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In the studies on symbol emergence and emergent communication in a

population of agents, a computational model was employed in which agents

participate in various language games. Among these, the Metropolis-Hastings

naming game (MHNG) possesses a notable mathematical property: symbol

emergence through MHNG is proven to be a decentralized Bayesian inference of

representations shared by the agents. However, the previously proposed MHNG

is limited to a two-agent scenario. This paper extends MHNG to an N-agent

scenario. The main contributions of this paper are twofold: (1) we propose the

recursive Metropolis-Hastings naming game (RMHNG) as an N-agent version

of MHNG and demonstrate that RMHNG is an approximate Bayesian inference

method for the posterior distribution over a latent variable shared by agents,

similar to MHNG; and (2) we empirically evaluate the performance of RMHNG on

synthetic and real image data, i.e., YCB object dataset, enabling multiple agents

to develop and share a symbol system. Furthermore, we introduce two types

of approximations—one-sample and limited-length—to reduce computational

complexity while maintaining the ability to explain communication in a population

of agents. The experimental findings showcased the e�cacy of RMHNG as a

decentralized Bayesian inference for approximating the posterior distribution

concerning latent variables, which are jointly shared among agents, akin toMHNG,

although the improvement in ARI and κ coe�cient is smaller in the real image

dataset condition. Moreover, the utilization of RMHNG elucidated the agents’

capacity to exchange symbols. Furthermore, the study discovered that even the

computationally simplified version of RMHNG could enable symbols to emerge

among the agents.

KEYWORDS

symbol emergence, emergent communication, probabilistic generativemodels, language

game, Bayesian inference, multi-agent system

1. Introduction

The origin of language remains one of the most intriguing mysteries of human

evolution (Deacon, 1997; Steels, 2015; Christiansen and Chater, 2022). Humans utilize

various symbol systems, including gestures and traffic lights. Although the language is

considered a type of symbol (or sign) system, it boasts the richest structure and the

strongest ability to describe events among all symbol systems (Chandler, 2002). The

adaptive, dynamic, and emergent nature of symbol systems is a common feature in human

society (Taniguchi et al., 2018, 2021). This paper focuses on the emergent nature of general

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1229127
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1229127&domain=pdf&date_stamp=2023-10-18
mailto:taniguchi@em.ci.ritsumei.ac.jp
https://doi.org/10.3389/frai.2023.1229127
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1229127/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Inukai et al. 10.3389/frai.2023.1229127

symbols and their meanings, rather than the structural complexity

of language. The meaning of signs is determined within society

in bottom-up and top-down manners, owing to the nature of

symbol systems (Taniguchi et al., 2016). More specifically, the

self-organized (or emergent) symbol system enables each agent

to communicate semiotically with others while being subject to

the top-down constraints of the emergent symbol system. Agent-

invented symbols can hold meaning within a society of multiple

agents, even though no agent can directly observe the intention

in the brain of a speaker. Peirce, the founder of semiotics,

defines a symbol as a triadic relationship between sign, object,

and interpretant (Chandler, 2002). The interpretant serves as

a mediator between the sign and the object. In nature, the

relationship between sign and object exhibits arbitrariness. This

implies that human society—a multi-agent system using a symbol

system—must form and maintain these relationships within a

society in a decentralized manner. Research on symbol emergence,

language evolution, and emergent communication has been

addressing this issue using a constructive approach for decades.

Studies on emergent communication take many forms.

Numerous studies have explored emergent communication by

engaging agents in Lewis-style signaling games, such as referential

games. The referential game is a cooperative game in which a

speaker agent sends a message (i.e., a sign) representing an object,

and a listener agent receives and interprets the message to identify

a target object. The primary objective of the game is to enable

both agents to learn the relationship between signs and objects to

establish a language or communication protocol. Lazaridou et al.

(2017, 2018) and Havrylov and Titov (2017) demonstrated that

agents can communicate using their own language by performing

reference games. Furthermore, Choi et al. (2018) and Mu and

Goodman (2021) suggested that the compositionality of emergent

language can be improved by modifying the real image data

used in reference games. However, Bouchacourt and Baroni

(2018) highlighted the issue of agents being able to communicate

even when using uninterpretable images in referential games.

Noukhovitch et al. (2021) demonstrated the necessity of referential

games for agent communication. Numerous studies have also

attempted emergent communication with multiple agents. Gupta

et al. (2021) explored extending to multiple agents using meta-

learning, while Lin et al. (2021) employed autoencoder, a

standard representation learning algorithm. Chaabouni et al.

(2022) investigated the effects of varying the number of

agents in referential games on agent communication. These

studies successfully achieved communication through games that

provided rewards.

In contrast, Taniguchi et al. (2023) proposed an alternative

formulation of emergent communication based on probabilistic

generative models and the assumption of joint attention. The

Metropolis-Hastings naming game (MHNG) was introduced to

explain the process by which two agents share the meaning

of signs in a bottom-up manner from a Bayesian perspective.

It was demonstrated that symbol emergence can be considered

decentralized Bayesian inference. In the model, signs are treated

as latent variables shared by all agents, as shown in Figure 1 on

the right. If there’s a special agent that centrally manages the

agents and can refer to the internal variables (i.e., belief states)

of all agents, the shared variable can be inferred in a centralized

manner. Conversely, decentralized Bayesian inference implies that

the latent variable can be inferred without each agent having access

to the internal variables of its counterparts. MHNG assumes joint

attention between two agents—widely observed in human infants

learning vocabularies—instead of reward feedback from a listener

to a speaker. This idea is rooted in the concept of a symbol

emergence system, as shown in Figure 1 on the left (Taniguchi et al.,

2016, 2018), rather than the view of an emergent communication

channel often assumed in emergent communication studies based

on Lewis-style signaling game. The notion of a symbol emergence

system was proposed to capture the overall dynamics of symbol

emergence from the perspective of emergent systems, i.e., complex

systems exhibiting emergent properties. This approach aims to

further investigate the fundamental cognitive mechanisms enabling

humans to organize symbol systems within a society in a bottom-up

manner.

In this paper, we use the term symbol system in a restricted

sense. Here, a symbol system simply refers to a set of signs

and their (probabilistic) relationship to objects. In the context

of studies on symbol emergence and emergent communication,

we cannot assume a ground-truth relationship between signs

and objects, unlike many studies in artificial intelligence, e.g.,

standard pattern recognition task that assumes a ground-truth label

given to each object. Ideally, a multi-agent system should form

a symbol system with which agents can appropriately categorize

(or differentiate) objects and associate signs with objects. The

definition of appropriate categorization and sign sharing is crucial

to the formulation of symbol emergence. Different approaches

assume different goals of symbol emergence and criteria based

on various hypothetical principles. Iterated learning assumes that

the goal of symbol emergence is for each agent to use the same

sign for each object. In contrast, emergent communication based

on referential games assumes that organizing signs allows a speaker

to provide information that enables a listener to choose an object

intended by the speaker. Taniguchi et al. proposed a collective

predictive coding (CPC) hypothesis in the discussion of Taniguchi

et al. (2023). The CPC hypothesis posits that the goal of symbol

emergence is the formation of global representations created by

agents in a decentralized manner. This can also be called social

representation learning, i.e., symbol emergence is conducted as a

representation learning process by a group of individuals in a

decentralized manner. From a Bayesian perspective, this can be

regarded as decentralized Bayesian inference.

The MHNG was proposed, demonstrating that the language

game enables two agents (agents 1 and 2) to form a symbol

system, with MHNG’s process mathematically considered as a

Bayesian inference of p(w | o1, o2), where o1 and o2 represent

the observations of agents 1 and 2, and w represents the shared

representations, i.e., signs. Furthermore, MHNG does not assume

the existence of explicit feedback from the listener to the speaker

in the game, unlike Lewis-style signaling games widely employed in

emergent communication studies. Instead, MHNG assumes joint

attention, considered foundational to language acquisition during

early developmental stages (Cangelosi and Schlesinger, 2015). The

CPC hypothesis and MHNG are based on generative models rather

than discriminative models, which are prevalent in the dominant
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FIGURE 1

(Left) An overview of symbol emergence system (Taniguchi et al., 2016). (Right) An overview of recursive Metropolis-Hastings naming game played

among multiple agents.

approach to emergent communication in the deep learning

community. The MHNG and results of constructive studies

substantiate the CPC hypothesis in a tangible manner (Taniguchi

et al., 2023). However, existing studies onMHNG only demonstrate

that the game can become a decentralized approximate Bayesian

inference procedure in a two-agent scenario. No theoretical

research or evidence exists to show that the CPC hypothesis can

hold in more general cases, i.e., in N-agent settings where N ≥ 3.

In other words, it is crucial to determine whether a language game

can perform decentralized approximate Bayesian inference of p(w |

o1 :N), where o1 :N = {o1, o2, . . . , on, . . . , oN}, and on represents the

observations of the n-th agent.

The fundamental reason why the MHNG can act as an

approximate Bayesian inference of p(w | o1, o2) is that the utterance

of a sign w ∼ p(w | oSp) by the speaker agent Sp can be

sampled based on agent Sp’s observations alone, and the acceptance

ratio of the sign (i.e., the message) can be solely determined by

the listener Li based on its own observations and internal state.

These properties are derived from the theory of the Metropolis-

Hastings algorithm. MHNG has a solid theoretical basis in Markov

Chain Monte Carlo (MCMC) (Hastings, 1970). However, the proof

provided by Taniguchi et al. (2023) assumed that the naming game

is played between only two agents. This assumption was based on

the need for individual agents to make the proposal sampling of

a sign and the acceptance/rejection decision, respectively, without

direct observation of the internal states of the other agent. Due

to the difficulty, a naming game having the same theoretical

property as MHNG for the N-agent (N ≥ 3) case has not

been proposed.

The goal of this paper is to extend the MHNG to the N-agent

(N ≥ 3) scenario and show that the extended naming game can act

as an approximate Bayesian inference algorithm for p(w | o1 :N).

The main idea of the proposed method is the introduction of a

recursive structure into the MHNG. Let us consider a 3-agent case.

If w ∼ p(w | o1, o2) can be sampled in the MH algorithm, the

acceptance ratio for the third agent can be calculated based on

the third agent’s internal states, and the communication can be

regarded as a sampling process of p(w | o1, o2, o3). Notably, w ∼

p(w | o1, o2) can be sampled using the original two-agent MHNG.

By extending this idea in a recursive manner, we can develop

a recursive MHNG (RMHNG). The details will be described in

Section 2.

The main contributions of this paper are twofold.

• We propose the RMHNG played between N agents and

provide mathematical proof that the RMHNG acts as an

approximate Bayesian inference method for the posterior

distribution over a latent variable shared by the agents given

the observations of all the agents.

• The performance of the RMHNG is empirically demonstrated

on synthetic data and real image data. The experiment shows

that the RMHNG enables more than two agents to form and

share a symbol system. The inferred distributions of signs are

shown to be a posterior distribution over p(w | o1 :N) in an

empirical manner. To reduce computational complexity and

maintain applicability for the explanation of communication

in human society, two types of approximations, i.e., (1)

one-sample (OS) approximation and (2) limited-length

(LL) approximation, are proposed and both are validated

through experiment.

The remainder of this paper is structured as follows. In

section 2, we describe RMHNG, explaining its assumed generative

model, algorithms, and theoretical results. Additionally, a practical

approximation is provided. Section 3 presents an experiment using

synthetic data and demonstrates the RMHNG empirically. Section

4 presents an experiment using the YCB object dataset (Calli et al.,

2015), which contains real images of everyday objects. In Section 5,

we engage in a comprehensive discussion. Finally, we conclude the

paper in Section 6.
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FIGURE 2

Probabilistic graphical models considered for MHNG and RMHMG. (A) PGM is for MHNG, i.e., a two-agent scenario called two-agent Inter-PGM. (B)

PGM is a generalization of PGM in (A), i.e., a multi-agent scenario (N ≥ 2), called multi-agent Inter-PGM. n-th agent has variables for observations on
d
,

internal representations wn
d
for the d-th object (1 ≤ d ≤ D). n-th agent has global parameters φn and θn and hyperparameters. Variable wd is a shared

latent variable, and concrete samples drawn from the posterior distribution over wd are regarded as an utterance, i.e., a sign. (C) PGM shows a

concise representation of (B) using plate representations [i.e., (B) and (C) represent the same probabilistic generative process].

2. Recursive Metropolis-Hastings
naming game

2.1. Overview

The RMHNG is a language game played between multiple

agents (N ≥ 2). It is an extension of the original MHNG. When

N = 2, the RMHNG is equivalent to the original MHNG. Notably,

the game does not allow agents to give any feedback to other agents

during the game, unlike Lewis-style signaling games (Lewis, 2008),

which have been used in studies of emergent communication.

Instead, the game assumes joint attention. Generally, when we

ignore the representation learning parts, the original MHNG is

played as follows:

1. For each object d ∈ D, the n-th agent (where n ∈ {1, 2})

views the d-th object and infers the internal state xn
d
, its percept,

from its observations on
d
, i.e., calculate p(xn

d
| on

d
) or sample

xn
d
∼ p(xn

d
| on

d
), where D is a set of object. Set the initial roles to

{Sp, Li} = {1, 2}.

2. The Sp-th agent says a sign w
Sp

d
(i.e., a word) corresponding to

the d-th object in a probabilistic manner by sampling a sign from

the posterior distribution over signs (i.e., w
Sp

d
∼ p(wd | x

Sp

d
)) for

each d.

3. Let a counterpart, that is, a listener, be Li-th agent. Assuming

that the listener is looking at the same object, i.e., joint attention,

the listener determines whether to accept the sign based on its

belief state with probability r = min

(

1,
P(xLi

d
|θLi ,w

Sp

d
)

P(xLi
d
|θLi ,wLi

d
)

)

. A listener

updates its internal parameter θLi.

4. They alternate their roles, i.e., take turns, and go back to 2.

The RMHNG extends the original MHNG to allow for

communication between multiple agents (N ≥ 3) and forms

a shared symbol system among them. The key idea of RMHNG is

as follows:

TABLE 1 Variables of Inter-PGM and their explanations.

Variable Explanation

wd A sign, e.g., a name, for the d-th object

x∗d Perceptual state or feature vector corresponding to the

d-th object

o∗d Observation for the d-th object

θ∗ Knowledge about the relations between signs and

perceptual states

φ∗ Knowledge about relations between perceptual states

and observations

α A hyperparameter for θ∗

β A hyperparameter for φ∗

Superscript ∗ ∈ N refers to a specific agent.

1. In an RMHNG played by M agents, we recursively use an

RMHNG played by M − 1 agents as a proposal distribution of

wd, which corresponds to a speaker in the original MHNG. Note

that, an RMHNG played by M − 1 agents (1, . . . ,M − 1) is a

sampler of an approximate distribution of p(wd | x1 :M−1).

2. An RMHNG played by two agents (N = 2) is equivalent to an

original MHNG.

Consequently, when played by N agents, the RMHNG

approximates the distribution of p(wd | x1 :N) through

mathematical induction. In RMHNG, the interactions of the

agents represent a chain-like communication characterized by local

one-to-one iterative message exchanges. Through this process,

information is disseminated throughout the multi-agent system.

Metaphorically speaking, one person engages in a discussion

with another; then, that person converses with the next person

based on the outcome of the previous discussion, and this form of

communication continues throughout the group.
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FIGURE 3

Decomposition and composition of two-agent Inter-PGM. Notes (1)–(4) describe the MH communication (Algorithm 2), which is an elemental step

of MHNG. Similarly, N-agent multi-agent Inter-PGM can be decomposed into N PGMs representing N agents.

2.2. Generative model

Figure 2 presents three probabilistic graphical models (PGMs)

representing the interactions between multiple agents sharing a

latent variable wd. (A) The left panel shows a PGM that integrates

two PGMs representing two agents with a shared latent variable

wd. This model is referred to as the two-agent Inter-PGM. (B)

The center panel generalizes the PGM in (A) to integrate PGMs

representing N agents. This model can be considered a multimodal

PGM in which a shared latent variable integrates multimodal

observations. We refer to this model as the multi-agent Inter-

PGM. (C) The right panel provides a concise representation of

(B) using plate representations, meaning (B) and (C) represent the

same probabilistic generative process. When agent n observes the

d-th object, they receive observations xn
d
and infer their internal

representation xn
d
. A latent variable representing a sign, wd, is

shared among the agents. The inference of θn and xn
d
corresponds to

a general representation learning problem. As studied in Taniguchi

et al. (2023), introducing the Symbol Emergence in Robotics

Toolkit (SERKET) framework (Nakamura et al., 2018; Taniguchi

et al., 2020) allows us to decompose the main part of the naming

game (exchanging signs wn
d
between agents) and the representation

learning part (inferencing xn
d
and θn). For simplicity and to focus

on the extension of the MHNG, we assume that xn
d
can be inferred

using a feature extractor and given to the model as a fixed

variable throughout the paper, and focus on inferring θn and wd

through the naming game. Table 1 summarizes the variables of the

generative model.

2.3. Inference as a naming game

The RMHNG, like the MHNG, acts as a decentralized

approximate Bayesian inference based on the MH algorithm. A

standard inference scheme for p(wd | x
1 :N
d

) in Figure 2C requires

the information about x1 :N
d

, e.g., the posterior distribution p(xd |

o1 :N
d

). However, x1 :N
d

are internal representations of each agent,

and the agents cannot access each other’s internal state, which

is a fundamental principle of human semiotic communication.

If the agents’ brains were connected, the shared variable wd

would be a representation of the connected brain and could be

inferred by referencing x1 :N
d

. But this is not the case in real-world

communication. The challenge is to infer the shared variable wd

without connecting the agents’ brains and without simultaneously

referencing x1 :N
d

. The solution is to play the RMHNG.

The decomposition of the generative model inspired by

SERKET, as shown in Figure 3 right, allows for a more manageable

and systematic approach to the inference of hidden variables. The

SERKET framework enables the decomposition of a PGM into

multiple modules, which simplifies the overall inference process

by breaking it down into inter-module communication and intra-

module inference (Nakamura et al., 2018; Taniguchi et al., 2020). In

the context of the RMHNG, the semiotic communication between

agents is analogous to the inter-module communication in the

SERKET framework.

2.3.1. MH receiving
Algorithm 1 presents the MH-receiving algorithm. When a

listener agent ALi ∈ A receives a sign w⋆ for the d-th object,

the agent evaluates whether to accept the sign and update ALi.wd

or not, where A is a set of agents. Here, Ai.wd represents

the wd that agent Ai possesses. Similarly, ALi.xd denotes the

xd held by agent Ai. For An ∈ A, An is an instance of a

struct (or a class), and An.• indicates the variable • of the n-

th agent, i.e., (An.θ ,An.φ, (An.od)d∈D, (A
n.xd)d∈D, (A

n.wd)d∈D) =

(θn,φn, (on
d
)d∈D, (x

n
d
)d∈D, (w

n
d
)d∈D). The function MH-receiving
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returns the sign for the d-th object agent Li holds after receiving

a new name for the d-th object from another agent.

1: function MH-RECEIVING(w⋆,ALi, d)

2: r = min
(

1, P(ALi .xd |A
Li .θ ,w⋆)

P(ALi .xd |A
Li .θ ,ALi .sd)

)

3: u ∼ Unif(0, 1)

4: if u ≤ r then

5: return w⋆

6: else

7: return ALi.wd

8: end if

9: end function

Algorithm 1. MH Receiving

2.3.2. MH communication
Algorithm 2 presents the MH-communication algorithm.

The function MH-communication describes the elementary

communication in both the MHNG and the RMHNG. A sign s for

the d-th object is sampled (i.e., uttered) by agent Sp and received by

agent Li, where Li, Sp ∈ N.

1: function MH-COMMUNICATION(ASp,ALi, d)

2: w⋆ ∼ P(ASp .wd | A
Sp.xd ,A

Sp.θ)

3: return MH-receiving(w⋆ ,ALi, d)

4: end function

Algorithm 2. MH Communication

2.3.3. Recursive MH communication
Algorithm 3 presents the recursive MH communication

algorithm. This algorithm represents the recursive MH

communication process, as shown in Figure 4. The recursive

MH communication is one of the MH sampling procedures for

p(wd | o
1 :N
d

). Given n + 1 (n < N) agents, each with parameter

wd, this algorithm is used to compute wd for interactions among n

agents. If n > 1, the RMH-communication function is recursively

called for agents A1 : n−1 ⊂ A to compute interactions among

them. Then, An+1 updates its own parameter wd using the received

information s̄ by calling the MH-receiving function. If n = 1, the

MH-communication function is called. After the internal loop

(from line 2 to line 9) is completed, the algorithm returns the wd

of a randomly selected agent j from A1 : n+1. This algorithm can

recursively calculate interactions among N agents.

2.3.4. Recursive MH naming game
Algorithm 4 presents the recursive MH naming game

algorithm. The agents repeatedly engage in recursive MH

communication for each object, shuffling the order of the agents.

The recursive MH communication is mathematically a type of

approximate MH sampling procedure for p(wd | o
1 :N
d

). After the

recursive MH communication is performed for every object, each

1: function RMH-COMMUNICATION(A1 : n,An+1, d)

2: for t = 1 to T do ⊲ Internal iteration

3: if n > 1 then

4: w̄← RMH-communication(A1 : n−1,An, d)

5: An+1.wd ← MH-receiving(An+1, w̄, d)

6: else

7: A2.wd ← MH-communication(A1,A2, d)

8: end if

9: end for

10: j←rand({1 : n+ 1})

11: return Aj.wd

12: end function

Algorithm 3. Recursive Metropolis-Hastings Communication

agent internally updates its global parameter θn. By iterating this

block I times, the agents can sample {wd}, {θn} from the posterior

distribution over p({wd}, {θn} | {x
n
d
}).

1: Explanation of each parameter

2: A1 :N = (A1,A2, . . . ,AN )

3: Initialize all parameters

4: for i = 1 to I do ⊲ Number of iteration

5: B1 :N = shuffle(A1 :N ) ⊲ Randomization of the order of

the agents

6: for d = 1 to D do ⊲ Naming every object

7: RMH-communication(B1 :M−1,BM , d)

⊲ M = N : No approximation

8: ⊲ M < N : Limited-length approximation (see

2.5)

9: end for

10: for n = 1 to N do ⊲ Parameter update

11: Bn.θ ∼ P(Bn.θ | Bn.s,Bn.x)

12: end for

13: end for

Algorithm 4. Recursive Metropolis-Hastings naming game

2.4. Theory and proof

For the main theoretical result, we use the following corollary.

Corollary 2.1. The MH communication is a Metropolis-Hastings

sampler of P(wd | x
Sp

d
, xLi

d
, θSp, θLi).

The acceptance probability r in MH-receiving is equivalent to

that in the MH algorithm for P(wd | x
Sp

d
, xLi

d
, θSp, θLi) in the case

that P(w | xSp, θSp) is a proposal distribution. This result is a

generalization of (Hagiwara et al., 2019, 2022) and a special case

of (Taniguchi et al., 2023). For the details of the proof, please refer

to the original papers.

The first theoretical result is as follows.

Theorem 1. The RMH communication converges to a MCMC

sampler of P(wd | x
1 : n
d

, θ1 : n) when T →∞.
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FIGURE 4

The upper figure is schematic explanation of RMH communication and RMHNG. The recursive MH communication is one of the MH sampling

procedures for p(wd | o
1 :N
d

). Given n+ 1 (n < N) agents, each with parameter wd, this algorithm is used to compute wd for interactions among n

agents.

FIGURE 5

Schematic explanation of flow of RMHNG (see Algorithm 4) and limited-length approximation (in case where M = 3; see Section 2.5).

Proof: When n = 2, the RMH communication is reduced

to the execution of MH communication T times. The

MH communication is proven to be an MH sampler

in corollary 1. Therefore, RMH communication is a

MCMC sampler, and the sample distribution converges

to P(wd | x1 : 2
d

, θ1 : 2) when T → ∞. When n > 2, if

the RMH− communication(B1 : n−1,Bn, d) is a sampler for

P(wd | x
1 : n
d

, θ1 : n), RMH− communication(B1 : n,Bn+1, d) becomes

an MH sampler for P(wd | x1 : n+1
d

, θ1 : n+1). Therefore, RMH

communication is a MCMC sampler, and the sample distribution

converges to P(wd | x
1 : n+1
d

, θ1 :N+1) when T → ∞. Therefore,

the RMH communication converges to a MCMC sampler of

P(wd | x
1 : n
d

, θ1 : n) when T →∞ by mathematical induction.

Theorem 2. The RMHNG converges to a MCMC sampler of

P(wd, θ
1 : n | x1 : n

d
) when T →∞.

Proof: The RMHNG samples the local parameters wd for all d

using the RMH communication, and the global parameters θ1 : n

from P(θ1 : n | {x1 : n
d
}d∈D, {wd}d∈D). When T → ∞, RMH

communication converges to a sampler of P(wd | x
1 : n
d

, θ1 : n). As

a result, the RMHNG converges to a Gibbs sampler of P(wd, θ
1 : n |

x1 : n
d

).
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As a result, the RMHNG is proved to be a

decentralized approximate Bayesian inference procedure for

p({wd}d∈D, {θn}n∈{1,...,N} | {x
n
d
}d∈D).

2.5. Approximations

Though the RMHNG is guaranteed to be a

decentralized approximate Bayesian inference procedure for

p({wd}d∈D, {θn}n∈{1,...,N} | {x
n
d
}d∈D) , the computational cost

increases exponentially with respect to the number of agents N.

The computational cost is O(IDT(N−1)). This indicates that the

computational cost of RMH-communication, i.e., O(T(N−1)), has

a significant impact on the overall computational cost. Therefore,

we introduce a lazy version of RMHNG, which employs two

approximations to reduce the computational cost.

2.5.1. One-sample approximation
The number of internal iterations T corresponds to the

iterations of MCMC for sampling wd given variables of a

(sub)group of agents. Theoretically, T should be large. However,

practically, even T = 1 can work in an approximate manner.

We refer to the RMHNG with T = 1 as the OS approximation

(OS), a special case. With the OS, the computational cost of RMH

communication is significantly reduced from O(T(N−1)) to O(N).

2.5.2. Limited-length approximation
RMH communication is a process of information propagation

through a chain connecting N agents (as shown in Figure 5).

Limited-length approximation (LL) truncates the chain to M

agents. By shuffling the order of the agents according to the data

points, it is expected that sufficient information will be statistically

propagated among all the agents. LL reduces the computational

cost of RMH communication from O(T(N−1)) to O(T(M−1)),

where M ≤ N is the length of the truncated chain, i.e., the

number of agents participating in an RMH communication. To

reduce computational complexity while maintaining applicability

for explaining communication in human society, two types

of approximations are proposed: (1) OS approximation and

(2) LL approximation. Both types were validated through

experimentation.

Notably, when M = 2, the LL approximation corresponds

to the random sampling condition. Random sampling refers to

the process where two individuals are randomly selected from a

pool (i.e., a set of agents), they communicate with each other,

and after their communication concludes, they are returned to the

pool. This process is then repeated. In the experiment, the random

sampling condition is primarily investigated as a representative of

the LL approximation.

2.6. Example: multi-agent Inter-GMM

To evaluate the RMHNG, we developed a computational model

of symbol emergence called multi-agent Inter-GMM. This is based

on the Gaussian mixture model (GMM) and is a special case of the

multi-agent Inter-PGM. Hagiwara et al. (2019, 2022) proposed the

Inter-Dirichlet mixture (Inter-DM) which combines two Dirichlet

mixtures (DMs), p(xn
d
| wd) and p(on

d
| xn

d
), represented as

categorical distributions in Figure 2A. Taniguchi et al. (2023)

proposed Inter-GMM + VAE which combines two GMM + VAEs,

i.e., p(xn
d
| wd) and p(on

d
| xn

d
) represented as a categorical

distribution as a part of GMM and a VAE respectively. Inter-GMM

is defined as a part of Inter-GMM+VAE and combines two GMMs

via a shared latent variable. We generalized the two-agent Inter-

GMM and obtained the multi-agent Inter-GMM, which has N

Gaussian emission distributions corresponding to N agents. The

probabilistic generative process of the multi-agent inter-GMM is

as follows:

wd ∼ Cat(γ ) d = 1, . . . ,D

(1)

µn
k ,3

n
k ∼ N(µn

k | m, (ᾱ3n
k)
−1)W(3n

k | ν, β̄) k = 1, . . . ,K

(2)

αn = (m, ᾱ, ν, β̄) (3)

θn = (µn
1 :K ,3

n
1 :K) (4)

xnd ∼ N(xnd | µ
n
wd
, (3n

wd
)−1) d = 1, . . . ,D

(5)

where µn
k
and 3n

k
are the mean vector and the precision matrix

of the k-th Gaussian distribution of the n-th agent. Cat(∗) is the

categorical distribution,N(∗) is the Gaussian distribution,W(∗) is

the Wishart distribution. In this model, we assume that the agents

share a pre-defined set of signs, i.e., wn
d
∈ S, which is a finite set.1

The Inter-GMM is a probabilistic generative model represented

by the PGM shown in Figure 2C. In other words, the multi-

agent Inter-GMM is an instance of the multi-agent Inter-PGM.

Therefore, the RMHNG can be directly applied to the multi-agent

Inter-GMM.

3. Experiment 1: synthetic data

3.1. Conditions

We evaluated the RMHNG using the multi-agent Inter-GMM

with four agents (N = 4) using synthetic data. For all experiments

(excluding the measurement of computation time), the number of

iterations (I) was set to 100, and each experiment was conducted

five times.

3.1.1. Dataset
We created synthetic data to serve as observations for the

four agents. A dataset was generated from five 4-dimensional

Gaussian distributions with mean vectors of (0, 1, 2, 3), (0, 5, 6, 7),

(8, 5, 10, 11), (12, 13, 10, 15), and (16, 17, 18, 15), respectively. The

variance of each Gaussian distribution was set to the identity

1 The assumption does not imply that every agent knows the pre-defined

signs. In particular, if the i-th agent knows a set of signs Si, we can define the

universal set of signs as the union of all individual sets, represented as S =
⋃

i Si as the shared set of signs. This assumption is about the mathematical

formulation, not about the knowledge of each agent.
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matrix I. The values obtained for each dimension were taken as

observations for each agent. In other words, the value of the n-th

dimension of data sampled from the GMM was considered as the

observation for the n-th agent. Notably, for the n-th agent, the n-

th and n + 1-th Gaussian distributions have the same mean and

variance. Therefore, the n-th agent cannot differentiate the n-th and

n+ 1-th Gaussian distributions without communication.

3.1.2. Compared methods
e assessed the proposed model, RMHNG (proposal), by

comparing it with two baseline models and a topline model. In No

communication (baseline 1), two agents independently infer a sign

w, i.e., perform clustering of the data. No communication occurs

between the four agents. In other words, the No communication

model assumes that the agents independently infer signs wn
d
(n ∈

{1, 2, 3, 4}), respectively, using four GMMs. All acceptance (baseline

2) is the same as the RMHNG, with an acceptance ratio always set

to r = 1 in MH receiving (see Algorithm 1). Each agent always

believes that the sign of the other is correct. In Gibbs sampling

(topline), the sign wd is sampled using the Gibbs sampler. This

process directly uses x1 : 4
d

, although no one can simultaneously

examine the internal (i.e., brain) states of human communication.

This is a centralized inference procedure and acts as a topline in this

experiment.

We also evaluated two approximation methods introduced in

Section 2.5. OS and LL refer to the OS and LL approximations,

respectively. In the LL approximation,M = 2, i.e., the chain length

is one. In OS&LL, both OS and LL approximations were applied

simultaneously.

3.1.3. Hyperparameters
In all methods, the hyperparameters of the agents were set to be

the same. The hyperparameters were β = 1, m = 0, W = 0.01,

and ν = 1.

3.1.4. Evaluation criteria
• Clustering: We used Adjusted Rand Index (ARI) (Hubert

and Arabie, 1985) to evaluate the unsupervised categorization

performance of each agent in the MH naming game. A high

ARI value indicates excellent categorization performance,

while a low ARI value indicates poor performance. ARI

is advantageous over precision since it accounts for label-

switching effects in clustering by comparing the estimated

labels and ground-truth labels. Appendix B provides more

details.

• Sharing sign: We assessed the degree to which the two

agents shared signs using the κ coefficient (κ) (Cohen, 1960).

Appendix B provides more details.

• Computation time:We conducted experiments to measure the

processing time of the program when running it at I = 10 by

varying the values of T in Algorithm 3 andM in Algorithm 4.

We conducted experiments with T = 1, 2, 3, 4 and M =

2, 3, 4. The program was run three times in each experiment

(30 iterations in total, initialized every 10 iterations), and

we calculated the average processing time per iteration (10

iterations).

• Decentralized posterior inference: To investigate whether

RMHNG is an approximate Bayesian estimator of the

posterior distribution p(w | x1, x2, . . . , xN , θ1, θ2, . . . , θN),

we need to compare it with the true posterior distribution.

However, computing the true posterior distribution p(w |

x1, x2, . . . , xN , θ1, θ2, . . . , θN) directly is difficult. Therefore,

we evaluate how well the distribution of signs obtained

by RMHNG matches that of Gibbs sampling. Appendix A

provides more details.

3.1.5. Machine specifications
The experiment was conducted on a desktop PC with an

Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz 3.60 GHz, 32GB of

RAM, and an NVIDIA GeForce RTX 2080 SUPER GPU.

3.2. Results

3.2.1. Categorization and sign sharing
Table 2 shows the ARI and κ for each method used on

the artificial data. As shown in Table 2, the ARI values for

RMHNG were consistently close to those of Gibbs sampling, with

a maximum difference of only 0.1. This indicates that RMHNG

had a similar category classification accuracy as Gibbs sampling.

In this setting, OS performed even better than RMHNG, achieving

the highest values for both ARI and κ . This might be because

OS facilitated the mixing process by introducing randomness in

sampling. On the other hand, OS&LL and LL exhibited relatively

low values for both ARI and κ . Notably, even with approximations,

RMHNG had higher agent classification accuracy and sign-sharing

rate than both No communication and All acceptance.

3.2.2. Change in ARI and κ for each iteration
Figure 6 shows the ARI (right) and κ (left) for each iteration

(i in Algorithm 4). From the left graph in Figure 6, we can

see that RMHNG, OS, and LL converge faster in terms of

ARI, in that order, among the RMHNG and its approximation

methods. OS&LL show an upward trend in ARI even at the

100th iteration, indicating that they have not converged. No

communication has the fastest convergence in ARI among all

the methods. As for All acceptance, we can see that the ARI

does not show an upward trend even as the iteration count

increases, compared to other methods. From the right graph

in Figure 6, we can see that RMHNG, OS, and LL converge

faster in terms of κ , in that order, among the RMHNG and its

approximation methods. OS&LL show an upward trend in κ even

at the 100th iteration, indicating that they have not converged.

No communication and All acceptance do not show an upward

trend in κ even as the iteration count increases, compared to

other methods.

3.2.3. Computation time
Figure 7 shows the average computation time for varying values

of M and T in RMHNG. As shown in the figure, it can be seen

that the computation time increases logarithmically as T increases.
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TABLE 2 Experimental results for synthetic data: each method was tested five times, and for each agent, ARI and κ were calculated when Iwas between

91 and 100.

ARI ARI ARI ARI

Condition (Agent 1) (Agent 2) (Agent 3) (Agent 4) κ

RMHNG 0.91± 0.02 0.92± 0.01 0.92± 0.01 0.88± 0.02 0.92± 0.01

OS 0.93± 0.02 0.94± 0.01 0.94± 0.02 0.91± 0.02 0.94± 0.01

LL 0.77± 0.04 0.80± 0.03 0.81± 0.02 0.71± 0.03 0.77± 0.03

OS&LL 0.73± 0.09 0.76± 0.06 0.77± 0.05 0.68± 0.05 0.73± 0.07

No communication 0.64± 0.03 0.67± 0.03 0.65± 0.01 0.60± 0.02 −0.02± 0.14

All acceptance 0.008± 0.005 0.009± 0.007 0.009± 0.007 0.009± 0.007 0.42± 0.02

Gibbs sampling 0.98± 0.01 -

Mean± standard deviation of obtained 50(5× 10)ARI and κ are shown. The highest scores are shown in bold, and the second-highest scores are underlined.

FIGURE 6

ARI (left) and κ (right) for each iteration when using artificial data.

Considering that the vertical axis is logarithmic, this confirms

that the computation time follows the computational complexity

of O(TM−1). Additionally, it can be confirmed that significant

reductions in computation time can be achieved by approximating

RMHNG with OS (T = 1,M = 4), LL (T = 4,M = 2), or OS&LL

(T = 1,M = 2). Specifically, RMHNG (T = 4,M = 4) took 3,178

s, OS (T = 1,M = 4) took 77 s, LL (T = 4,M = 2) took 187 s, and

OS&LL (T = 1,M = 2) took 71 s.

3.2.4. Decentralized posterior inference
Figure 8 shows the results of calculating how closely the sign

distribution obtained by each method matches that obtained

by Gibbs sampling in the last 10 iterations (91–100 iterations)

for each method. RMHNG shows a value of 0.96, indicating

that the sign distribution obtained by RMHNG matches that

obtained by Gibbs sampling by 96%. This confirms that

RMHNG is an approximate Bayesian estimator for the posterior

distribution p(w | x1, x2, . . . , xN , θ1, θ2, . . . , θN). Additionally,

OS shows a value of 0.9 or higher, indicating that it is also an

approximate Bayesian estimator for the posterior distribution p(w |

x1, x2, . . . , xN , θ1, θ2, . . . , θN). Although LL and OS&LL have lower

values compared to LL and OS, respectively, they are found to have

higher matching rates with the sign distribution obtained by Gibbs

sampling than No communication and All acceptance.

4. Experiment 2: YCB object dataset

4.1. Conditions

We evaluated RMHNG using the multi-agent Inter-GMMwith

four agents (N = 4) on a real image dataset. For all experiments

(except for measuring computation time), the number of iterations

(I) was set to 100, and each experiment was conducted five times.

4.1.1. Dataset
We evaluated the performance of RMHNG using the YCB

object dataset. We selected several objects from the dataset, and

their names are listed in Figure 9A. Figure 9B, shows an overview

of the dataset, where we divided the images of each object into four

sets and assigned each set to one of the four different agents. Each

set consisted of 30 images. Specifically, images ranging from 0◦ to

87◦ were assigned to agent 1, those from 90◦ to 177◦ were assigned
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FIGURE 7

This shows the mean of computation time when changing values of

M and T in RMHNG. The horizontal axis represents the value of T,

while the vertical axis represents the mean of computation time

using a logarithmic scale with a base of 10.

FIGURE 8

Distribution of signs obtained by various methods and degree of

agreement between the distribution of signs obtained by Gibbs

sampling

to agent 2, those from 180◦ to 267◦ were assigned to agent 3, and

those from 270◦ to 267◦ were assigned to agent 4.

4.1.2. Feature extraction
Firstly, we cropped the original images from 4, 272× 2, 848 to a

size of 2, 000×2, 000 from the center. Next, we reduced the cropped

images to a size of 300 × 300 to prevent any degradation in image

quality. Finally, we cropped the images further to a size of 224×224

from the center. We used the resulting images as the observations

for each agent, denoted as on
d
.2

2 We conducted two rounds of cropping for two reasons. Firstly, direct

reduction of an ultra-high-resolution image can lead to degradation of image

quality, so it was necessary to crop the image to a certain size before reducing

Feature extraction was performed using SimSiam (Chen and

He, 2021), a representation learning method based on self-

supervised learning, pre-trained on the collected cropped YCB-

object dataset. The feature extractor outputted 512-dimensional

vectors. To address the issue of high feature dimensionality

compared to the small amount of data available, principal

component analysis (PCA) was used to reduce the features to 10

dimensions.3 Figure 10 shows a visualization of the features of all

data and the features observed by each agent using PCA. From

this figure, it can be expected that some degree of categorization

is possible.

4.1.3. Hyperparameters
All agents were assigned the same hyperparameters, with values

set as follows: β = 1,m = 0,W = 100× I, and ν = 1, where I is a

10-dimensional identity matrix I.

Compared method and evaluation criteria are the same as those

in the Experiment 1.

4.2. Result

4.2.1. Categorization and sharing signs
Table 3 shows the ARI and κ for eachmethod on the YCB object

dataset. It is observed that RMHNG and Gibbs sampling have

similar category classification accuracy with a maximum difference

of only 0.04. Among the RMHNG approximations, OS had the

highest ARI and κ values. Interestingly, it showed a value close

to that of RMHNG for the κ . OS&LL had the lowest values for

both ARI and κ . However, the difference in ARI between LL, OS,

and OS&LL was at most 0.02, indicating similar performance. In

the YCB object dataset experiments, although OS showed higher

ARI than RMHNG in the synthetic data experiment, for Agent1,

OS showed lower ARI than RMHNG, while for other agents, it

showed similar values. Compared to OS&LL, No communication

showed equivalent ARI for Agent1, lower ARI for Agent2, and

higher ARI for other agents. However, the κ was the lowest

among all methods for No communication. All acceptance had

the lowest ARI among all methods and the highest κ among

all methods.

4.2.2. Change in ARI and κ for each iteration
Figure 11 shows the ARI (right) and κ (left) for each iteration

(i) in Algorithm 4 for various methods, while Figure 6 shows the

convergence of the κ for synthetic data. From the left figure in

Figure 11, we can see that the RMHNG method has the fastest

convergence of ARI, followed by OS, OS&LL, and LL. Regarding

OS&LL, we can see that ARI did not converge when using synthetic

data, but it did converge when using the YCB object dataset. No

communication had the fastest convergence of ARI among all

it. Secondly, some objects were almost entirely obscured or markers were

largely reflected, making it di�cult to crop directly from the original image.

3 This was conducted to avoid zero variance in dimensions that cannot be

inferred, preventing divergence of the accuracy matrix of GMMs.
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FIGURE 9

(A) Type of YCB object dataset utilized in the experimental analysis. (B) Partition diagram of YCB object dataset. we divided the images of each object

into four sets and assigned each set to one of the four di�erent agents. Each set consisted of 30 images. Specifically, images ranging from 0◦ to 87◦

were assigned to agent 1, those from 90◦ to 177◦ were assigned to agent 2, those from 180◦ to 267◦ were assigned to agent 3, and those from 270◦

to 267◦ were assigned to agent 4.

FIGURE 10

Features of the entire dataset and the features of individual agents’ observations are visualized by 2D-PCA. (A) Features of all data visualized by

2D-PCA. (B) PCA visualization of Agent 1’s observations. (C) PCA visualization of Agent 2’s observations. (D) PCA visualization of Agent 3’s

observations. (E) PCA visualization of Agent 4’s observations.

the methods. As for All acceptance, we can see that ARI did not

show an increasing trend with iteration in synthetic data, but it

did show an increasing trend when using the YCB object dataset.

From the right figure in Figure 6, we can see that the RMHNG

method had the fastest convergence of the κ , followed by OS, LL,

and OS&LL. No communication did not show any increasing trend

compared to other methods. As for All acceptance, we can see that

the κ did not show an increasing trend with iteration when using
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TABLE 3 Experimental results for YCB object dataset: Each method was tested five times, and for each agent, the ARI and κ were calculated when Iwas

91 − −100.

ARI ARI ARI ARI

conditon (Agent 1) (Agent 2) (Agent 3) (Agent 4) κ

RMHNG 0.61± 0.05 0.59± 0.05 0.59± 0.05 0.59± 0.05 0.99± 0.04

OS 0.59± 0.06 0.59± 0.06 0.59± 0.08 0.59± 0.08 0.98± 0.05

LL 0.56± 0.11 0.57± 0.09 0.56± 0.11 0.56± 0.11 0.96± 0.06

OS&LL 0.55± 0.07 0.55± 0.07 0.54± 0.06 0.54± 0.06 0.95± 0.09

No communication 0.55± 0.10 0.50± 0.09 0.55± 0.07 0.55± 0.08 −0.03± 0.08

All acceptance 0.47± 0.08 0.47± 0.08 0.47± 0.08 0.47± 0.08 1.0± 0.0

Gibbs sampling 0.63± 0.05 -

The mean± standard deviation of obtained 50(5× 10)ARI and κ are shown. Highest scores are shown in bold, and second-highest scores are underlined.

FIGURE 11

ARI (left) and κ (right) for each iteration when using YCB object dataset.

synthetic data, but it did show an increasing trend when using the

YCB object dataset.

4.2.3. Decentralized posterior inference
Figure 12 shows the results of calculating the degree of

similarity between the distribution of the sign obtained by each

method and that obtained by Gibbs sampling in the last 10

iterations (91–100 iterations) for each method. RMHNG showed a

value of 0.76, indicating that the distribution of the sign obtained

by RMHNG matched that obtained by Gibbs sampling by 76%.

Among the methods that approximated RMHNG, OS showed

the highest value, both in the synthetic data experiment and the

YCB object dataset experiment. Additionally, all approximation

methods showed higher values than No communication.

Comparing Tables 2, 3 and Figures 6, 11, the synthetic dataset

showed a more significant improvement in both ARI and κ

coefficient values than the YCB object dataset when RMHNG

and its approximations were applied. Importantly, Gibbs sampling

and RMHNG improved clustering performance primarily when

agents had partial observations that, when integrated, improved

clustering. The dataset used in Experiment 1 was deliberately

created to satisfy this condition, resulting in pronounced

FIGURE 12

Percentage agreement with Gibbs sampling.

differences in the ARI and κ coefficient metrics. However, in

Experiment 2, which used real image data, not all objects

fulfilled this condition. The difference between RMHNG and No

Communication narrows when an agent’s partial observations

are sufficient for clustering or when integrating these partial
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observations does not improve clustering performance. For

example, items such as the Mustard bottle, Bleach cleanser, and

Windex bottle, which have similar feature distributions (as shown

in Figure 10), were often grouped under a single category even

when the partial observations were integrated. However, the

primary goal of the experiments is to demonstrate RMHNG’s ability

to integrate observations and effectively sample from the posterior

distribution, such as P(w|x1, x2, x3, x4), in a decentralized manner.

While the ARI metric provides a comparative framework against

human labels, which is considered an intuitive and reasonable

clustering benchmark, it does not directly evaluate the accuracy

of sampling from the posterior distribution. In this sense, it is

important to note that RMHNG could produce sampling results

more similar to Gibbs sampling than No communication, as shown

in Figure 12.

5. Conclusion

In this study, we extended the MHNG to the N-agent

scenario by introducing the RMHNG, which serves as an

approximate decentralized Bayesian inference method for the

posterior distribution shared by agents, similar to the MHNG. We

demonstrated the effectiveness of RMHNG in enabling multiple

agents to form and share a symbol system using synthetic

and real image data. To address computational complexity, we

proposed two types of approximations: OS and LL approximations.

Evaluation metrics, such as the ARI and the κ , were used to assess

the performance of communication in each iteration of the naming

game. Results showed that the 4-agent naming game successfully

facilitated the formation of categories and effective sign-sharing

among agents. Moreover, the approximated RMHNG exhibited

higher ARI and κ compared to the No communication condition,

showing that the approximate version of RMHNG could perform

symbol emergence in a population. Additionally, we assessed the

agreement between the sign distributions obtained by RMHNG

and Gibbs sampling, confirming that RMHNG approximates the

posterior distribution with a degree of agreement exceeding 87%

for the synthetic data and 71% for the YCB object data. This result

demonstrates that RMHNG could successfully approximate the

posterior distribution over signs given every agent’s observations.

While RMHNG assumes a communication network that

funnels information in a sequential, chain-like, manner,

communication network architectures in actual human

societies can exhibit notable variations. For example, small-

world and scale-free networks serve as models of human relational

structures, encapsulating the complex interconnections among

individuals (Watts and Strogatz, 1998; Barabási and Albert,

1999). Thus, assessing the validity of the chain-like information

dissemination process in RMHNG and determining potential

qualitative changes that might occur when RMHNG is adapted to

networks embodying structures such as small-world or scale-free

configurations remain intriguing avenues for future studies.

Several future perspectives emerge from this study. Firstly,

we plan to analyze the behavior of the RMHNG in populations

with a larger number of agents. Although we focused on the

4-agent scenario due to the computational cost of the original

RMHNG (O(IDT(N−1))), we empirically observed that the OS

approximation performed well in many cases. Unlike the original

RMHNG, the OS-approximated version exhibits scalability in

terms of the number of agents (O(N)), enabling simulations

with larger populations. This scalability opens up possibilities for

providing valuable insights into language evolution through the

MHNG framework. Additionally, extending the categorical signs

to more complex signs, such as sequences of words, represents a

natural progression for our research. Investigating the dynamics of

communication with more intricate sign systems will shed light on

the evolution and complexity of language.

Investigating the cognitive processes involved in the MH

naming game is also an important research topic. If symbol

emergence in human society is facilitated by decentralized Bayesian

inference through communications like RMHNG, the cognitive

process underpinning the MH naming game, specifically, the

decision-making regarding acceptance or rejection in the MH

receiving, becomes crucial. An experimental semiotics study based

on the MHNG model was conducted, in which acceptance

or rejection decisions of human participants were examined

at the behavioral level (Okumura et al., 2023). Exploring the

cognitive processes and related brain functions associated with

these behaviors is also an avenue for future research.
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Appendix

A. Evaluation of the decentralized
posterior inference architecture

In order to evaluate the efficacy of RMHNG as an

approximate Bayesian estimator for the posterior distribution

p(w | x1, x2, . . . , xN , θ1, θ2, . . . , θN), a comparison was made

between RMHNG and the actual posterior distribution.

However, direct computation of the true posterior distribution

p(w | x1, x2, . . . , xN , θ1, θ2, . . . , θN) presented significant

challenges. Therefore, the evaluation focused on the degree of

concurrence between the sign distribution generated by RMHNG

and that produced by Gibbs sampling. The evaluation was

conducted for the last 10 iterations (i.e., 91 − −100 iterations) of

RMHNG and Gibbs sampling. Let f R
d,w

and f G
d,w

be the number

of times the sign w was sampled using RMHNG and Gibbs

sampling, respectively, for the d-th dataset. The similarity between

the two methods was calculated as
∑D

d=1

∑K
k=1 min(f R

d,k
, f G
d,k
).

However, due to the singularity of the GMM, label switching (i.e.,

swapping of signs) between different inference results needed to

be addressed. To solve this problem, bipartite graph matching

was performed to correspond a clustering result with another. To

perform bipartite graph matching, the sign obtained by RMHNG

was considered as the point set VR = {vR0 , v
R
1 , . . . , v

R
K}, and the

sign obtained by Gibbs sampling was considered as the point

set VG = {vG0 , v
G
1 , . . . , v

G
K}. The edge connecting VR

i and VG
j

was denoted by Ei,j, and the set of all edges was denoted by

E = {e0,0, e0,1, . . . , ei,j, . . . , eK,K}. The graph G = (VG ∨ VR,E) was

a complete bipartite graph. If the gain of each pair (vRa , v
G
b
) was

∑D
d=1 min(f R

d,a
, f G
d,b
), then the sign replacement problem could be

reduced to a weighted maximum bipartite matching problem. To

simplify the problem further, the gain of each pair wasmultiplied by

(−1) ×
∑D

d=1 min(f R
d,a
, f G
d,b
). This reduced the weighted maximum

two-part matching problem to a minimum cost flow problem,

which could be solved using the Hungarian method. Finally, the

similarity was calculated by 1
10D

∑D
d=1

∑K
k=1 min(f R

d,k
, f G
d,k
), where

1
10D was a normalization factor.

B. ARI and κ

ARI is a widely used measure for evaluating clustering

performance by comparing the clustering results with the

ground-truth labels. Unlike precision, which is calculated by

directly comparing estimated labels to ground-truth labels and

often used in the evaluation of classification systems trained

using supervised learning, ARI considers label-switching effects in

clustering. The formula for ARI is given by Equation (A1), where RI

represents the Rand Index. Further details can be found in Hubert

and Arabie (1985).

ARI =
RI− Expected RI

Max RI− Expected RI
(A1)

The kappa coefficient (κ) is defined by Equation (A2):

κ =
Co − Ce

1− Ce
. (A2)

Here, Co represents the degree of agreement of signs among agents,

and Ce denotes the expected value of coincidental sign agreement.

The interpretation of κ is as follows (Landis and Koch, 1977):

1. Almost perfect agreement: (1.0 ≥ κ > 0.80)

2. Substantial agreement: (0.80 ≥ κ > 0.60)

3. Moderate agreement: (0.60 ≥ κ > 0.40)

4. Fair agreement: (0.40 ≥ κ > 0.20)

5. Slight agreement: (0.20 ≥ κ > 0.00)

6. No agreement: (0.0 ≥ κ)

C. Feature extraction by SimSiam

As a feature extractor, we utilized SimSiam (Chen and He,

2021), a self-supervised representation learning technique that

was pre-trained on the YCB object dataset. We followed the

same network architecture and hyperparameters as outlined in

the original paper (Chen and He, 2021), but with a few minor

adjustments. For data augmentation, we used the following

parameters, using PyTorch notation.4 RANDOMRESIZEDCROP

with a scale in the range of [0.1, 0.6], and RANDOMGRAYSCALE

with a probability of 0.2. We normalized tensor images using

the NORMALIZE function with a mean of (0.485, 0.456, 0.406) and

standard deviation of (0.229, 0.224, 0.225) We used ResNet-18 as

the BACKBONE (He et al., 2016) and set the dimension of the

output feature vector to 512. A two-layer fully connected layer

was employed as the PROJECTOR, using an intermediate layer with

a dimension of 512. The predictor also utilized a two-layer fully

connected layer, with an intermediate layer dimension of 128.

During the training phase, we set the learning rate to 0.1 and

utilized stochastic gradient descent as the optimizer. The batch size

was set to 64, and we trained the network for 100 epochs.

4 PyTorch, Transforming and augmenting images: https://pytorch.org/

vision/stable/transforms.html.
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