIs set at the beginning of the project.

5. Case study: a human-robot shared
assembly task

5.1. Testbed description

The presented testbed demonstrates a reconfigurable CPPM,

which is built from a set of exchangeable submodules around a

handling central module. Each submodule comes with the standard

mechanical, electrical, and software interfaces to ensure the plug-

and-produce scenarios. The CPPM can be reconfigured to produce

new types of products by introducing new submodules that add

new capabilities to the system. There are several requirements for

the testbed that must be satisfied:

• The control must be distributed across different control

systems of the submodules because the centralized control

system approach will not support rapid reconfigurability;

• The submodules must be described by a common information

model to ensure interoperability and integration;

• The system must configure itself to enable plug-and-produce

scenario;

• The system must ensure the efficient orchestration of the

submodules’ functionalities to complete various assembly

tasks;

• The smart worker must be seamlessly integrated into the

system considering his/her role and skills;

• The system must respect the recommendations proposed in

Trentesaux and Millot (2016) and listed in Section 2.4.

The control system of the testbed uses the MAS4AI holonic

approach and is influenced by the ADACOR architecture (Leitão

and Restivo, 2006). The ResourceHolons of theMAS4AI are similar

to the Operational Holons of the ADACOR and the Product Holons

correspond to the Task Holons. The Task Holon of the MAS4AI

corresponds to the Supervisor holon of the ADACOR and is also

motivated by the need to coordinate different Resource Holons

to perform a common task. Each Resource Holon represents a

smart device, a production module or a worker. The Resource

Holons form together the control structure of the CPPM. It is the

responsibility of the Task Holon to coordinate the Resource Holons

during production. When new equipment is introduced, it brings

new capabilities to the system and the new production tasks can

be accomplished.

5.2. Human Digital Holon
self-configuration

One of the enablers of the plug-and-produce scenarios is the

assets’ self-description capability. As it was discussed earlier, all

the assets in the MAS4AI project use their AASs to provide all

the information needed by the system for their proper integration.

This section shows how this approach can be used to support self-

configuration of the HumanDigital Holon, as well as each Resource

Holon in the system.

The scenario is shown in Figures 4, 9. The testbed has a hand-

assembly submodule where a worker helps a robot to accomplish

tasks that need some dexterous operations, which the robot

cannot accomplish by itself. Without the worker with the proper

qualification, the required skills are absent in the system and the

task cannot be completed.

The simplified activity diagram of holon’s self-configuration in

provided in Figure 8. When the worker first logs into the system,

the corresponding AAS template is loaded to the AAS hosting

platform and initialized with the worker’s profile (Smart Worker

AAS part of the diagram in Figure 8). All the information regarding

the worker’s role, capabilities, skills, as well as interfaces, through

which the system can interact with him/her, is filled into the proper

submodels. This information is sensitive to the worker’s current

position.

At the same time, a human interface device, e.g., a smart camera

or AR-glasses can be plugged into the system (Human Interface

Holon part of the diagram in Figure 8). The device initializes its

native cyber layer (see Figure 6), its AAS, and spawns the default

Human Interface Holon, which configures itself from the device’s

AAS. The dedicated algorithms needed by the Interface Holon

may be provided by the smart device itself as the skills, or run as

the external services. In both cases, the information required for

the configuration is taken from the corresponding AAS. After the

holon is ready, it registers itself with the superordinate holon.

After the worker has logged in and got the AAS, the default

Human Digital Holon is spawned with the corresponding worker’s

AAS ID (Human Digital Holon part of the diagram in Figure 8). It

finds the worker’s AAS by the AAS ID, which it gets as a parameter

during its activation, and configures itself with the worker’s profile

information from the worker’s AAS. It also checks for the currently

available Human Interface Holons in the superordinate holon by

reading its AAS. If there are such holons, it connects to their

AASs and gets the required information to set up the interaction

channels. The holon now announces itself through its AAS as the

worker’s Human Digital Holon with the appropriate skills and

capabilities further to the system. The system updates its available

skills and can decide further whether it can accomplish the task

or not.

5.3. Human-robot coordination for shared
assembly tasks

Though the worker has agency and can coordinate the assembly

task, whereas the robot acts as a helper and reacts to the worker’s

commands and actions, often the human might need the system’s

support. For example, a novice worker might not know what to

do next, especially with the highly customized products. New skills

may be required to accomplish tasks needed to produce a new type

of product.

On the other hand, the robot might not be capable of reliably

predicting the worker’s actions and thus safely and efficiently
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FIGURE 8

Self-configuration scenario activity diagram.

helping the human. In this case, more deterministic coordination

of both human’s and robot’s actions can be beneficial. When

collaborating with the robot, the worker also wants to feel safe.

For that, the transparency of the process and the understanding of

what the system is doing or intended to do is crucial. A process of

executing a task can be divided into 3 stages:

• Resources allocation: the resources required for a production

task are found and scheduled.

• Task configuration and parametrization: the task is configured

for the execution and the skills of the production resources are

parameterized.

• Task execution: the task is executed by coordinating the skills

of the production resources.

5.3.1. Resources allocation
Figure 9 shows the resource allocation stage of the shared

assembly task scenario. A set of capabilities needed to produce a

specific product is derived from the product model to match the

capabilities of the resources available in the system. In the Figure 9,

the product Holon consults with the product AAS on which

production steps must be performed next. A step is formulated as a

set of capabilities with the constraints, which must be met to carry

out this step. The task of the Product Holon is to find and reserve

the production resources that provide such capabilities. In this

scenario, the agents use a well-known contract-net-protocol for the

negotiation and allocation of the resources required to complete a

production task. The HumanDigital Holon is delegated to take part

in this negotiation on behalf of the worker. For that, it consults the

worker’s AAS to get the information about the worker’s capabilities

and agenda. After the successful negotiation, it updates the worker’s

agenda with a new task allocation.

5.3.2. Task configuration and execution
After the Resource Holons have committed to collaborate in

carrying out the task, their skills are parameterized, if needed,

and the task tree that represents the shared human-agent behavior

is composed. The parameters for the skills are taken from the

product AAS. The parameters for the worker’s skills can choose, for

example, different sets of instructions for the worker. For modeling

of the shared task, a model called Behavior Trees (BTs) is used.

The BTs have been chosen because they are easily composable
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FIGURE 9

Resources allocation for the shared assembly task.

into complex behaviors and are understandable by humans. A

BT is a directed rooted tree with internal nodes called control

flow nodes and leaf nodes called execution nodes. The control flow

nodes set the rules on how to coordinate their child nodes. The

execution nodes, conditions and actions, execute commands, which

either change the agent’s environment or check for changes in

this environment. Further information about Behavior Trees can

be found in Colledanchise and Ögren (2018). Sidorenko et al.

(2022) showed in how BTs and skills from different devices can be

composed together. As described in Figure 6, the holon has a set

of behaviors that rely on the holon’s skills. A behavior of the holon

can be specified as a BT, where the BT’s actions and conditions are

realized by the holons’s actions. The task BT is generated from the

production step description taken from the product AAS. For the

execution of the task BT, the Task Holon is spawned. Its goal is to

connect to the BTs of the Resource Holons, i.e., the Human Digital

Holon and the Handling Holon, and to coordinate their execution

according to the logic of the task BT.

Figure 10 schematically shows the example of the shared

assembly task coordinated by the BT. The actual BT of the task

is more complex, but still is well understandable by the worker.

The complete task BT can be projected on the worker’s AR-glasses

to provide the process overview. The BT gives the instructions to

the worker through its actions. During the worker’s actions, the

Human Interface Holons observe the working scene and generate

conditions to indicate that the current running action is completed.

5.3.3. Implementation concept
This section provides further details on the implementation

concepts of the previously discussed scenarios. Though the

prototypes are still in the development phase, the main framework

components have been implemented and reused from the previous

scenarios. The block diagram in Figure 11 shows the main

components of the prototype. There are four main subsystems:

• The stereo camera module for scene detection;

• The Robotic Operating System (ROS2) middleware for

controlling the robot and executing Behavior Trees;

• The Janus runtime as the framework’s MAS execution engine;

• The BaSyx middleware for hosting Asset Administration

Shells and providing services to interact with them.

The stereo camera with the custom objects detectors and the

hand tracking functionality is used to recognize changes in the

assembly area. For the hardware configuration, we have chosen the
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FIGURE 10

Shared task coordination by the Behavior Tree.

FIGURE 11

Block diagram showing the main components of the prototype concept.

ZED2 stereo camera14 and the Nvidia Jetson Orin Developer Kit15

because of the extensive capabilities of the ZED SDK AI module

and the power of the Jetson Orin as an AI edge-device. The camera

module is designed according to the principles discussed in Section

14 https://www.stereolabs.com/zed-2/

15 https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-orin/

4.2. The OPC UA skills encapsulate and parameterize the detectors’

algorithms and provide the standard skill interface (Volkmann

et al., 2021). The ROS2 middleware will be used to control the

UR5 robot with the MoveIt16 package. The BehaviorTree.CPP17

library will also be used to execute the Behavior Trees (BTs) of the

16 https://moveit.ros.org/

17 https://www.behaviortree.dev/
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assembly task. We have made this decision because there are no

known Java realizations of the Behavior Trees execution engine. For

our scenario, we have chosen the BehaviorTree.CPP library because

of its maturity and integration with the ROS2. The interaction

protocol for the synchronization of distributed BTs is described in

Sidorenko et al. (2022). The protocol state machine is implemented

as the SARL behavior. In Figure 11, the Human Digital Holon has

a behavior BT Interaction Protocol, which uses a ROS2 PubSub

skill. This skill realizes DDS18 publisher and subscriber for the

communication with ROS2 nodes. ACamera Interface Holon tracks

changes in the assembly working area and generates signals for the

BT-conditions. It has a Scene Detection behavior, which uses the

standard OPC UA skill to directly access the skills of the stereo

camera module. Each holon also has an AAS skill, which uses

the standard REST API of the AAS to retrieve all the required

information about an asset (holon, CPPM, algorithm, etc.). In the

current implementation, we use the BaSyx middleware for hosting

AASs, but it is also possible to work with the different AAS platform

or even with several ones by changing the AAS skill. Along with the

BaSyx the Dimofac Digital Platform is being used in our project.

6. Discussion

This study tackles the topic of modular and reconfigurable

production systems, where humans play an integral role and

contribute to the adaptability and re-configurability of the

system. The proposed methodology follows the RAMI4.0 reference

architecture model and couples the skill-based/SOA approach

with the holonic MAS, influenced by the ADACOR architecture

(Leitão and Restivo, 2006). The AAS and standardization of the

informationmodels play the major role in ensuring interoperability

between various components of CPPSs. The MAS framework has

been extended to include human-machine interaction and consider

both human andmachine behaviors at the same level of abstraction.

To achieve this, the human behavior was augmented with the

digital holon.

The feasibility of the concept has been proven in the

SmartFactory-KL19 on various industrial grade demonstrators,

realizing the shared production environment based on the

distributed testbeds, decomposition of production processes, agent-

based production flow control, modular transportation systems

and skill-based production modules (CPPM), as well as quality

control components (Sidorenko et al., 2023). Furthermore, the

testbed environment does also include the smart worker in its

modular structure. Semantic technologies are used to model the

human aspects as the submodels in the AAS, which in turn is used

to create the Human Digital Holon, acting as the human digital

twin. The Human Digital Holon allows the seamless integration

and coordination of humans along with the other components

of the digital system. In the MAS4AI project, the pilot lines in

the real production environments are also equipped with the AI

technologies such as semantic web, machine learning, and flexible

planning, which are implemented as agents. This intends to show

18 https://design.ros2.org/articles/ros_on_dds.html

19 https://www.smartfactory.de/2022-production-level-4-oekosystem/

that the concepts are transferable to various kinds of production

domains and industrial sectors. However, final evaluation is

still open.

Two scenarios are described, which show how humans can

be integrated into the shared human-machine tasks, and how

this can be realized using the proposed framework. The first

scenario shows the central role of the AAS and standardization in

enabling plug-and-produce and self-configuration functionalities.

The standardized submodels of the AAS provide all the information

that the system requires for properly setting up an asset. The

AAS serves as the standard self-description interface, providing the

common information model and related services. Though, without

standardization, it will be difficult to achieve. Agents rely on the

standard information models to get the required information. As it

can be seen from the activity diagram Figure 8, the implementation

is simplified and serves as a proof-of-concept. Some functionalities

have been left for further research and development. For example,

Section 3.2 notices that a worker’s role and capabilities depend

on one’s physical conditions and location in the production line.

To realize such functionality, several Human Interface Holons

together with the set of advanced sensors are needed. Moreover, to

follow a human, the holons must be mobile, meaning they should

be able to autonomously move from one MAS runtime to another.

They will also need to acquire, change and share various sensors

along the way. The holons will also need the AI algorithms to

reliably track human conditions. This task is the research subject

for the interdisciplinary teams. The second scenario shows the

interplay of distributed and hierarchical approaches for designing

control systems, which are separated in time. In the first phase,

a distributed agent-based scheduling takes place, whereas in the

execution phase the Task Holon uses the hierarchical Behavior

Trees structure to orchestrate the skills of the scheduled holons.

The holons temporary lose their autonomy and cooperate to

accomplish the task. This allows to unify task allocation and

execution at the agent level. The remarks from the first scenario

are also valid here. Some questions have been left out of scope.

For example, how to integrate low-level functional safety with the

Behavior Trees or how to ensure reliable preemption of tasks?

The Behavior Trees framework has already been established in the

state-of-the-art robotics and gaming industry and offers several

advantages in comparison with the more mature models, such as

Hierarchical State Machines or Petri Nets. These are improved

modularity, reactivity, extensibility, and explainability. Though,

its further investigation is needed. Lastly, the Task Holon in the

scenario acts like an orchestrator, which makes the solution more

tightly coupled. Sidorenko et al. (2022) show how to execute

the Behavior Trees in a distributed fashion, which enables to

avoid the use of the Task Holon and execute a task similar to

service choreographies.

While the human skills and competencies were adequately

modeled in the AAS and used in the Human Digital Holon,

the joint work of various interdisciplinary research groups

is necessary to create the algorithms for the specialized

Human Interface Holons. Furthermore, since human-related

information is used, data privacy becomes important. The AAS

has stated to support data security and privacy capabilities,

but these aspects, to the best of the authors’ knowledge,
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are still under development, and are not examined in the

current study.

7. Conclusion and future work

In conclusion, this study proposes the MAS framework

with the reference implementation for enabling the human-

centered production paradigm. The concept allows seamless

integration of smart workers with the MAS. Several challenging

use-cases from a wide range of industrial sectors, including

automotive, wood, bicycles, bearings, and metal, are involved to

demonstrate scalability and flexibility of the framework for the

deployment of AI solutions in different hierarchical layers of

modular production. The pilot-lines are currently finalizing the

deployment phase and starting gathering data for validation of

the approach.

The main findings of this work can be described as follows.

The combination of the RAMI4.0-based platform with the AASs

can support the distributed manufacturing paradigm, where the

AASs are used as data models for the smart software agents,

which realize various AI algorithms and autonomously perform

their tasks toward a joint goal. The RDF-based knowledge graphs

can enhance information modeling capabilities of the AASs

and support decision-making by the agents. Standardization of

the AAS submodels is crucial for interoperability and plug-

and-produce scenarios. Distributed planning and scheduling are

necessary for modular reconfigurable architectures and increase

flexibility and resiliency of the overall system, whereas hierarchical

control structures can lower complexity and support efficient

execution. Thus, the combination of holonic architectures with

hierarchical behavior models, such as Behavior Trees, may be

beneficial. By augmenting human behaviors with the digital

holons and providing human related aspects to the system

through the standard AAS submodels, an efficient human-machine

integration can be achieved. Two scenarios have been presented

to support the approach along with the concept for implementing

the solution.

A formal evaluation of the architecture and theMAS prototypes

will be a part of the future work. The evaluation will utilize

the established methods, e.g., the Architecture Trade-off Analysis

Method (ATAM).20 In addition, considering the need to diagnose

failures in the MAS and ensure its predictability and robustness,

formal methods will be used to evaluate its behavioral analysis using

model-based techniques and simulation (Bos and Kleijn, 2002),

as well as topological approaches with or without the integration

of Fault-Detection-Isolation-Recovery techniques (Srivastava et al.,

2020).

20 https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=513908

Finally, the next steps will target the expansion of the

prototype with additional holons for solving planning and

optimization tasks. The system’s structure will also be refined to

improve its performance concerning functional safety and real-

time capabilities. Moreover, additional experimentation in the

industrial case studies is required to examine the system’s scalability

and applicability in different industrial domains.
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