AUTHOR=Pannipulath Venugopal Vishnu , Babu Saheer Lakshmi , Maktabdar Oghaz Mahdi TITLE=COVID-19 lateral flow test image classification using deep CNN and StyleGAN2 JOURNAL=Frontiers in Artificial Intelligence VOLUME=6 YEAR=2024 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2023.1235204 DOI=10.3389/frai.2023.1235204 ISSN=2624-8212 ABSTRACT=Introduction

Artificial intelligence (AI) in healthcare can enhance clinical workflows and diagnoses, particularly in large-scale operations like COVID-19 mass testing. This study presents a deep Convolutional Neural Network (CNN) model for automated COVID-19 RATD image classification.

Methods

To address the absence of a RATD image dataset, we crowdsourced 900 real-world images focusing on positive and negative cases. Rigorous data augmentation and StyleGAN2-ADA generated simulated images to overcome dataset limitations and class imbalances.

Results

The best CNN model achieved a 93% validation accuracy. Test accuracies were 88% for simulated datasets and 82% for real datasets. Augmenting simulated images during training did not significantly improve real-world test image performance but enhanced simulated test image performance.

Discussion

The findings of this study highlight the potential of the developed model in expediting COVID-19 testing processes and facilitating large-scale testing and tracking systems. The study also underscores the challenges in designing and developing such models, emphasizing the importance of addressing dataset limitations and class imbalances.

Conclusion

This research contributes to the deployment of large-scale testing and tracking systems, offering insights into the potential applications of AI in mitigating outbreaks similar to COVID-19. Future work could focus on refining the model and exploring its adaptability to other healthcare scenarios.