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The energy challenges of artificial
superintelligence

Klaus M. Stiefel and Jay S. Coggan*

NeuroLinx Research Institute, La Jolla, CA, United States

We argue here that contemporary semiconductor computing technology poses a

significant if not insurmountable barrier to the emergence of any artificial general

intelligence system, let alone one anticipated bymany to be “superintelligent”. This

limit on artificial superintelligence (ASI) emerges from the energy requirements of

a system that would be more intelligent but orders of magnitude less e�cient

in energy use than human brains. An ASI would have to supersede not only

a single brain but a large population given the e�ects of collective behavior

on the advancement of societies, further multiplying the energy requirement. A

hypothetical ASI would likely consume orders of magnitude more energy than

what is available in highly-industrialized nations. We estimate the energy use of

ASI with an equation we term the “Erasi equation”, for the Energy Requirement for

Artificial SuperIntelligence. Additional e�ciency consequences will emerge from

the current unfocussed and scattered developmental trajectory of AI research.

Taken together, these arguments suggest that the emergence of an ASI is highly

unlikely in the foreseeable future based on current computer architectures,

primarily due to energy constraints, with biomimicry or other new technologies

being possible solutions.
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thermodynamics of computation, artificial intelligence

Introduction

The possible emergence of an artificial superintelligence (ASI) has been the subject of

much academic discussion (Carlsmith, 2022). The idea of an entity which is significantly

smarter than humans, comparable perhaps to the difference between humans and great

apes, captures the human imagination. So much different is human society than chimpanzee

society, for example, that one could imagine an ASI easily tackling some of themost daunting

problems facing humanity such as solving gravity, ecosystem management, space travel

and, not ironically, sustainable and affordable energy. Moreover, much as the next smartest

primates cannot begin to understand human technology, it is fun to speculate about what an

ASI could come up with that would leave us equally gobsmacked.

Science fiction literature has not surprisingly also had it’s say, with Lem coining

the term “intellelectronics” (Lem, 1964). Here, we outline arguments that such a

superintelligence is unlikely to be realized any time soon with current technology due to

its projected energy requirements. An important point in this context is the definition

of an ASI. It is difficult to precisely define an entity which doesn’t exist (yet), but

its eventual architecture is neither known nor relevant for the present discussion, as

the main argument relates to the estimated minimum energy use of such a system,
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which is independent of technical details, in the same way that a car

is different from an ox, but the work (energy) needed to pull a cart

a given distance is the same in both cases.

We want to clarify from the start that we understand the

definition of intelligence to be contentious and multifaceted and

this is no less true of the concept of intelligent computing (e.g.,

Zhu et al., 2023). But no matter the definition, strategy, technique

or algorithmic approach (e.g., Hochreiter and Schmidhuber, 1997;

Hinton et al., 2006), it is widely agreed that the basis involves

fundamental computations and to develop a narrative on ASI

and its costs, we consider intelligence to be the product of a

very large number of computations, performed or emergent from

the dynamics of biological tissue or manufactured information

processors such as semiconductor chips. We posit that equivalence

in intelligence is only possible when the same magnitude of

complexity of computations per time is executed with comparable

and intelligible outputs. We don’t consider “shortcuts” via 20,000

lines (just an example) of very clever program code to be solutions.

This reasoning excludes successes of AI in limited domains, like

maze navigation or written text production, as proofs of machine

intelligence equivalent to human. Just because a robot is as good

as a human in navigating a maze or even faster at recombining

training data does not make it as intelligent. Equivalent intelligence

will only be achieved when the highest human cognitive abilities

are replicated, including those requiring agency and adaption, and

a superintelligence will need to surpass these in competence at least

and probably in speed as well. But however one defines intelligence,

our presumption is that it will not be achieved without equivalent

computational complexity.

The issue of what exactly the hypothetical ASI does, whether

it is directly in control of effectors (for instance the power grid of

countries) or acts as an “advisor” for a government or private entity,

is not relevant. The definition we use encompasses any man-made

computational system significantly more intelligent than humans,

not only with the capability to solve problems we cannot, but

possibly with the ability to control the human population by means

of manipulation, superior planning, or direct force if incorporated

into robots.

Results

The main argument that indicates that the emergence of an ASI

is highly unlikely in the foreseeable future rests on the fact that the

energetic cost of the computations performed would by far surpass

the energy supply available to human civilization. While we believe

that ASI is technologically impossible to implement in present-

day semiconductor technology and its high energy use, we do not

believe that it is impossible in principle, as other authors do (Roli

et al., 2022).

Energy use in biological and engineered
computation

Whatever the architecture of an ASI turns out to be, it will

be bound by the principles of thermodynamics of computation

(Bennett, 1982). Reversible computation with no dissipation of

energy has been proposed to work in principle (Frank, 2005), but

is unlikely to be possible on the speeds necessary for conventional

processors or even an ASI system, with great numbers of individual

operations needing to be performed at great speeds.

A human brain contains about 1011 neurons and consumes

about 12W. A typical laptop processor uses 150W. The fastest

supercomputer at the time of this writing, Frontier, uses 21× 106 W

to perform 1.685 ExaFLOPS (1.685× 1018 floating point operations

per second). Assigning a computational speed to nervous systems

commensurable to the widely used unit of computational power for

digital computers, floating point operations per second (FLOPS),

is at least not trivial, or at worst a mismeasurement or simply

not comparable.

We hence give an order-of magnitude estimate of the

computational efficiency of present-day semiconductor processors

executing AI algorithms in comparison to biological brains

(Schuman et al., 2022). To do this we compare the energy use of a

state-of-the-art, detailed simulation of parts of a mammalian brain

to the energy use of an actual brain.

Our example comes from Switzerland’s Blue Brain Project

(BBP) of EPFL, which has been creating a biologically realistic,

data-driven reconstruction and simulation of an entire mouse

brain.1 This intricate simulation includes details of molecules, cells,

circuits and brain regions that together participate in biological

computation (e.g., Markram et al., 2015; Ramaswamy et al., 2018;

Reimann et al., 2019; Zisis et al., 2021; Coggan et al., 2022).

The BBP uses a supercomputer roughly capable of 2 × 103

TFLOPS, with 400 TB of memory and 200 TB/s of memory

bandwidth. The energy use for 720 processors involved in this

simulation is around 400 kW. A simulation of 10 million neurons

in a cortical circuit requires approximately 1,460 TFLOPS and 270

kW to simulate 1 s of biological time and took more than 8 h of

processing time, slower than nature by about a factor of 3 × 104. If

we convert power (W or J/s) to energy (J) units, 270 kW (for 8 h) is

7,776,000,000 J of energy to compute 1 s of mouse cortical activity.

When extrapolating to the entire mouse brain with 108

neurons, a simulation would require 2.7 MW. Extrapolating again

to a human brain with 103 times as many neurons as a mouse brain,

the power requirement would be 2.7 GW (which is 7.7× 1013 J for 1

second of thought and 14.6 ExaFLOPS). This is orders ofmagnitude

above the amount of energy a human biological brain is estimated

to use, at 12W. Based on the detailed simulations conducted by

the BBP example, we estimate that biological computing is about

9 × 108 times more energy efficient than artificial computing

architecture (Figure 1).

We stress that this estimate is a lower bound. Although

the simulations of the BBP are already highly detailed and

the simulation is continuously increasing its biologically realistic

complexity, the current energy estimates for simulations are a

snapshot and do not yet take into consideration a significant

amount of the computational complexity of brains. For example,

many information-bearing processes of single cells are yet to be

incorporated, both in gray and white matter (not to mention glia),

such as local dendritic integration, allosteric proteins, biomolecular

networks, spatial integration, neuromodulatory elements, synaptic

1 https://www.epfl.ch/research/domains/bluebrain/
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FIGURE 1

Energy use by the brain of a mouse, a human, a typical laptop processor, a leading supercomputer (Frontier), and the scaled energy uses (with and

without corrections for processing time) for a complete mouse brain, a complete human brain and 8 million human brains.

plasticity, gap junctions and ephaptic effects. Adaptation and

learning factors will also require computational resources. In

addition, for the fundamental energy costs of computation in

biological brains, and in comparison to artificial information

processing networks, we have to subtract the costs of creating and

maintaining the infrastructure. Even with some uncertainty about

how these costs are distributed and assuming some overlap, it is

clear that, in the example of the human brain, the actual cost of

computation is actually much lower and the 12 Watts measured.

For all of these reasons, the estimated 9 × 108 times energy

efficiency differential for a large BBP mouse brain simulation still

grossly underestimates the true value.

Computing time considerations

This estimate above is based on 1 s of simulated biological

time, but considering that it takes 3 × 104 times longer for the

BBP supercomputer to simulate biological time, these simulations

cannot be considered equivalent. Performing an action 30,000

times slower is necessarily less energy demanding. The most

straightforward way to correct for this discrepancy is to multiply

the relative energy efficiency of 9 × 108, derived above, by the 3

× 104, and we arrive at 2.7 × 1013 as the total relative efficiency

of the human brain vs. silicone semiconductor processors running

AI algorithms.

Simulation vs. emulation

The above approach is relevant especially since neuromorphic

computing, computing based on architectures inspired by brain

structure and function, is increasingly seen as a preferred strategy

for implementing efficient computations (Indiveri et al., 2011;

Wang et al., 2013; Schuman et al., 2022). However, an important

argument is that in order to replicate the performance of a human

brain, one does not have to reproduce the exact structure and

function of its biological intricacies. We agree with this notion, but

argue that in any case the same amount of computation has to be

carried out.

Without doubt, a single neuron is capable of complex

computations, and while they don’t have to be simulated as

electrical potentials traveling along axons and dendrites, the

input/output relationships will have to be similarly complex (e.g.,

Attwell and Laughlin, 2001; Gidon et al., 2020). Highly simplified

analog sigmoid transfer-function model “neurons” (often referred

to as “point neurons”) with highly simplified “synapses” will

certainly not suffice. Beyond the biophysical and electrical features
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of neurons based on their complements of ion channels and

neuromorphology, there are many other layers of information

processing involving modifications of the cell’s internal states

including macromolecular shape changes and rate functions,

genetic, transcriptional, translational, epigenetic, biomolecular

networks, second messenger pathways and energy distributions

that affect neuronal output (Figure 2; Ananthanarayanan et al.,

2009; Eliasmith and Trujillo, 2014).

A human-brain like intelligence will not likely emerge from

short-cut simulations of a human brain. Rather, such an intelligence

(or greater) will most likely emerge from a device with a similar

order of magnitude of complexity. An emulation of a human brain

is unlikely to succeed if built with highly simplified components

arranged in a massively simpler way than biological brains

are arranged. And even an estimated improvement of energy

efficiency by a factor of 103 by an emulation (without precise

biological detail) vs. a simulation will only reduce, but not solve,

the fundamental energetic problems outlined above. It seems

completely improbable, on energetic grounds, to surpass biological

brains when using silicone semiconductor processors.

We speculate that only an approach that closely resembles

biological computing strategies will be able to compete with

biological intelligence. For example, an alternative set of large

organic molecules, arranged in amulti-scale system, might be made

to compute as efficiently as a brain. While there is probably no

necessity to use proteins and nucleic acids per se to build cells, the

principles of neuroscience or general single cell biology will have

to be followed to be as energy efficient as biology (e.g., Hassabis

et al., 2017). The pursuit of ASI might well benefit from biomimicry

beyond today’s neuromorphic strategies.

Human group intelligence

Humans are inherently social animals, it is therefore reasonable

to compare the energy use of the brains of large human populations

with that of a proposedASI.We, therefore, have to assign the energy

use of 8 billion human brains (estimated global population in 2022)

to the human “group intelligence”. Although each human brain

contributes a different task to the performance of the species, it is

the sum total that drives the species forward with the intelligence

required for group survival (or extinction should our intelligence

falter). In reality, even the tasks performed in the construction of

a footpath (involving spatial planning and the use of several tools

to manipulate a variety of materials) require greater computational

performance than any advanced AI system can do in 2023.

It is already remarkable that even given the astonishing

computational efficiency of brains compared to computers, a large

part of the planetary land area has already been modified to

feed humans, and a large part of the caloric intake of humans is

metabolically used by their brains (10× greater/mass than other

tissues). This measure will not scale linearly, and the cognitive

output of a collaborative group of 10 humans will not equal 10 times

the output of a single human. Rather than trying to determine a

precise multiplicative factor, we want to include a rough estimate

of the cognitive ability by collaborative groups of humans into our

estimate. Human groups are far superior than individual humans

in terms of problem-solving (persistent isolation of humans even

leads to severe psychological problems, although we are not sure

this would be true of ASI).

Improvement in understanding reality

Another important point is by how much ASI will have to

outperform humans. An often cited analogy is that ASI will be

relative to humans, as we are relative to great apes. The brain of

a chimpanzee is about a third the size of a human brain. Expecting

one-third of the computational power and corresponding energy

use for chimps is probably a reasonable minimum assumption.

Taken together, a hypothetical ASI will have to outcompete the

collective intelligence of eight billion humans, each with highly

energy efficient brains, and it will likely have to outcompete them

by a margin of at least three.

ASI energy demand

To outcompete human collective intelligence within the present

technological boundaries by a large margin, an ASI would have to

consume a considerable amount of energy. The equation describing

this energy use is:

EASI = EbrainfGs (1)

Energy use for ASI (EASI) = Energy use per brain (Ebrain)

X relative computational efficiency brain/AI (f) X human group

intelligence group size (G) X AI superiority (s). Ebrain and

EASI are in Watts, all other parameters are unit-less. We

name this equation the Erasi Equation (Energy Requirement of

Artificial SuperIntelligence).

The best assumptions which we derive here are that the relative

efficiency is 2.7 × 1013 times worse in computer hardware (a

measure derived from detailed brain simulations, see above), and

that we need to compare the performance of an ASI to the

combined intellectual output of 8 × 109 humans. Additionally,

the assumption is that an ASI would have to supersede human

intelligence by a factor of 3, derived from the human-chimpanzee

difference. In this case the following calculation represents our best

guess for the cost of ASI:

EASI = (12W)(2.7× 1013)(8× 109)(3) = 7.78× 1024W (2)

An alternative, muchmore optimistic assumptionmight be that

ASI would have to supersede the capacity of only a single human

brain. In this case the energy use would be:

EASI = (12W)(2.7× 1013)(1)(3) = 9.7× 1014W (3)

In February 2022, the US had a power generation capacity of

more than 1.2 × 106 MW (1.2 × 1012 W). Hence the ASI would

consume power somewhere between one thousand and one trillion
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FIGURE 2

Juxtaposition of a highly simplified “synapse” as commonly used in a large-scale brain simulation with some of the details (not comprehensive list) of

a biological synapse. (A) diagram of a typical computational representation of information flow and processing from a presynaptic or pre-point

neuron input source (pre/in) through a simple transformation function [f(x) = simple] to an output or postsynaptic state (post/out). (B) left panel, top:

shown are a small section of dense neuropil along with pre- and postsynaptic structure (left panel bottom) in an electron micrograph; second panel:

some of the multi-protein complexes involved in vesicle docking and postsynaptic reception as in the NMDA-type glutamate receptor, structures

involved in computation; third panel: regulation of transcription and translation a�ect cell’s computational state and capabilities; panel 4: pathways in

many biomolecular networks transduce, process and store information about cell state and a�ect information throughput.

times larger than the power generation of the USA, an obviously

unrealistically high range, and a situation that precludes the

emergence of an ASI in the absence of radical engineering advances.

Just like in the case of the Drake equation (Wallenhorst,

1981), the equation describing the number of likely technological

civilizations in the galaxy, the Erasi equation describes the energy

requirement for ASI given a set of assumptions. Just as in the Drake

equation, the assumptions are up for discussion, and values for

revised assumptions can be plugged-in. We argue that with any

reasonable set of assumptions, the energy use will be orders of

magnitude higher than that of a large, highly industrialized nation.

Discussion

The intellectual and political discourse of the future of AI

has recently focused on the potential dangers of an “AI takeover”

by an ASI. Here we argue that the basic thermodynamics of

computation make such a takeover highly unlikely anytime soon

and probably never without significant changes in the physics

of computation.

AI has brought impressive results and multiple practical

uses which have already changed society. But despite these

successes, our arguments demonstrate, in isolation and

synergistically with each other, that it is highly unlikely,

if not impossible, for an ASI to emerge which will turn

humans into slaves. It is likewise premature to expect

salvation from ASI-like architectures in the form of the

hypothesized “singularity”, a word coined by the physicist

John von Neumann, and meaning a time when people could

upload their virtual brains into an eternal cyber-world, thus

achieving immortality.

While we propose that an ASI is unlikely on energetic grounds,

we disagree with arguments like those in Roli et al. (2022) that

only biological organisms can show agency and hence no non-

biological entity can achieve a high level of cognitive functioning.

That said, biomimicry has proven to be a very effective way of

making scientific and engineering progress. Nature has already

solved many of the problems we struggle with today, if only

we would take note. We must re-double our efforts to discover

what is effectively a “bioflop” and learn it’s principles in order to

engineer a manageable equivalent. The bioflop will likely involve

continuous or analog information processing. Likewise, beyond the

flop there is the algorithm and identifying bioalgorithms will be

equally important and likely involve multiple scales of information

processing. We think the current AI algorithmic approaches are
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uni-scale and thus are likely missing some of the major points of

evolved biological computing.

In essence, we believe that the intricate multi-level architecture

of biological brains makes them so much more energy-efficient

at computing that they can achieve computational powers far

beyond what is possible with silicone-based semiconductor chips.

We might only be able to build energy efficient AGI with

organic molecules following the same rules as in biology (perhaps

rediscovering ourselves in the process). Some form of synthetic

biology to emulate the energy efficiency of biology will likely be

required. Such breakthroughs could come from the new field of

organoid intelligence or one of it’s spin-offs (Kagan et al., 2022;

Smirnova et al., 2023). The whole approach of using microchips

is likely doomed to fail in this task, we will need a revolutionary

understanding of information processing and how to achieve it

with molecules arranged in multiple levels in order to achieve ASI.

Despite the success of smart chatbots such as ChatGPT

(OpenAI, 2022) and the ever growing slew of clever large language

algorithms that combine training data to produce a mostly cogent

interface for the prompted distillation of information, doubts

persist. While chatbots do pose some interesting challenges to

concepts in cognitive linguistics or semantics, the question of true

understanding remains (Raikov, 2021). Furthermore, intelligent

or not, even OpenAI’s Sam Altman recently stated that the

computational costs of ChatGPT were “eye-watering”2 and the full

reckoning of the thermodynamic impact of LLM’s has yet to be

even estimated.

We propose that to achieve a comparable amount of

computation as a human brain, a comparable amount of

complexity is necessary, independently of how this complexity is

brought about (via a biological brain or in a completely different,

but comparably complex machine). No clever codes will produce

the same output as a human brain does because clever algorithms

are neither robust, flexible nor adaptable and therefore not truly

intelligent. The proposal of our ERASI equation is not intended

to be the final but rather the initialization of a conversation about

the costs of computation, both natural and artificial. The broader

AI and biology research communities are encouraged to add their

voices or equation term suggestions to this dialog.

Among the prospective computing technologies that have been

cited as significantly more energy efficient are quantum computing

and optical computing. We believe that our arguments are not well

countered by technologies which are not yet reliably working on

a large, relevant scale, but we nevertheless would like to address

their potentials.

In quantum computing, the state of the art (as of 2017)

is the 2,000-Qbits quantum annealer manufactured by D-Wave

Systems. The system is faster than any existing supercomputer

approximately by a factor of 3,600. However, with a capacity of

2,000 bits, it is still highly limited, especially since the machine

processing 2,000 bits is sized 3 × 2 × 3 meters (Elsayed et al.,

2019). We do not consider quantum computing a solution to the

conundrum we point out in this paper in the foreseeable future.

2 https://techcrunch.com/2023/01/11/openai-begins-piloting-chatgpt-

professional-a-premium-version-of-its-viral-chatbot/

Optical computing is much further ahead in terms of practical

development, and based on the current state of the technology,

concrete quantitative predictions promise that photonic CMOSwill

eventually enable an energy efficiency of 0.3 picoJoules/bit with

16 nm CMOS (Young et al., 2010). These are highly significant

improvements, but two caveats remain: the optical technology

will greatly improve data transmission, but not computation itself,

and more importantly, given the order-of-magnitude discrepancy

between needed and available (with present day computing

technology), even a significant improvement of energy efficiency

as that promised by optical computing will not solve the problem

we outline.

Additional science policy arguments

Not only is the emergence of an ASI unlikely for energetic

reasons, but it is also not the path which the majority of research

into AI is taking presently. This is both true for the commercial

applications of AI as in academic research. The majority of research

in AI appears to be concerned with classification and sorting

tasks, as well as with autonomous spatial navigation. By any

standards these efforts are very successful, including success in

classification tasks in very high dimensional data spaces. The very

successful approach of deep learning is a specialized engineering

solution for classifying such high-dimensional data (Sejnowski,

2018).

AI has produced extremely impressive results in limited

domains which are very dissimilar from what humans have

evolved to do. One example is the success in chess, where

the reigning world champion was first defeated by software

in 1997. It can be argued that in chess, AI has reached

superhuman intelligence. However, the intellectual challenges in

chess, a highly formalized game of logic, are very different

from those encountered in navigating and manipulating the

real world.

Artificial general intelligence (AGI), potentially leading to an

ASI, is a niche within research in AI and is not receiving the

attention which many other subfields do. ASI will not likely

emerge by chance, just as nuclear weapons, intercontinental

ballistic missiles and particle colliders (to name three of

many examples) did not emerge by chance from efforts in

somewhat related disciplines, but were the results of massive,

concentrated efforts of large numbers of scientists, engineers

and support personal. The Blue Brain Project of EPFL in

Switzerland provides a potential structural enterprise model for

such an effort. The socio-political situation in AI research on

its own does not preclude the development of ASI, but in the

present day it acts in synergy with the argument about the

energy consumption.
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