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Background:Due to the lower reliability of laboratory tests, skin diseases are more

suitable for diagnosis with AI models. There are limited AI dermatology diagnostic

models combining images and text; few of these are for Asian populations, and

few cover the most common types of diseases.

Methods: Leveraging a dataset sourced fromAsia comprising over 200,000 images

and 220,000 medical records, we explored a deep learning-based system for

Dual-channel images and extracted text for the diagnosis of skin diseases model

DIET-AI to diagnose 31 skin diseases, which covers the majority of common skin

diseases. From 1 September to 1 December 2021, we prospectively collected

images from 6,043 cases andmedical records from 15 hospitals in seven provinces

in China. Then the performance of DIET-AI was compared with that of six doctors

of di�erent seniorities in the clinical dataset.

Results: The average performance of DIET-AI in 31 diseases was not less than that

of all the doctors of di�erent seniorities. By comparing the area under the curve,

sensitivity, and specificity, we demonstrate that the DIET-AI model is e�ective in

clinical scenarios. In addition, medical records a�ect the performance of DIET-AI

and physicians to varying degrees.

Conclusion: This is the largest dermatological dataset for the Chinese

demographic. For the first time, we built a Dual-channel image classification

model on a non-cancer dermatitis dataset with both images and medical

records and achieved comparable diagnostic performance to senior doctors about

common skin diseases. It provides references for exploring the feasibility and

performance evaluation of DIET-AI in clinical use afterward.

KEYWORDS

artificial intelligence, computer vision, skin disease, dermatitis, digital medicine

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1213620
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1213620&domain=pdf&date_stamp=2023-10-19
mailto:650628@hospital.cqmu.edu.cn
mailto:1076848574@qq.com
https://doi.org/10.3389/frai.2023.1213620
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1213620/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Li et al. 10.3389/frai.2023.1213620

1. Introduction

In China, 240 million people visit dermatologists annually,

which accounts for 3% of all medical visits (Zhou et al., 2015).

The number of dermatologists in China shows a significant

imbalance. In China’s public hospitals, there are approximately

29,800 dermatologists, but there are only 2.1 dermatologists

for every 100,000 people. The number of dermatologists is

markedly insufficient compared to the recommended standard

of 4 dermatologists per 100,000 individuals. As of 2022, the

number of practicing dermatologists and medical cosmetologists

(and assistants) has only increased by 0.2%, which has exacerbated

the shortage of dermatologists. However, in many areas, skin

disease cases are diagnosed only by general practitioners. According

to previous research, non-specialist diagnosis is obviously not

able to meet the need for disease diagnosis and is clinically

only 24–70% accurate (Federman and Kirsner, 1997; Federman

et al., 1999; Tran et al., 2005; Moreno et al., 2007). Further,

technological inequality aggravates the unevenness among doctors

and medical centers. With recent technological developments, skin

imaging equipment is applied in many top hospitals, which has

enhanced the proficiency of dermatologists. However, the skin

imaging system equipment is still insufficient and distributed

unevenly, particularly in remote areas and primary hospitals in

economically undeveloped areas (Li et al., 2021). Similarly, there

are significant regional imbalances in the level of relevant clinical

research and application, which further widen the gap in the

diagnostic performance of physicians of different seniority and

reveal that physicians utilize professional skin imaging equipment

and intelligent auxiliary diagnosis tools for skin diseases to

improve their diagnostic performance. Physicians can enhance

the performance of dermatological diagnosis with the help

of professional skin imaging equipment and improve disease

awareness with dermatological assistant diagnostic tools, thereby

increasing their diagnostic level. Through a cross-sectional study,

most dermatologists are willing to receive the assistance of artificial

intelligence tools to ensure time efficiency, diagnostic accuracy,

and strengthening of patient management. Therefore, a novel tool

for skin disease diagnosis and assessment will empower primary

dermatologists and general practitioners with the diagnostic

experience of leading dermatologists (Jain et al., 2021). This tool

should achieve tiered diagnosis and treatment of dermatology and

increase the diagnostic accuracy of primary dermatologists, thereby

improving the diagnostic quality of dermatology in China.

Dermatology, as a discipline that largely relies on

morphological characteristics for diagnosis, often depends

on meticulous observation of visual patterns and disease

classification through image feature extraction. To enhance the

accuracy of skin disease image classification, Cascinelli et al.

(1987) highlighted the importance of extracting features from

dermoscopy images and used machine learning methods like the

K-Nearest Neighbors (KNN) classifier to differentiate lesions,

preliminarily distinguishing malignant from benign changes. For

further optimization, She et al. (2007) suggested incorporating

the traditional ABCD rule (Asymmetry, irregular Borders, Color

variation, and Diameter) during the machine learning classification

process, enhancing the precision of image categorization. Aiming

to improve the classification of multi-source images, Barata et al.

(2014) integrated a color consistency algorithm, elevating the

diagnostic sensitivity and specificity. Additionally, AI models

can alleviate physicians’ workloads, assisting them with disease

diagnosis. Premaladha and Ravichandran (2016) showcased the

significant advantages of deep learning models in skin disease

diagnosis compared to traditional diagnostic methods. Premaladha

introduced a deep learning approach combined with SVM, which

aids dermatologists in making diagnoses more accurately and in

reducing unnecessary biopsies. Esteva et al. (2017) fully leveraged

the capabilities of Deep Convolutional Neural Networks (CNN),

demonstrating the model’s efficiency in segmenting skin diseases,

with its performance even being comparable to that of trained

dermatologists. Albahar (2019) and Kassem et al. (2020) further

delved into the deep learning application in distinguishing between

benign and malignant lesions. Albahar (2019) incorporated a new

regularizer into deep CNN learning, achieving high differentiation

between various skin cancer malignancies and benign lesions.

Kassem et al. (2020) emphasized the advantages of using pre-

trained models and transfer learning techniques. However,

technological progress comes with challenges. The size and the

coverage of the dataset matter. Veronese et al. (2021) highlights

the challenge of device limitations and the limited size of the

dataset. Meanwhile, Haggenmüller et al. (2021) pointed out that

most previous models were trained and tested on single images,

while their test sets did not represent the real-world application

comprehensively. The majority of earlier research has concentrated

on distinguishing between benign and malignant lesions, an

instance of which is Stanford University’s work on the deep

learning diagnosis of skin cancer in 2017 (Lu et al., 2012; Esteva

et al., 2017; Seité et al., 2019). In summary, as described by Goyal

et al. (2020), although AI systems have shown a high performance

and substantial potential in skin disease diagnosis, they are still in

the early stage of clinical application with many challenges ahead.

Thus, our research aims to alleviate the diagnostic pressure on

dermatologists and further optimize the diagnostic efficacy of AI

models.

There are three benefits to applying deep convolutional neural

networks to skin diseases. Firstly, data collection is easy because of

the high incidence rate of skin diseases. Secondly, for skin diseases,

the information is noisy and multimodal with a complicated

context, which is better handled by deep networks. Thirdly, most

cases of clinical skin disease diagnosis are conducted under natural

light, which shares a similar distribution with large-scale image

datasets like ImageNet, upon which we pretrained our image

model. Among the algorithmic applications in dermatology, AI

is mainly applied to computer vision algorithms. The academics

of Stanford University trained the model using a database with

129,450 clinical images involving 2,032 diseases. AI equally

matched 21 dermatologists in two tests, demonstrating that it

can accurately classify skin cancer (Esteva et al., 2017). Haenssle

et al. (2018) published a study assessing the ability to differentiate

benign and malignant dermatology, comparing the diagnostic

result of the deep learning model with 58 dermatologists, which

showed that deep learning algorithms have higher specificity

than dermatological specialists. The area under the curve (AUC)

of ROC was greater than that of the dermatological specialists
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(0.86 and 0.79, respectively, p < 0.01), with most specialists

underperforming compared to the deep learning model. However,

most of the clinical research focused on the identification of

benign and malignant dermatological disorders. The articles on

diagnosing other diseases are insufficient and do not entirely

cover the scenario of dermatological diagnosis. In 2020, Google

Health trained the deep learning model with 64,837 images from

16,114 cases and verified the model with 14,883 images from

3,756 cases to learn and identify 26 common skin diseases. It

compared the diagnostic results with 18 clinicians, including

dermatologists, primary care physicians, and nurse practitioners.

The diagnostic performance of the model was no worse than

that of dermatologists and higher than that of six primary care

physicians and six nurse practitioners. In Asia, there is a high

burden of skin disease (Urban et al., 2021), while the level of

AI model application in Asia is still lagging behind. This could

lead to three problems. Firstly, the incidence rate of malignant

melanoma in China is relatively low. According to the “2022 Cancer

Facts & Data,” the United States has over 5 million new cases

of skin cancer annually, with the melanoma incidence rate for

white non-Hispanic people being 30 times that of other ethnicities.

Nonetheless, much current academic research and challenges from

the ISIC database mainly focus on the identification of benign

and malignant skin tumors (Kleinberg et al., 2022), which means

they do not satisfy the requirements of the Chinese ethnic group.

Secondly, China and other countries experience a high incidence

of skin diseases. These pronounced regional and ethnic differences

underscore the importance of optimizing AI diagnostic models

for specific populations. Thirdly, research indicates that current

datasets used for AI diagnosis of skin diseases are noticeably

biased toward certain populations, lacking comprehensive coverage

across various skin conditions, like tones and roughness, among

different ethnicities. Of the 70 reviewed studies, only 14 described

the racial or ethnic information of the patients involved in the

datasets, and only seven articles addressed skin color data. The

majority of images are predominantly of individuals with light

skin tones. Such dataset biases may undermine the accuracy of AI

models when diagnosing skin diseases in Asian populations. Thus,

it is critical to develop an AI model with a wide enough range

of dermatological diseases for Asian populations (Health, 2020).

Xiangya-Derm, the Chinese dermatology database established in

2020, classified six categories of common diseases and achieved an

accuracy of 84.77% of the top 3, which is higher than the average

accuracy rate of dermatologists (78.15%) (Huang et al., 2021). Thus,

it is critical to develop an AI model with a wide enough range

of dermatological diseases and sufficiently accurate diagnoses to

be applicable to Asian populations (Health, 2020). Xiangya-Derm,

the Chinese dermatology database established in 2020, classified

six categories of common diseases and achieved an accuracy of

84.77% of the top 3, which is higher than the average rate of

dermatologists (78.15%) 28 (Huang et al., 2021). However, the

number of training and testing sets are 2,400 and 600, respectively

(the ratio of training size: testing size is 4:1). For example, adding

more research on typical cases of common outpatients on the

basis of six corresponding representative skin diseases will lay a

good foundation for the development of artificial intelligence skin

disease diagnosis model. The Global Burden of Disease divides skin

and subcutaneous tissue diseases into 12 categories (Roth et al.,

2018; Vos et al., 2020), with more than 3,000 skin diseases. The

medical data cannot be unified, the diagnosis and treatment data

dimension in the field of dermatology is significantly smaller than

in other medical fields, and it is obvious that AI models covering

more kinds of dermatology are more positive for clinical diagnosis.

Notably, the AI model covering more dermatological types is

more positive and significant for clinical diagnosis. Thus, we

selected 31 of the most common skin diseases and classified them

into epidermal inflammatory skin diseases, dermal inflammatory

skin diseases, and non-inflammatory skin diseases depending on

dermatopathology (Ackerman et al., 2005). In addition, diagnosis

based on information from images alone is not entirely reliable.

During the process of diagnosis, the doctor needs multimodal

information, especially medical records, for auxiliary diagnosis.

Although many papers showed that the performance of AI in

skin disease diagnosis is better than that of doctors, it is unfair to

compare this performance with that of doctors in a scenario solely

based on images, and it also does not reflect the real-world situation

in a clinic. Haggenmüller et al. (2021) showed that “there is a need

for truly prospective studies comparing the clinicians’ diagnoses

after real-life face-to-face patient examinations with the results of

AI-based classification models.” Additionally, the use of AI models

in dermatological diagnosis needs to show definitive efficacy in

clinical trials or in the real world, and interventions involving AI

need to undergo a rigorous prospective evaluation to demonstrate

their impact on health outcomes before they can move to the next

stage of clinical implementation (Rivera et al., 2020).

Based on the above, we are making an effort to find a solution.

To begin with, we conducted a multicenter clinical study from

September 2021 to December 2021, recruiting a total of 6,043

patients with dermatological diseases prospectively. To further

clarify and explore the accuracy of a DIET-AI diagnosis, six doctors

of different seniority were recruited for comparison, and they did

not participate in our prospective data collection. Both DIET-AI

and the dermatologist were enrolled in two diagnostic experiments:

the image group and the image with medical records group. By

evaluating the performance of doctors and DIET-AI, we found

that the latter was more robust and not inferior to the senior,

intermediate, and junior doctors we recruited. Next, we will further

validate the potential of DIET-AI to assist general practitioners and

junior dermatologists in diagnosing skin conditions in different

clinical scenarios.

2. Methods

To generate the predictive result, we build a joint classification

model based on Dual-channel Image and Extracted Text features

(DIET). The architecture consists of three separate components: (1)

the image encoder consists of a detection model implemented with

CenterNet and a classifier implemented with ResNet, generating

the confidence value of the current prediction; (2) an NER model

as the text encoder, and generate the one-hot vectors as our text

feature; (3) a logistic regression model combining the text feature

and image feature that gives the final prediction. The procedure is

as follows: to train the detection model, we first crop the image

of lesions from the original image in the original medical dataset

so that we are able to form a training set without the background
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FIGURE 1

Overview of the structure of our DIET-AI model. For each case, the clinical images of the lesion site and case text of the medical record (including

basic demographic information, lesion characteristics, medical history, etc.) were required as input data (left). The Deep learning system includes

three steps: preprocessing, feature extraction, and joint learning (middle). In the preprocessing part, the clinical images will locate the bounding box

of possible skin lesions through the U-Net network, and case text identifies text information through text structurization. In the feature extraction

process, the main output of the image layer through the ResNet network is the relative probability of the main skin disease of 22 categories, and the

main output of the text layer through the One-hot embedding is the relative probability of the relative probability of skin state of the 166 categories.

The models are then connected through joint learning to form a complete model. Thus, the disease probabilities of 31 categories are mainly output

as output data (right). In this way, the DIET-AI model completes the combination of skin disease clinical images and medical case text information to

provide a di�erential diagnosis for skin disease prediction.

noise. Then, we train the image encoder with ResNet, calibrated

with Platt Scaling, attaining the image feature. At the same time,

the NER model will extract the keywords with medical meaning

from the patient’s medical records. The text feature is a one-hot

vector that each element represent if the corresponding name entity

are mentioned. With the confidence vector as our image feature

and one-hot keyword vector as our text feature, we can then use

a linear classifier, to be more specific, logistic regression, to give the

prediction. The outline of this algorithm can be found in Figure 1.

We will discuss each component in the following part.

For the detection model, we inherit the CenterNet (Zhou

et al., 2019) architecture. As an anchor-free model, the object

is represented by the center of its bounding box in this model.

Afterward, the detector uses keypoint estimation to find center

points. The model is optimized by minimizing the following Loss

function:

Ldet = LK + λsizeLsize + λoff Loff

where the Ldet means the total loss function of the detection model.

LK is the focal loss, which estimates how much area the predicted

window overlapped with the ground truth, Lsize is a penalty

function for the size of the predicted window, Loff represents the

distance between the offset of the predicted window and the offset

of the ground truth window. λsize and λoff are control parameters.

In our work, we set λsize to be 0.1 and λoff to be 1. Thismodel locates

the bounding boxes of all possible lesions. In our work, it helps us

to crop the image of lesions from the original environment.

For the image classifier, we inherit the ResNet (He et al., 2016)

architecture to generate the initial probability distribution of the

diseases. In the previous neural network structures, as the network

depth increases, the accuracy soon achieves a degrades rapidly,

which is called degradation problem. The ResNet architecture views

the layers as learning residual functions with reference to the

layer inputs. In this structure, the shallow layers build shortcut

connections to higher layers and thus mitigate the degradation

problem. In one following work (Li et al., 2017), Resnet is also

demonstrated to have a smoother loss landscape than an MLP with

the same number of parameter layers. We use both the original

image and the cropped image as the input. By concatenating

the final layer of both images, the Softmax layer will generate

the model’s prediction. Thus, we use image-only data to train a

classification model. The loss function is a typical cross-entropy

loss:

L = −

N∑

i=1

M∑

j=1

[yij log ŷij]

whereN is the number of the cases andM is the number of diseases.

yi means a ground truth vector. For each element in that vector, if

the patient has the disease j, then yij = 1; otherwise, yij = 0. ŷi

means the prediction vector that the ResNet made, the element of
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TABLE 1 Characteristics of the prospective clinical data.

Characteristics Male,
n (%)

Female,
n (%)

Numbers
included
in study

Total

Patients 3,172

(52.49)

2,871

(47.51)

35.81 (26.63) 6,043

Images / / / 6,043

which is a number in the range of [0, 1]. This loss function means

that the closer the model’s prediction is to the ground truth, the less

loss there will be.

Given its high prediction performance, the ResNet model may

lead to bias when estimating the confidence. Guo et al. (2017) shows

that the output of ResNet does not always reflect its ground truth

correctness likelihood. As they suggested, to calibrate the model

output, the Platt scaling method can be applied after the neural

network inference. Platt scaling is a method that further trained

a logistic regression layer from the output of our ResNet model

in order to maximize the classification accuracy on a split dataset

for calibration. We split 1/10 of the original valid dataset as our

calibration dataset. Since the output of the logistic regressionmodel

is a probability by definition, this model is expected to be more

calibrated.

Bare image information may not be enough since symptoms

like itching or pain cannot be read directly from the image.

Therefore, to incorporate expert knowledge and patient

description, text mining on the EHR (Electronic Health Records)

can be a feasible way. To extract all the name entities from the

EHR, we use a Named Entity Recognition (NER) model, which is

called the FLAT (Flat-LAttice Transformer) (Li et al., 2020) model.

The filtered name entities then are reviewed by human to find the

potential symptoms that helpful for the diagnosis. By combining

these paired images and its symptoms, we further train a model

that significantly improve the model performance. Their code is

available on Github.1

Finally, by combining these paired image features and text

features, we further trained a logistic regression model for

prediction. This significantly improved the performance compared

to a model that used only images. Although we experimented with

other classifiers like single-layer neural networks, linear SVM, and

xgboost, none performed as well as the logistic regression model.

The logistic regression model can be seen as a one layer neural

network for binary classification, which shares a similar loss to the

ResNet:

L =

N∑

i=1

[yilogŷi + (1− yi)log(1− ŷi)]

whereN means the number of cases. yi is the ground truth number,

where this is 1 for the correct category and vice versa. ŷi is

the prediction probability. As the logistic regression is for binary

classification, we applied the model to the multi-classification

problem by the One-vs-All method. In this method, we split

the original multi-class classification into one binary classification

problem per class. The final output will be the probability of each

disease for the patient.

1 https://github.com/LeeSureman/Flat-Lattice-Transformer

It is worth noting that our image encoder and text encoder are

trained separately. The reason is that the triple data (disease-image-

text) are rare compared to image-only data or text-only data. By

separately training the image encoder (ResNet) and text encoder

(FLAT), and jointly training the final classifier, we successfully

mitigate the influence of the scarcity of the triple data.

3. Dataset

All image data were collected from patients at every health

center. After human labeling, most of these data were applied in

the training of the lesion detection model. We excluded images that

did not contain skin lesions or that were of low resolution. This

ensures the skin lesions on the images could be clearly identified. As

for text, text data for training the NER model is from open datasets

(He et al., 2020). Meanwhile, we selected the medical record and

diagnosis image data as our training set for our classification

model. The prospective dataset for testing consisted of triples

(image, text, and diagnosis) of patients recruited for the study

and images captured by mobile phones and texts collected by the

hospital HIS system. A total of 10,406 image and text case reports

were received. After applying inclusion and exclusion criteria for

recruitment and checking valid text case report information that

AI can recognize, 6,043 triples for 31 diseases were identified to

meet the standard. The reference criteria for the diagnosis of each

case are provided by dermatologists who have at least 15 years

of seniority in dermatology in clinical diagnosis. Each case would

be included in the dataset after image filtering and identified as

the gold standard by two dermatologists simultaneously. More

examples can be found in the Supplementary material.

4. Result

4.1. Overview of approach

Aiming at ethnic Chinese sources, for the first time, we collect

an Asian non-cancer dataset in the form of triplets (image, text,

and diagnosis). The dataset consists of over 200,000 images and

220,000 texts (He et al., 2020) from medical records, including

our top collaborative hospitals and other open resources. Apart

from the dataset, with a strict criterion on prospective data, we

carefully selected a validation dataset including 6,043 samples

from 31 diseases (Table 1, Figure 2). Using the datasets above,

we propose a joint classification model based on Dual-channel

Image and Extracted Text features (DIET). By using the UNet

detection model, we extracted local features of the lesion. Passing

the lesion and original image through aDual-channel ResNet-based

model, we captured the image features. Combining image and text

features from the medical records, we generated predictive results

by logistic regression. Our contributions are mainly as follows:

(1) we extracted a large dataset that includes both image and

text information from the medical record, which is the largest

dermatological dataset for Chinese ethnic group. (2) We build a

diagnosis system called DIET, which combines both image and text

features based on Chinese medical records. (3) For the first time, we

applied a Dual-channel image classification model on a non-cancer

dermatitis dataset and utilized the UNet model (Ronneberger et al.,

2015) on lesion detection.
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FIGURE 2

The distribution of prospective clinical cases. A dataset contained prospective clinical cases of skin diseases in China for a period of 3 months.

Dermatological types were collected and assessed by outpatient dermatologists and reviewed by a panel of dermatologists.

The dataset contained prospective clinical cases of skin diseases

in China for a period of 3 months. Dermatological types were

collected and assessed by outpatient dermatologists and reviewed

by a panel of dermatologists.

4.2. Diagnosis performance findings

Two senior dermatologists (with more than 15 years of

seniority), two intermediate dermatologists (with 5–10 years

of seniority) and two junior general practitioners participated

in our graphical diagnostic test and completed the whole

case diagnosis. The average accuracy of DIET-AI was 75.98%,

72.48% for senior doctors, 70.29% for intermediate doctors, and

35.83% for junior general practitioners. This performance was

statistically non-inferior to the accuracy of DIET-AI compared

to that of the intermediate doctors (p = 0.61), indicating

that we accept the original hypothesis that DIET-AI is 5%

more accurate than intermediate doctors. The receiver operating

characteristic curve (ROC), the sensitivity/specificity of DIET-AI

and three groups of dermatologists, are presented in Figure 3 and

Supplementary Table 1. It can be seen that DIET-AI’s performance

in the image is 13.08% higher than that of the junior doctor group

and 5.69% higher than that of the intermediate doctor group, which

is similar to the senior doctor group.

4.3. Subgroup analysis

We compared the error distribution of doctors and DIET-AI

for different diseases. The confusion matrices are as in Figures 4, 5.

We further calculated the diagnostic performance and consistency

of DIET-AI and doctors for different diseases (Table 2). The

DIET-AI showed high diagnostic capacity for inflammatory skin

diseases, and its diagnostic performance converged with that

of senior doctors. Besides, the performance of DIET-AI in the

diagnosis of non-inflammatory skin diseases is also noteworthy.

For Chloasma, where DIET-AI achieved a very high accuracy

(93.71%), the diagnostic performance of senior doctor was not

ideal (64.58 and 47.11%). Finally, we compared the diagnostic

differences between DIET-AI and doctors on images and images

with medical records. The diagnostic accuracy of DIET-AI was

45.46% for the image model and 75.98% for an image with medical

records compared to 57.08% for an image and 72.48% for an image

with medical records for senior doctors and 54.88% for an image

and 70.29% for an image with medical records for intermediate

doctors. The diagnostic accuracy of an image for junior doctors

was 32.48% and an image with medical records was 35.83%. From

the Appendix, we found that DIET-AI is subject to the greatest

increase in accuracy for medical records, such as Lupus (increases

by 49.43%), verruca plana (33.33%), insect dermatitis (28.32%),

and Shingles (32.93%), while some diseases have slight fluctuations,

for instance urticaria, psoriasis, and vitiligo.

* Compared with reference standard2

Medical records helped to increase the accuracy of intermediate

and senior doctors by an average of 15%. Based on the comparison

of the performance of a single disease between images and images

with medical records by two senior doctors, the addition of medical

records resulted in a significant improvement in accuracy, with

the highest improvement reaching 35.6% (tinea manus). Two

senior doctors had a concurrent increase in the following diseases:

lupus by 32.94 and 34.78%, respectively; Tinea capitis by 22.77

and 23.57%, respectively; Tinea corporis by 30.00 and 20.33%,

respectively. However, some diseases showed a decrease in accuracy

after adding medical records, as was the case for tinea pedis

(9.29% decrease). Notably, for plantar warts, we observe that for

a senior doctor, adding medical records leads to a drastic decrease

in performance, the potential cause of which might be a lack of

proficiency in certain diseases.

2 The reference criteria for the diagnosis of each case are provided by

dermatologists who have at least 15 years of seniority in dermatology in

clinical diagnosis.
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FIGURE 3

(A) ROC curve for DIET-AI, junior dermatologists, intermediate dermatologists, and senior dermatologists. (B) Skin diseases classification

performance of DIET-AI and junior dermatologists, intermediate dermatologists, and senior dermatologists. The accuracy of the DIET-AI and

dermatologists on clinical image + case text for all cases and 31 skin diseases on the dataset (n = 6,043), where the accuracies of DIET-AI and

dermatologists are represented by histogram and point respectively.
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FIGURE 4

The error distribution of DIET-AI (left) and medical records (right).

These five diseases were slightly or significantly increased in

the intermediate doctors. For tinea manus, the two intermediate

doctors increased by 10.16 and 14.33%, respectively; Tinea capitis

by 41.32 and 14.84%; Tinea pedis by 5.6 and 8.13%; Lupus

erythematosus by 51. 86 and 22.77%. For plantar warts, two

intermediate doctors also saw a slight increase of 7.45 and 6.66%,

respectively.

It is worth noting that at least one doctor for each disease

showed an increase in accuracy with the addition of the medical

records. Two groups of junior doctors increased by 48.39 and

61.29%, respectively, while two groups of intermediate doctors

increased by 87.10 and 90.32%, and two groups of senior doctors

increased by 93.55 and 96.77%. However, folliculitis was an

exception. The addition of medical records decreased the accuracy

to varying degrees, while DIET-AI increased by 40%. Based on

interrogation information, the problems are excessively broad,

and the typical diagnostic features of folliculitis are disturbed.

Diagnosing based on images alone would yield some adverse

information.

5. Discussion

We developed an artificial intelligence diagnostic tool for

dermatological diseases, DIET-AI: a deep learning diagnostic

model that is based on a dataset including more than 200,000 skin

images and 220,000 medical records (He et al., 2020). Through

relatively rigorous experiments, the model was validated on 31

common skin diseases, including the most common skin diseases.

Though the selected diseases do not include skin tumors and

herpetic skin diseases, which are frequently found in previous

works, the prevalence of these diseases is low in the Chinese

demographic and not enough data was collected in the prospective

dataset’s validation set. These two groups of diseases are critical

in the clinical diagnostic process and will be added to the model

in the future. Our experiments show that DIET-AI’s performance

on common skin diseases is comparable to that of senior doctors.

According to our hypothesis testing results, DIET-AI outperformed

intermediate doctors by 5% and was comparable to the senior

doctors. As for image-only case, based on the current data, the

DIET-AI image performance is higher than the performance of

junior doctors, and slightly lower than the intermediate and senior

doctors, partly due to DIET-AI’s interpretation errors caused by the

environment and image quality. We will further reduce the noise

from the image context, continue to collect high-quality data, wash

low-quality data, improve the robustness of the image model, and

build a large library of high-quality dermatology images. Thus, a

more effective image model will also improve the total performance

of DIET-AI.

Specifically for fine-grained diseases, DIET-AI is better at

dermal inflammatory skin diseases: 9 out of 11 diseases saw

a performance of about 80%. For folliculitis, which has an

unsatisfactory performance, the doctors also do not have an

ideal performance. Meanwhile, DIET-AI has higher diagnostic

performance than physicians in this group of diseases, and the

diagnostic performance of DIET-AI converges with that of senior

doctors. Our model does not perform ideally on epidermal

inflammatory skin diseases: the performance of eczema, atopic

dermatitis, contact dermatitis, and neurodermatitis are only at

about 60% with medical records, while for seborrheic dermatitis

and verruca plana, the accuracy cannot reach 50%. This finding is

similar to that of physicians and clinical perceptions, and further

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2023.1213620
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Li et al. 10.3389/frai.2023.1213620

FIGURE 5

(A) The error distribution of senior doctors (the left image) and medical records (the right image). (B) The error distribution of intermediate doctors

(the left image) and medical records (the right image). (C) The error distribution of junior doctors (the left image) and medical records (the right

image).
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TABLE 2 The Kappa coe�cient compared with reference standard of 6 dermatologists and the DIET-AI.

Dermatosis category Dermatologists DIET-AI

Junior Intermediate Senior

Inflammatory skin diseases with epidermal changes

Kappa coefficient∗ 0.201 0.629 0.664 0.681

p-value† <0.001 <0.001 <0.001 <0.001

Inflammatory skin diseases with dermal changes

Kappa coefficient∗ 0.443 0.731 0.739 0.792

p-value† <0.001 <0.001 <0.001 <0.001

Non-inflammatory skin diseases

Kappa coefficient∗ 0.283 0.666 0.698 0.743

p-value† <0.001 <0.001 <0.001 <0.001

Total

Kappa coefficient∗ 0.332 0.692 0.715 0.752

p-value† <0.001 <0.001 <0.001 <0.001

∗Compared with reference standard. †Calculated with either the X2 test or Fisher’s exact test, as appropriate.

clarification of diagnostic criteria for atopic dermatitis, eczema,

neurodermatitis, and contact dermatitis is needed in the future.

The image diagnosis is effective for non-inflammatory skin diseases

in general, for vitiligo for instance, the difference between the

DIET- AI diagram and the textual diagnosis was only 2.35%, and

it achieved an image performance of 90%. For inflammatory skin

diseases, DIET-AI and doctors tend to combine image and text to

give a diagnosis, such as acne rosacea and lupus, which need more

medical records, and it is more suitable to try an AI diagnostic

model with image and text based on our prospective research.

Intuitively, the performance of DIET-AI should be enhanced based

on the medical records, which provide more information, leading

to better model generalization. This joint informationmakes DIET-

AI robust under diverse scenarios. From our experiments, we

find that intermediate doctors rely more on medical records than

senior doctors, which is also in line with our clinical research

findings. Therefore, it is necessary for DIET-AI to provide text and

for doctors to not rely on the image to make direct judgements.

Our research has further clarified the importance of consultation

information. However, to compare the diagnostic performance

of doctors and DIET-AI, this information needs to be used in

a more clinical setting. The current consultation sessions take a

long time on average to collect sufficient diagnostic consultation

information and are not yet able to assist dermatologists well in

clinical scenarios. In the future, we will independently develop an

AI consultation system that can be used in scenarios such as when

teaching primary dermatologists to standardize consultations, for

pre-consultation of e-consulting and pre-visits, and integrating case

information to help disease management and clinical research. This

will also save doctors’ consultation time and allow them to spend

more time on patient treatment and humanistic care, which cannot

be replaced by artificial intelligence (Stead, 2018).

Finally, in the empirical study, DIET-AI shows its potential

in real-world clinical applications due to its effectiveness under

diverse scenarios. We prospectively conducted the collection of

data from a wide variety of regions, medical centers, and even

mobile devices. During this collection, the performance of DIET-

AI remains relatively stable, which demonstrated the robustness

of our method. The comprehensive diagnostic performance of

DIET-AI on 31 common diseases was similar to the level of

senior dermatologists, comparable to intermediate dermatologists,

and significantly better than primary general practitioners. In

our prospective study, we found that treatment resources were

uneven, indicating the diagnostic gap is large between doctors from

top hospitals and primary hospitals but small among doctors of

different types of seniority from the same tier of hospitals. Our

analysis has not fully captured this imbalance among treatment

resources. Meanwhile, apart from images and text, other hardware

in hospitals might also improve the diagnostic performance

of doctors, which we will introduce to our future work. This

research provides ideas for future exploration of scenarios in

which the performance of AI can be assessed more objectively

and realistically. With the development of information extraction

technology, we are bound to get more and higher-modal data that

will not only provide personal diagnosis and assist coaching AI but

also better match the real clinical scenarios of doctors, thus better

comparing the performance of doctors and AI and clarifying the

scenarios in which AI can be used.
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