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We explore the emergence of symbols during interactions between individuals

through an experimental semiotic study. Previous studies have investigated

how humans organize symbol systems through communication using

artificially designed subjective experiments. In this study, we focused on a

joint-attention-naming game (JA-NG) in which participants independently

categorized objects and assigned names while assuming their joint attention. In

the Metropolis-Hastings naming game (MHNG) theory, listeners accept provided

names according to the acceptance probability computed using the Metropolis-

Hastings (MH) algorithm. The MHNG theory suggests that symbols emerge as

an approximate decentralized Bayesian inference of signs, which is represented

as a shared prior variable if the conditions of the MHNG are satisfied. This study

examines whether human participants exhibit behavior consistent with the MHNG

theory when playing the JA-NG. By comparing human acceptance decisions of

a partner’s naming with acceptance probabilities computed in the MHNG, we

tested whether human behavior is consistent with the MHNG theory. The main

contributions of this study are twofold. First, we reject the null hypothesis that

humans make acceptance judgments with a constant probability, regardless of

the acceptance probability calculated by the MH algorithm. The results of this

study show that the model with acceptance probability computed by the MH

algorithm predicts human behavior significantly better than the model with a

constant probability of acceptance. Second, the MH-based model predicted

human acceptance/rejection behavior more accurately than four other models

(i.e., Constant, Numerator, Subtraction, Binary). Among the models compared, the

model using the MH algorithm, which is the only model with the mathematical

support of decentralized Bayesian inference, predicted human behavior most

accurately, suggesting that symbol emergence in the JA-NG can be explained by

the MHNG.

KEYWORDS

symbol emergence, experimental semiotics, naming game, probabilistic generative

models, Bayesian inference

1 Introduction

Humans can create and communicate through symbol systems that involve assigning

meanings to signs. This semiotic process does not rely on predetermined definitions of the

meanings of the symbols but rather emerges gradually through semiotic communication

and perceptual experiences. This phenomenon is known as symbol emergence (Taniguchi

et al., 2016, 2018). Understanding the cognitive capabilities and the social and cognitive

dynamics that support symbol emergence is crucial in comprehending the dynamic property

of language.

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1235231
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1235231&domain=pdf&date_stamp=2023-12-05
mailto:taniguchi@em.ci.ritsumei.ac.jp
https://doi.org/10.3389/frai.2023.1235231
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1235231/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Okumura et al. 10.3389/frai.2023.1235231

Numerous experimental semiotic studies have been conducted

to investigate how humans organize symbol systems through

communication (Galantucci, 2005; Healey et al., 2007; Scott-

Phillips et al., 2009). These studies demonstrated that humans

can build communication systems from scratch (Quinn, 2001;

Galantucci, 2005; Healey et al., 2007; Scott-Phillips et al., 2009;

Roberts, 2010). Additionally, computational-model-based studies

in experimental semiotics, such as those by Kirby et al. (2008),

Cornish (2010); and Navarro et al. (2018) validate the effectiveness

of iterated learning models. Iterated learning is a process in

which an individual acquires a behavior by observing a similar

behavior in another individual who acquired it in the same

way (Kirby et al., 2008). However, iterated learning is not an

explanatory principle that answers the question of whether the

emergence of a symbol system improves the environmental

adaptation of a group of agents. Iterated learning does not have

a theoretical connection to explanatory theories about human

perceptual systems. By contrast, symbol emergence based on the

Metropolis-Hastings naming game (MHNG), which is the focus

of this study, is closely related to predictive coding and free-

energy principle (Friston, 2010; Hohwy, 2013; Friston et al.,

2021), which are often referred to as the general principle of

cognition. In this context, Taniguchi et al. hypothesized that

symbol emergence could be viewed as a collective predictive

coding by a group of agents (Taniguchi, 2023; Taniguchi et al.,

2023).

Many studies focused on computational models that represent

symbol emergence systems. Pioneering studies have used naming

games, in which remote robots share symbols to represent objects

and variants of referential games (Cangelosi and Parisi, 1998; Steels,

1999, 2015; Kirby, 2002). More recently, deep-learning-based

referential games have been extensively used to study emergent

communication (Havrylov and Titov, 2017; Lazaridou et al., 2017;

Evtimova et al., 2018; Bouchacourt and Baroni, 2019). Referential

and naming games, often referred to as variants of the Lewis-style

signaling game, have also been used to achieve compositionality in

languages (Kottur et al., 2017; Choi et al., 2018; Ren et al., 2020; Mu

and Goodman, 2021). Generally, in these games, a speaker sends

a message to a listener who indicates the object intended by the

speaker. After the communication, reward feedback is provided to

the agents, and they update their parameters. The reward feedback

precedes joint attention in this approach.

However, in the development of human infants, joint attention,

which is acquired at around nine months of age, is well-

known to precede tremendous progress in lexical acquisition and

language development. Another notable concept is the naming

game based on joint attention and the associated theoretical

basis, called MHNG, in which each agent independently forms

categories and shares signs associated with those categories

through communication in the joint-attention naming game (JA-

NG) (Hagiwara et al., 2019). This theory suggests that symbol

emergence can be viewed as the approximate decentralized

Bayesian inference of a posterior distribution over a shared latent

variable conditioned on the observations of all agents participating

in the communication. However, previous studies on experimental

semiotics (Kirby et al., 2008; Cornish, 2010; Navarro et al.,

2018) did not employ computational models that incorporate

decentralized Bayesian inference over the entire system, including

multiple agents.

In this study, our objective is to investigate whether theMHNG,

which models symbol emergence as a decentralized Bayesian

inference (Hagiwara et al., 2019; Taniguchi et al., 2023), can serve as

a valid explanatory principle of symbol emergence between human

individuals. MHNG involves computational agents playing the JA-

NG, where agents independently form categories of objects and

name them while assuming joint attention. Unlike the widely used

Lewis signaling games (Lewis, 2008), the JA-NG does not involve

any explicit reward feedback from the opponent after the naming

process. In the MHNG, each agent decides whether to accept

another agent’s naming based on a probabilistic criterion calculated

using the Metropolis-Hastings (MH) algorithm (Hastings, 1970).

Consequently, symbol emergence occurs through a decentralized

Bayesian inference.

Suppose people in the JA-NG follow a similar acceptance

probability as observed in the MHNG. In this case, it can be

inferred that they perform decentralized Bayesian inference as a

whole system that includes multiple individuals involved in the

emergence of symbols. The MHNG is a computational model in

which agents play joint-attention naming games, and it uses the

acceptance probability based on the MH algorithm to determine

whether a listener agent accepts an incoming name proposed

by another agent. Testing the hypothesis that humans use MH-

based criteria to determine the acceptance of new names in the

JA-NG is crucial to demonstrating the validity of the MHNG as

an explanatory principle. If humans exhibit a behavior similar

to that of the MHNG, their acceptance rate of incoming names

should be correlated with the probability calculated using the MH

algorithm. Thus, it can be concluded that humans make acceptance

or rejection judgments in communication, following the MHNG

principles to some extent. However, whether humans employ

the same acceptance/rejection assessments in similar settings

remains unclear.

This study aims to verify whether humans engage in

decentralized Bayesian inference by conducting subject

experiments similar to the JA-NG.We performed a communication

experiment with human participants. The communication

structure in the experiment resembled that of the JA-NG in a

simulation experiment conducted by Hagiwara et al. (2019). We

observed the acceptance or rejection assessments of participants

and tested whether they used the acceptance probability calculated

by the MHNG theory to a certain extent. Additionally, we

evaluated whether the computational model using the MH

algorithm predicted human behavior more accurately than four

other comparative models: Constant, Numerator, Subtraction,

and Binary.

The main contributions of this study are as follows:

• We verify whether human participants playing the JA-NG use

the acceptance probability computed in the model based on

the MH algorithm to a certain extent.

• We demonstrate that the model based on the MH algorithm

outperforms the other four comparative computational

models in predicting the acceptance behavior of participants

in the JA-NG.
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FIGURE 1

Illustration of the relationship between the communication game in the experiment and the probabilistic graphical model of the Inter-GM. The color

images observed by the participants are labeled as xAn and xBn , with the corresponding color classification results represented by cAn and cBn . The

images of the subjects are named by sampling a shared sign s⋆
n, with signs sampled for the n-th object by A and B, which are labeled as sAn and sBn ,

respectively. The red balloon is the sampled sign of A and the blue one is the sampled sign of B. The transmission of the sign through naming is

depicted by the dashed red and blue lines. The variable 2∗ consists of L elements, specifically denoted as 2∗ = {θ∗
l }l=1,...,L. Similarly, the variable 8∗

encompasses K paired elements, with each pair consisting of µ∗
k and 3∗

k , represented as 8∗ = {(µ∗
k ,3

∗
k)}k=1,...,K .

Statistical tests were conducted to examine our hypotheses.

The results showed that the acceptance behavior of the human

participants in the JA-NG can be modeled using the MH algorithm.

The remainder of this article is organized as follows. The

next section provides an overview of the computational theory

underlying this study. We then describe the setup of the

communication experiment as well as the analysis and statistical

test procedures in the Materials and Methods Section. The Results

and Discussion Section presents our findings and corresponding

interpretations. The final section concludes the article.

2 Preliminaries

In this section, we describe the JA-NG performed in the subject

experiments and the interpersonal Gaussian mixture (Inter-GM),

which is the assumed probabilistic model for analyzing the results

of the subject experiments. Additionally, we describe the general

interpersonal probabilistic generative model (Inter-PGM), whose

concrete instance is Inter-GM, and theMHNG in which agents play

the JA-NG using a specific acceptance probability based on the MH

algorithms.

Figure 1 illustrates the correspondence between the

computational model (i.e., Inter-GM) and the communication

experiment.

2.1 Joint-attention naming game

Two agents A and B play the JA-NG as detailed here. Specific

variables are introduced in the following subsection.

1. Perception: Both the speaker and listener observe

an object and update their perceptual state, such as

a categorization result corresponding to the object

based on their respective observations, assuming

joint attention where two agents are looking at the

same object.

2. Communication: The speaker gives the name to the object

based on its perceptual state (e.g., the categorization result, and

its own knowledge). The listener decides whether to accept

the name.

3. Learning: After communication, the categorization results

and knowledge are updated based on the results of the

communication.

4. Turn-taking: The speaker and listener alternate their roles and

repeat the above steps for all objects.

The JA-NG is a procedural description of the interaction

between two agents and their learning process through

the sharing of semiotic knowledge between them based on

joint attention.
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FIGURE 2

(Left) Probabilistic graphical model of the Inter-PGM. (Right) Decomposed illustration of the Inter-PGM.

TABLE 1 Variables of the Inter-PGM and their explanations.

Variable Explanation

sn A sign, e.g., a name, for the n-th object

c∗n Perceptual state corresponding to the n-th object

x∗n Observation for the n-th object

2∗ Parameter about the relations between signs and perceptual

states

8∗ Parameter about the relations between perceptual states and

observations

α A hyperparameter for 2∗

β A hyperparameter for 8∗

Superscript ∗ ∈ {A,B} refers to a specific agent.

2.2 Inter-PGM and MH naming game

We first define the variables related to the JA-NG and assume

a conditional dependency between the variables by defining the

Inter-PGM (Figure 2). Table 1 is an explanation of the variables

in the Inter-PGM. An Inter-PGM is a general form of PGM that

models symbol emergence using the JA-NG.

The probability variables related to the JA-NG can be described

using a probabilistic graphical model, as shown in Figure 2.

The generative process of the Inter-PGM is as follows:

sn ∼ P(sn | γ ) n = 1, . . . ,N (1)

2∗ ∼ P(2∗ | α) (2)

8∗ ∼ P(8∗ | β) (3)

c∗n ∼ P(c∗n | sn,2
∗) n = 1, . . . ,N (4)

x∗n ∼ P(x∗n | c∗n,8
∗) n = 1, . . . ,N (5)

where x∗n represents the observed information, c∗n represents the

category to which x∗n is classified, that is, perceptual state, and s∗n
represents the sign of x∗n, and ∗ ∈ {A,B}.

A PGM can be decomposed into two parts corresponding to the

two agents using the Neuro-SERKET framework (Taniguchi et al.,

2020) in the inference process. Hagiwara et al. (2019) found that a

certain type of language game can be regarded as a decentralized

inference process for an Inter-PGM, and Taniguchi et al. (2023)

formulated this idea as the MHNG.

TheMH naming game is a special case of the JA-NG (Taniguchi

et al., 2023). The JA-NG becomes the MHNG upon satisfying the

following conditions:

1. The speaker (Sp) selects the name s⋆n by sampling from the

posterior distribution P(sn | 2Sp, c
Sp
n ).

2. The listener (Li) determines acceptance of sign s⋆n using the

probability rMH = min

(

1,
P(cLin | 2Li, s⋆n)

P(cLin | 2Li, sLin )

)

.

3. The agents update its internal variables c∗n,2
∗,8∗ using

Bayesian inference appropriately.

It is theoretically guaranteed that the MHNG is an approximate

decentralized Bayesian inference of shared representations,

that is, P({sn}n=1,...,N | {xAn , x
B
n}n=1,...,N) and the internal

representations and the knowledge of each agent. Specifically,

internal representations are characterized by the local parameters

c∗n, while knowledge is defined by the global parameters 2∗

and 8∗ in Figure 2. These global parameters represent the

relationship between observations and internal representations,

and the relationship between names and internal representations,

respectively. For more details, please refer to the original

article (Taniguchi et al., 2023).

2.3 Interpersonal Gaussian mixture

We used Inter-GM, which was tailored to fit the observations,

that is, the color information used in our experiment. Hagiwara

et al. (2019, 2022) proposed inter-DM and inter-MDM models

in which agents observed bag-of-features representations, that is,

histograms. They formed individual categories using a Dirichlet

mixture and shared signs linked to the formed categories through
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communication. Inter-GM is a modified version of inter-DM in

which the part that formed categories using a Dirichlet mixture is

replaced by a Gaussian mixture for categorizing multidimensional

continuous real-valued vectors.

The Inter-GM generative process is as follows:

sn ∼ Cat(sn | π) n = 1, . . . ,N

(6)

µ∗
k ,3

∗
k ∼ N (µ∗

k | m, (β3∗
k)

−1)W(3∗
k | ν,W) k = 1, . . . ,K

(7)

θ∗l ∼ Dir(θ∗l | α) l = 1, . . . , L

(8)

c∗n ∼ Cat(c∗n | θ∗sn ) n = 1, . . . ,N

(9)

x∗n ∼ N (x∗n | µ∗
cn
, (3∗

cn
)−1) n = 1, . . . ,N

(10)

Cat(∗) is the categorical distribution, N (∗) is the Gaussian

distribution, W(∗) is the Wishart distribution, and Dir(∗) is the

Dirichlet distribution. The parameters for the Gaussian mixture

model (GMM) {µ∗
k
,3∗

k
}k=1,...,K correspond to 8∗ and {θ∗

l
}l=1,...,L

corresponds to 2∗ in Inter-PGM (Figure 2) respectively.

In the MHNG, after observing (or sampling) s∗n, the

probabilistic variables for each agent become independent, and

the parameters for each agent can be inferred using ordinal

approximate Bayesian inference schemes. We applied Gibbs

sampling, a widely used Markov chain Monte Carlo approximate

Bayesian inference procedure (Bishop and Nasrabadi, 2006), to

sample the parameters µ∗
k
, 3∗

k
, c∗n, and 2∗.

In the MHNG, the sign sn is inferred by agents A and B

through an alternative sampling of the sign sn from each other,

and acceptance based on the acceptance probability of the MH

algorithm rMH
n = min

(

1,
P(cLin | 2Li, s⋆n)

P(cLin | 2Li, sLin )

)

for the sign of the

other agent where 2Li = {θLi
l
}l=1,...,L is inferred using cLin and s⋆n.

The acceptance probability estimated from the categorization

results (see Figure 3) and the actual acceptance/rejection decisions

were recorded to investigate whether humans accept the proposals

of their opponents based on the MH acceptance probability. The

parameters 2∗ and 8∗ are inferred through Gibbs sampling

using the categorization {c∗n}n=1,...,N provided by the participants,

along with their names s∗n and original observations x∗n. The MH

acceptance probability rMH
n is then calculated, where s⋆n denotes the

proposal of the opponent.

3 Materials and methods

3.1 Communication experiment

To investigate whether the acceptance of the speaker’s

proposals by a listener aligns with the acceptance probability

calculated by the MH algorithm rMH
n , we performed a

communication experiment with human participants. Instead

of the computational experiment described in Hagiwara et al.

(2019), we performed a communication experiment with human

participants that followed a methodology similar to that of

experimental semiotics.

The experiment was conducted in pairs, referred to as

participants A and B. Each pair followed the procedure outlined in

Figure 3 and used separate personal computers (PCs). Participants

were in different rooms and were not permitted to communicate

directly using any alternative communication media.

Figure 4 shows the user interface of the experimental

application. (1) in Figure 4 shows the category classification screen

that the participants first encountered, (2) shows the screen for the

name, and (3) shows the screen for the listener. The procedure is

detailed below.

Before starting the communication, each participant was

instructed to classify 15 images into categories labeled A–E

(initialization).

1. Perception: An image used in the initialization step is displayed

to a speaker. In the experiment, the participants were asked

to exhibit their perceptual state as a categorization result

[(1) Categorization in Figure 3].

2. Communication: The speaker names the image by selecting any

name from A to E. Participant B, the listener, decides whether to

accept or reject the proposed name by pressing a button.

3. Learning (update categories and sign allocation): Participant B,

as the listener, can modify their classification result after the

acceptance/rejection decision.

4. Turn-taking: Steps from 1 to 3 correspond to (2) naming game

as shown in Figure 3, and this game is repeated with participants

switching their roles.

During the experiment, the participants repeated steps 2–4

15 times for each data sample, and the process was done three

times. Therefore, each participant made 45 acceptance or rejection

decisions per dataset.

The communication process involved proposing and

accepting/rejecting names in steps 1 and 2. Each communication

was completed when step 2 ended and the results were recorded

each time. Participants could modify their classification results

whenever desired; however, a prompt appeared if they attempted

to alter the result after accepting/rejecting the proposal of their

partner when playing the role of the listener. The participant

pairs were housed in separate rooms, and the classification

and communication were performed on PCs using a Python

application, which communicated with the other PCs. The PCs

used were 13-inch MacBooks. The brightness of the PCs was

automatically adjusted to account for the possibility of different

ambient lighting in each room. The images were presented in

random order because the same images were used even after

switching roles in step 3. Figure 5 shows a photograph of an actual

experiment. Participants were given the following instructions:

• Work collaboratively with your counterpart to improve

classification accuracy through interactions.

• Sharing names is crucial for effective communication.

• When you receive naming suggestions from

your counterpart, decide whether to accept their
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FIGURE 3

Flow of the subject experiment. In (1) categorization, participants categorize the given image. In (2) naming game, the speaker names the image by

selecting any name from A to E, and the listener, decides whether to accept or reject the proposed name by pressing a button. Participants repeat

the process, switching between the roles of speaker and listener.

naming or stick with your own to improve

classification accuracy.

3.2 Computational model for analysis

We used the Inter-GM described in the Preliminaries section

to analyze the behavioral data and predict the acceptance rate of

the participants.

The hyperparameters used for the Inter-GM were α =

(0.1, 0.1, 0.1, 0.1, 0.1)T, β = 1.0, m = (50, 0, 0)T, W−1 =






200 0 0

0 200 0

0 0 200






, π = (1/5, 1/5, 1/5, 1/5, 1/5)T, in an empirical

manner.

3.3 Materials

For the experiment, 20 participants were recruited, forming 10

pairs. The female-to-male ratio was 6:14, and the minimum and

maximum ages were 21 and 59, respectively. As the experiment

used colors, the participants were verbally asked whether they

were colorblind to ensure that colorblind participants were not

included in the experiment. The study was initiated on 27 July

2022, and the recruitment of participants commenced on 15

December 2022. The experiment took place from 20 December

2022 to 25 January 2023. Throughout this period, the authors

created and maintained the experimental data of the participants

and correspondence tables. It is important to note that the

correspondence tables were not accessed or used during the data

analysis stage.
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FIGURE 4

Screenshots of the experimental application in operation. (1) a view of the initial categorization phase, (2) the view of the speaker in the naming

phase, and (3) the view of the listener when the listener receives a name for a color patch.

This study was approved by the Research Ethics Committee

of Ritsumeikan University under approval number BKC-LSMH-

2022-012. All the participants provided informed consent before

participation.

To generate color images as stimuli, the CIE-L∗U∗V∗ color

space, which accurately represents the psychological distance

perceived by humans, was used (Steels et al., 2005). In the CIE-

L∗U∗V∗ color space, L∗ represents brightness andU∗V∗ represents

hue. The details of the color images were as follows: (1) Pillow (PIL),

a Python image processing library, was used to create images of

colored circles1. (2) L∗,U∗, and V∗ were sampled from three three-

dimensional Gaussian distributions. (3) Two datasets, hard and

easy, were prepared to observe the differences in communication

according to difficulty levels: Dataset 1 was difficult to classify, and

Dataset 2 was easy to classify. (4) The same images were shown

to both participants and each dataset contained 15 images. (5)

The Gaussian distribution to sample from was determined using

a uniform distribution.

Table 2 lists the parameters for eachGaussian distribution. Each

data point in the three-dimensional CIE-L∗U∗V∗ color space was

generated from a three-dimensional Gaussian distribution. Figure 6

shows images of Dataset 1 (hard), and Dataset 2 (easy).

1 Pillow (PIL Fork) 8.4.0: https://pillow.readthedocs.io/en/stable/.

3.4 Hypothesis testing 1

We investigated whether the decisions of people are affected

by their acceptance probability using the acceptance probability

based on the MH algorithm, although the decision does not

completely comply with the theory. To investigate whether humans

use the MH-based acceptance probability to a certain extent, that

is, whether the actual acceptance probability correlates with the

MH-based acceptance probability, we defined a biased Bernoulli

distribution, Bern(zn | rn = arMH
n + b). The Bernoulli distribution,

Bern(z | r), samples one with probability r and zero with

probability 1 − r. The weight parameter a, indicating the extent

to which the inferred acceptance probability is used, and bias

parameter b, indicating the degree to which acceptance occurs

unconditionally, were used and estimated. If a = 1 and b =

0, the distribution becomes the original MH-based acceptance

probability distribution, Bern(zn | rn = rMH
n ). Specifically, variable

zn represents whether the participant accepted the given name,

taking the value of 1 if accepted and 0 if rejected. The acceptance

probability of a participant is denoted by rn.

The linear transformation was introduced to account for

external social and cognitive factors that might affect acceptance

probability. While the MHNG theory focuses on perceptual states

and their relationship to signs, as shown in Figure 1, it does

not consider other social or cognitive influences on acceptance

probability. Factors such as respect for a counterpart or an authority
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FIGURE 5

State of the actual experiment. The two participants used di�erent PCs and were housed in separate rooms, and they communicated using socket

communication.

gradient (Gluyas, 2015) could make it easier to accept another’s

proposal. Notably, to reduce the influence of these factors during

the experiment, we conducted sessions with participants in separate

rooms, ensuring that they could not see each other.

We tested the estimated parameter a, which model the

relationship between the actual acceptance probability and MH-

based acceptance probability rMH
n . For acceptance and rejection,

we assumed 1 and 0, respectively. Instead of calculating the

correlation between the acceptance/rejection decision and rn, we

used a conditional Bernoulli distribution.

Parameters a and b were determined using the maximum

likelihood estimation. The maximum log-likelihood estimation of

parameters a and b was performed using gradient descent. The

original likelihood function is defined as

L(a, b) =

N
∏

n=1

Bern(zn | rn = arMH
n + b)

To avoid the Bern parameter from going outside the domain, a

and b were bounded to 0 ≤ b and a+ b ≤ 1, respectively.

A hypothesis test was performed to test the statistical

significance of the association between the rMH
n score and

acceptance decisions made by human participants.

The null hypothesis H0 and alternative hypothesis H1 are as

follows:

• H0: There is no association between the acceptance decision

and rMH
n , the MH-based acceptance probability. In other

words, the human acceptance probability remains constant

with respect to rMH
n .

• H1: The acceptance probability is not constant, indicating

that the acceptance probabilities calculated by the MH

algorithm are more predictive of human judgment than

random acceptance probabilities.

The test statistic is the coefficient of a (bounded) linear function

that parameterizes the Bernoulli distribution and the acceptance

probability as output. The test statistic was set as the coefficient of

the regression fitted to the observed data â.

To estimate the sampling distribution of the test statistic, we

used a randomized approach in which we randomly generated

Bernoulli random variables with a fixed parameter and then fitted

a linear model to obtain the coefficient a (i.e., the test statistic)

from the null hypothesis2. The acceptance and rejection decisions

were randomly sampled from the distribution by assumingH0, that

is, zn ∼ Bern(z | b̄). The null distribution of the test statistics

was estimated and the p-values were empirically calculated. By

performing this 1,000 times, we obtained an estimate of the

sampling distribution as a histogram, whichwe used to compute the

p-value as the tail probability. b̄ was determined from the behavior

of all subjects using maximum likelihood estimation.

By assuming that the acceptance events occur with probability

rn, we can compute the likelihood by fitting them to the Bernoulli

distribution and multiplying them by the total number of given

names N; that is, L =
∏N

n=1 Bern(zn | rn = arMH
n + b)

2 This is because it is di�cult to analytically determine the distribution that

the estimated statistics a follow. We could not perform conventional tests

such as the t-test.
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We performed sampling using Bern(z̄ | b̄) to obtain lists

of test statistics a and created their cumulative distribution

functions to conduct a statistical test. The following steps describe

the process of obtaining the list of test statistics a: From the

experimental results, we calculated the acceptance rate b̄ =
1
N

∑N
n=1 zn for all participants or target participants across all

trials. We sampled the acceptance or rejection of each round

from the Bernoulli distribution Bern(z̄ | b̄) with the parameter

b̄ determined in the previous step, that is, z̄n ∼ Bern(z̄ |

b̄) (n ∈ 1, . . . ,N). Parameter a was estimated using the

maximum likelihood estimator for each sampling result and

was added to the list of statistical quantities. This procedure

was performed 1, 000 times and the sample distributions of a

were obtained.

We computed the cumulative distribution function P′a(a) =
1
L

∑L
l=1 f (al, a) from a list of obtained statistical values a

represented as a1, a2, . . . , aL, where L = 1, 000. Similarly,

we computed the cumulative distribution function P′
b
(b) =

1
L

∑L
l=1 f (bl, b) from a list of statistical values b, represented by

TABLE 2 Parameters of the three Gaussian distributions generating the

color patches used in the experiment.

Dataset 1 (hard) Dataset 2 (easy)

µ1













60

−10

20

























60

30

30













µ2













60

−20

−10

























60

30

−30













µ3













60

20

10

























60

−30

−30













6













52 0 0

0 92 0

0 0 92

























52 0 0

0 102 0

0 0 102













µk is the mean vector of the k-th three-dimensional Gaussian distribution. 6 = 3−1 is the

covariance matrix that is shared among the three Gaussian distributions.

b1, b2, . . . , bL. Here,

f (x, y) =

{

1, x ≥ y

0, x < y

where f (x, y) represents a function that returns 1 if x exceeds or

is equal to y, and 0 if x is below y. Because rMH can be used if it is

significantly greater than 0, a one-sided test was performed.

3.5 Hypothesis testing 2

In Test 2, we tested whether the model that used the MH

algorithm, that is, the acceptance decision using Bern(zn | rMH
n ),

was closer to the behavior of participants than that using several

heuristic comparative models. We performed a test using the

assessment of acceptance or rejection obtained from the results

of the communication experiment, and the inferred acceptance

probability was denoted as rMH
n . We created a dataset consisting

of distances between the behaviors of participants and the samples

generated from the probabilities calculated by the five comparison

models. These models were used to evaluate the acceptance and

rejection. Subsequently, U-tests were conducted for each model.

Table 3 lists the comparative models used in this study.

Constant accepts with a probability b̄ calculated from the actual

acceptance rate of the subject from the experimental results,

which corresponds to the null hypothesis of Hypothesis testing 1.

MH accepts with the inferred MH-based acceptance probability

rMH
n from the experimental results. Numerator accepts with the

acceptance probability being the numerator part of the rMH
n score,

which represents the likelihood of the sign of the opponent using

TABLE 3 Details of each model.

# Model name Acceptance probability formula

1 Constant r1n = b̄

2 MH r2n = rMH
n

3 Numerator r3n = P(cLin | 2Li , s⋆n)

4 Subtraction r4n = (P(cLin | 2Li , s⋆n)− P(cLin | 2Li , sLin ))/2+ 1/2

5 Binary r5n =











0.1 (rMH
n ≤ 0.5)

0.9 (rMH
n > 0.5)

FIGURE 6

Images used in the communication experiment. The left image is Dataset 1 (hard), and the right image is Dataset 2 (easy). The images in the same

row are generated from the same Gaussian distribution, and the numbers represent the Gaussian distribution number.
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FIGURE 7

Example of the actual acceptance made by a participant and the inferred acceptance probabilities rMH
n . Dataset 1 (left), Dataset 2 (right).

its own parameter. Subtraction calculates the difference between

the numerator part of the rMH
n score representing the likelihood of

the sign of the opponent using the parameter of the listener and

the denominator part representing the likelihood of its own sign

instead of the ratio in rMH
n score. Subsequently, it was transformed

into a range of 0.0–1.0. Binary accepts with a probability of 0.1 if

the inferred acceptance probability rMH
n is less than or equal to 0.5

and 0.9 if it exceeds 0.5.

To test the statistical significance of models m and m′ that

make decisions regarding acceptance and rejection, hypothesis tests

were performed as null and alternative hypotheses, respectively, as

follows:

• H0: Precm = Precm′ . The models m and m′ predict the

behavior of participants at the same level.

• H1: Precm > Precm′ . The model m predicts the behavior of

participants more accurately than the modelm′.

Here, Precm is the rate at which the model m could predict the

acceptance or rejection decisions of participants, that is, precision.

We sampled 100 data points for the pseudo-experimental

results of each comparison model using computer simulations.

The pseudo-experimental results for each comparison model were

sampled from the Bernoulli distribution with the parameter of

acceptance probability rm
(j,i)

for subject j of model m in the ith

communication trial and labeled 1 for acceptance and 0 for

rejection. The p values were calculated using a U-test, and the

significance level was set at 0.001.

zm(j,i) ∼ Bern(z | rm(j,i))

Precision was calculated as follows: First, we store the

acceptance/rejection evaluation of the j-th participant at the ith trial

in the experiment in zh
(j,i)

, where j = 1, · · · , 20. Second, we store the

acceptance/rejection evaluation results of model m in the i-th trial

of the pseudo-experiment for subject j in zm
(j,i)

, where i = 1, · · · , 45

(i = 1, · · · , 90 for both datasets). Third, we calculate the precision

of modelm in predicting the behavior of the j-th participant.

Precision Precm is calculated by counting the number of

matches between the decisions of the participants and the model.

One-sided tests were conducted for all model combinations.

4 Results and discussion

4.1 Hypothesis testing 1

Figure 7 illustrates an example of the actual

acceptance/rejection behavior of a participant and the inferred

acceptance probabilities rMH . This suggests some coherence

between rMH
n and the behavior of participants. This association was

evaluated quantitatively and statistically.

Figure 8 shows a histogram of the number of accepted stimuli

for each acceptance rate (left) and the actual acceptance rate for

each acceptance rate with a graph of y = ar+ b using the estimated

weights a and bias b (right) for all the participants, where a =

0.5105 and b = 0.4842. When the inferred acceptance rate was

high, the actual acceptance rate by humans was also high. However,

the actual probability of acceptance was higher than rMH when rMH

was low. It was rare for the inferred acceptance rate, rMH
n to assume

intermediate values between 0.2 and 0.8. This bias is inherent in

the nature of the MHNG and does not reflect the characteristics of

human participants. In theMH algorithm, acceptance probability is

determined by the ratio of one probability to another, which often

results in values close to 0 or 1. For further clarification, Figure 9

shows the acceptance rate as observed in computer simulations for

comparison.

Here, we discuss the results of the hypotheses tests. First, we

examine the results of Test 1. The estimated parameters for Datasets

1 and 2 are shown in Table 4. The hypothesis tests for each and

both datasets for all subjects were rejected at a significance level

of 0.001. Therefore, the null hypothesis was rejected, indicating

that the model using acceptance probability computed by the MH

algorithm is a significantly better predictor of human behavior than

the model using a constant probability of acceptance.

For more detail, we examined each participant’s behavior. The

p-values Pa(a) for each subject, as presented in Table 4, indicate

that the null hypothesis was rejected at the 0.05 significance level
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for most subjects. Specifically, exceptions were found for two

participants, namely 10 and 18, in dataset 1. In dataset 2, all results

were rejected at the 0.05 significance level except for the results for

participants 5, 6, 9, 12, 14, and 16. Overall, the null hypothesis was

rejected in most cases.

4.2 Hypothesis testing 2

Here, we examine the results of Test 2. Table 5 shows the p-

values obtained from the U-tests conducted for each combination

of models. The row for MH (i.e., m = 2) in Table 5 shows that the

null hypothesis was rejected for all the models. The model using

the MH algorithm was the closest to the behaviors of participants

among the models compared in this study. We also individually

performed tests on data from each participant. Table 6 presents the

results. For each participant, MH outperformed the other models

in predicting behavior in all cases, except for six participants in

Constant and one in Subtraction. For the six participants, MH

did not significantly outperform Constant, and for one participant,

MH did not significantly outperform Subtraction. We tested the

data for each participant separately and for each dataset. Tables 7, 8

FIGURE 8

Relationship between the acceptance status of all participants and the inferred value of the acceptance probability Graphs of the number of

accepted names for each inferred acceptance probability for all participants (left), the actual acceptance rate for each inferred acceptance

probability for all participants, and the graph of y = ar + b with weights “a” and bias “b” estimated by linear regression (right).

FIGURE 9

Relationship between the acceptance status of the computer and the value of the acceptance probability Graphs of the number of accepted names

for each acceptance probability for the computer (left), the actual acceptance rate for each acceptance probability in the simulation (right).
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TABLE 4 Parameters a,b estimated and p-values on the data of each subject and the data aggregated over all participants for each dataset.

Dataset 1 (hard) Dataset 2 (easy)

a b Pa(a) a b Pa(a)

1 0.6195 0.3749 <0.001 0.6698 0.0000 <0.001

2 0.2167 0.7832 0.011 0.2348 0.7938 0.002

3 0.4305 0.6085 0.022 0.3260 0.7223 0.066

4 0.3903 0.6557 0.009 0.7046 0.2499 <0.001

5 0.2253 0.7771 0.011 −0.0002 1.0000 1.0

6 0.1227 0.8783 0.034 −0.0004 1.0002 1.0

7 0.5659 0.4285 0.001 0.7047 0.2496 <0.001

8 0.4181 0.5552 0.001 0.0600 1.0007 0.432

9 0.4320 0.5779 0.002 0.3277 1.0001 1.0

10 −0.0001 1.0002 1.0 0.5000 0.5000 <0.001

11 0.2608 0.7446 0.016 0.4816 0.4927 0.006

12 0.3551 0.6572 <0.001 −0.0005 1.0071 1.0

13 0.7148 0.2846 <0.001 0.4333 0.5766 0.002

14 0.2319 0.7682 0.012 −0.0005 1.0004 1.0

15 0.5850 0.3999 0.001 0.9187 0.0000 <0.001

16 0.3537 0.6585 0.002 −0.0002 1.0001 1.0

17 0.8088 0.1383 <0.001 0.5000 0.5000 <0.001

18 −0.0003 1.0001 1.0 0.5000 0.5000 <0.001

19 0.8642 0.1356 <0.001 0.8971 0.0757 <0.001

20 0.4477 0.2798 0.003 0.7933 0.0974 <0.001

All 0.4910 0.5030 <0.001 0.5478 0.4476 <0.001

ALL dataset

a b Pa(a)

All 0.5105 0.4842 <0.001

list the results. Looking at the MH (i.e., m = 2) row in Table 7,

MH outperformed the other models in all cases except seven for

Constant and one forNumerator. Looking at theMH (i.e.,m = 2)

row in Table 8, MH outperformed the other models in all cases,

except five for Constant. Based on these results, we argue that

the acceptance probability derived from the MH algorithm is, to

some extent, consistent with the acceptance/rejection judgment

probabilities exhibited by humans.

The experimental results suggested that human behavior in

the JA-NG follows the MH algorithm. Consequently, this result

suggests that symbol emergence in the JA-NG among people may

be attained by performing decentralized Bayesian inference, i.e.,

collective predictive coding (Taniguchi, 2023).

5 Conclusion

In this study, we conducted a communication experiment

on symbol emergence, in which participants played the JA-

NG in pairs. We compared the acceptance decisions of

human participants with those of the computational models

and confirmed that the acceptance probability of the model

based on the MH algorithm predicted human behavior

significantly better than the constant probability acceptance

model. Additionally, the MH-based model outperformed the

other four comparative computational models in terms of

predicting the behavior of participants through two statistical

tests. Consequently, the model using the MH algorithm was found

to be suitable for explaining human acceptance behavior in the

JA-NG.

This suggests that the MHNG, which was studied

computationally as a constructive approach to human symbol

emergence, is a reasonable model for explaining symbol emergence

in computational agents and human groups. This finding also

supports the collective predictive coding hypothesis, which argues

that symbol emergence in human society can be regarded as a

decentralized Bayesian inference of a prior variable shared among

people (Taniguchi, 2023; Taniguchi et al., 2023). To advance our

understanding of the human acceptance evaluation in the JA-NG

and the dynamics of symbol emergence among people, future

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1235231
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Okumura et al. 10.3389/frai.2023.1235231

TABLE 5 p-value for U-test for each model combination for all participants.

m\m′ Constant MH Numerator Subtraction Binary

Constant — 1.000 <0.001 <0.001 <0.001

MH <0.001 — <0.001 <0.001 <0.001

Numerator 1.000 1.000 — <0.001 0.003

Subtraction 1.000 1.000 1.000 — 1.000

Binary 1.000 1.000 0.997 <0.001 —

TABLE 6 Number of participants whose behavior resulted in the rejection of the null hypothesis for each pair of models.

m\m′ Constant MH Numerator Subtraction Binary

Constant — 4 12 18 12

MH 14 — 20 19 20

Numerator 6 0 — 20 7

Subtraction 2 0 0 — 0

Binary 6 0 1 20 —

TABLE 7 Number of participants whose behavior resulted in the rejection of the null hypothesis for each pair of models in Dataset 1.

m\m′ Constant MH Numerator Subtraction Binary

Constant — 6 12 18 12

MH 13 — 19 20 20

Numerator 6 0 — 20 8

Subtraction 2 0 0 — 0

Binary 5 0 4 20 —

TABLE 8 Number of participants whose behavior resulted in the rejection of the null hypothesis for each pair of models in Dataset 2.

m\m′ Constant MH Numerator Subtraction Binary

Constant — 3 10 18 9

MH 15 — 20 20 20

Numerator 6 0 — 20 9

Subtraction 2 0 0 — 0

Binary 4 0 4 20 —

studies should gather more evidence by conducting experiments in

diverse scenarios to test whether they follow the MH algorithm.

The limitations of the current experiment, as well as potential

future extensions, are outlined below.

In the experiment presented in this paper, the number of

participants in the JA-NG was limited to two. Theoretically, the

MHNG model is capable of accommodating multiple agents.

Inukai et al. (2023) proposed the Recursive MHNG, demonstrating

its potential to handle N-agent scenarios. Additionally, in

our experiment, the same object, i.e., a color image, was

shown simultaneously to both participants. Yet, the original

computational model facilitated symbol emergence among two

agents observing a single object from distinct perspectives (Inukai

et al., 2023; Taniguchi et al., 2023). Given the multi-agent setting

and diverse perspectives in a real environment, incorporating these

factors into an experimental semiotic study based on the JA-NG is

a promising avenue for extension.

From the viewpoint of MHNG theory, there are still several

limitations. Although emergent communication research

currently places significant emphasis on the emergence of

compositional linguistic structures with syntax (Lazaridou

and Baroni, 2020), the MHNG only rigorously addresses

the emergence of categorical symbols in a mathematical

sense. An extension is needed to capture more complex

linguistic structures. Also, as mentioned in Section 3.4, the

current theory does not account for social and other cognitive

aspects. Incorporating these considerations is another direction

we plan to explore. In addition, the JA-NG assumes joint

attention. While joint attention is not restricted to an external

object, extending the theory to non-external objects, such as
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emotions, is another avenue for future exploration (Taniguchi,

2021).

Exploring symbol emergence in a human-agent mixed system

is a future challenge worth pursuing. Because we obtained evidence

supporting the prediction of the behavior of human participants

using the MH algorithm, we could approximate human behavior

as a computational agent following the MH algorithm. Based on

this approximation, we can theoreticallymodel and analyze amixed

system involving a human participant and a computer agent.
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