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Counterfactual learning in
enhancing resilience in
autonomous agent systems

Dilini Samarasinghe*

School of Systems and Computing, University of New South Wales, Canberra, ACT, Australia

Resilience in autonomous agent systems is about having the capacity to anticipate,

respond to, adapt to, and recover from adverse and dynamic conditions in

complex environments. It is associated with the intelligence possessed by the

agents to preserve the functionality or to minimize the impact on functionality

through a transformation, reconfiguration, or expansion performed across the

system. Enhancing the resilience of systems could pave way toward higher

autonomy allowing them to tackle intricate dynamic problems. The state-of-the-

art systems have mostly focussed on improving the redundancy of the system,

adopting decentralized control architectures, and utilizing distributed sensing

capabilities. While machine learning approaches for e�cient distribution and

allocation of skills and tasks have enhanced the potential of these systems, they

are still limited when presented with dynamic environments. To move beyond

the current limitations, this paper advocates incorporating counterfactual learning

models for agents to enable them with the ability to predict possible future

conditions and adjust their behavior. Counterfactual learning is a topic that has

recently been gaining attention as a model-agnostic and post-hoc technique to

improve explainability in machine learning models. Using counterfactual causality

can also help gain insights into unforeseen circumstances and make inferences

about the probability of desired outcomes. We propose that this can be used in

agent systems as a means to guide and prepare them to cope with unanticipated

environmental conditions. This supplementary support for adaptation can enable

the design of more intelligent and complex autonomous agent systems to address

the multifaceted characteristics of real-world problem domains.

KEYWORDS

autonomous agent systems, multi-agent system (MAS), resilience, counterfactual
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1. Introduction

In the fast-paced society of today, the application demands for collective intelligence
are increasing. Applications of autonomous systems are often found in fields that require
distributed sensing and action. These include both engineering-related disciplines that are
interested in autonomous self-organizing artifacts and science-related disciplines that are
interested in understanding the behaviors and evolution of the natural world. The benefits
in safety, productivity, and in saving money and time has induced intelligent systems use
to be more widespread across a range of domains (Singh et al., 2013). Research related to
autonomous aerial (Kulkarni et al., 2022), aquatic (Bu et al., 2022), and ground (Chakraborty
et al., 2022) agent systems has demonstrated interest in domains such as search and
rescue (Huamanchahua et al., 2022), exploration (Azpúrua et al., 2023), planning (Raja
and Pugazhenthi, 2012), and surveillance (Filipović et al., 2023). In the sense of industrial
applications, autonomous intelligent systems are sought after in fields such as healthcare
(Kyrarini et al., 2021), manufacturing (Shneier and Bostelman, 2015), retail (Bogue, 2019),
military (Voth, 2004), and mining (Nanadrekar et al., 2022).
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Advances in these domains cannot be achieved without
automation that can facilitate intelligent capabilities primarily
related to learning, adaptation, and evolution. Learning in an agent
system can be viewed from two perspectives as: passive learning
and active learning (Taylor et al., 2021). When prior-knowledge is
abundant and the environment is not dynamic, passive learning is
useful to construct the parametric representations of relationships
within the model. However, intelligent systems that can make
decisions to best realize goals in dynamic environments require
individual agents that follow an active learning policy where they
can understand and exploit the interactions they encounter. Active
learning sees a wide range of applications particularly in terms
of prioritized decision-making; object recognition, detection, and
classification; and inspection related tasks. It is also not sufficient
for agent systems to be functionally adequate to address the
complex problems in the current application domains. They need
to be adaptive, thus, have the ability to self organize (Bernon et al.,
2005). The components or the individual agents in the system
should be endorsed with the capability to rearrange their behaviors
and relations with each other locally without the requirement of
manual intervention of a programmer. Adaptive characteristics in
an agent system are specifically appreciated for requirements such
as maintaining intrinsic safety and learning and accomplishing new
tasks. The capacity to evolve its characteristics and functionality in
an agent system is closely related to the requirements of learning
and adaptation as well. While autonomous agent systems have
progressed a long way in terms of accuracy and speed of completing
monotonous tasks compared to their human counterparts, they
have not yet reached the level of cognition possessed by humans
that could ideally lead to modifications and advancements in the
system’s design based on an evolutionary process. Autonomous
evolution in such systems would facilitate long term existence of
agent ecosystems that can survive in diverse environmental niches
and specialize in different tasks without direct oversight from
human designers (Lan et al., 2021).

These expectations of agent systems reveal that there exists a
requirement for them to have the capacity to anticipate, respond
to, adapt to, and recover from adverse and dynamic conditions
in complex environments. This can be attributed to the resilience
of these systems which facilitates incorporating agile policies that
allow adaptation to newly perceived conditions and overcome
disturbances that were not modeled. In a resilient system, the
agents should possess the intelligence to apply a transformation,
reconfiguration, or an expansion across the system to preserve their
functionality, change their functionality, or to minimize the impact
on functionality (Prorok et al., 2021).

The early work related to adapting and overcoming unexpected
encounters within agent systems have primarily focused on
parametric uncertainty (Luders et al., 2010) and fault tolerance
(Parker, 1998). Although these adaptive control methods can alter
process dynamics to suit the conditions faced, they are restricted by
design assumptions and conditions (Barber et al., 2000; Åström and
Wittenmark, 2013). While they accommodate uncertainty and risk,
thesemodels aremostly concernedwith the sensitivity of the system
output to parametric changes and bounded disturbances that are
within expected design conditions. In contrast, resilient agent
systems are more relaxed on such assumptions and investigate
the capability of adapting to and withstanding disturbances and

adverse conditions which have not been modeled (Prorok et al.,
2021).

In this perspective, the dynamic and adverse conditions
and environmental states should be addressed through agile
approaches that can facilitate system-wide transformations. This
paper emphasizes the need for resilient agent systems to anticipate
unmodeled disturbances and leverage emerging behaviors to
retain desired performance levels. Resilience can be discussed in
two contexts under morphological and behavioral aspects. The
focus here is on achieving resilience through improvements to
the behavioral aspects of the agents rather than improving the
morphological aspects such as self-reconfigurability of hardware
components.

Toward this end, Section 2 identifies the state-of-the-art in
resilient autonomous agent systems and approaches to improve
resilience which are limited in their capacity to anticipate
adverse conditions. Means of addressing this limitation through
counterfactual learning is presented in Section 3. This concept
is gaining attention in the research community as a mode of
explaining and making inferences on past, present, and future
relations within AI systems. In this paper, the application of
counterfactual learning is extended toward maintaining resilience
of agent systems. Ways of using counterfactual causality to help
gain insights into unforeseen circumstances and make inferences
about the probability of an outcome are presented in Section 3.
This section identifies counterfactual learning as an approach to
guide and prepare them to cope with unanticipated environmental
conditions. Finally, Section 5 concludes the paper with a potential
way forward in implementing the proposed approach and a
discussion of the current perspectives and limitations of the
approach.

2. Resilience in autonomous agent
systems

As discussed in Section 1, collective intelligence is a highly
demanding attribute for agent systems, but, is equally challenging
to automate. Specifically, automating the strategic planning process
for identifying conditions for purposeful decision making requires
the agents to follow an active and adaptive learning architecture
(Samarasinghe et al., 2022a) It is associated with constantly
enhancing distributed intelligence of agents that is focussed on
achieving better results as a group than any individual agent
through individual enrichment and mutual recognition (Ha and
Tang, 2022). Decentralization, diversity, and independence are all
attributes that impact the potential of an agent system that possesses
collective intelligence. As such, resilience is an invariable feature
that should be enhanced with regard to maintaining autonomy and
collective intelligence of systems. Resilience is not simply about
having adaptive controls; rather, it refers to having the capacity to
anticipate and respond to dynamic conditions. Therefore, the focus
on resilience as discussed in this paper is a timely requirement to
enhance the potential of autonomous agent systems.

Four primary attributes of resilience are identified here that
characterize the ability to retain and/or adjust the functioning
of the system in agent systems, namely: robustness; flexibility;
scalability; and modularity. Robustness is the ability of a system
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either to preserve a certain property (such as the stability or
performance) or to continue operations amid the presence of
partial or individual failures, uncertainties, and disturbances to the
environment (Gazi and Fidan, 2007). It does not cover the ability
to anticipate and respond to adverse impacts. For agent systems
with time delay, robustness has generally been implemented
using approaches such as continuous time consensus protocols
(Olfati-Saber and Murray, 2004) and other scenarios concerned
with disturbances and model uncertainties have also looked
at introducing foraging controllers to agents and sliding-mode
control technique which reduces the motion of a system to a lower
dimensional space (Gazi, 2005). Flexibility refers to the capacity
to adapt to changing environments and requirements (Bayindir
and Şahin, 2007). This should not be confused with robustness,
as flexibility relates to identifying and shifting to suitable new
behaviors to solve a different problem that was a consequence
of the changed circumstances. Proactive agent control is gaining
attention as an approach used to facilitate flexibility in an agent
system where multiple agents, and potentially humans, collaborate
to operate the tasks based on each others’ capabilities, resources,
and goals (Li et al., 2023). This enables flexible management of
tasks in dynamic and uncertain circumstances. Agile scheduling
using negotiation mechanisms (Rabelo et al., 1999) is another
common approach used to improve the integration of information,
coordination, and communication in agent systems targeting
flexibility. The potential of the agent system to operate under a
range of agent group sizes is known as scalability (Şahin, 2005).
Decentralized and self-organized systems using approaches such as
component distribution and replication (Deters, 2001), are capable
of supporting the functioning of a group of agents irrespective
of unexpected adversities such as malfunctioning agents, with a
relatively low impact on performance. Lastly, modularity refers to
the ability to use individual components, to operate on multiple
and diverse functions and configurations to better pursue dynamic
and complex environments (Beni, 2005). A modularized system
can use individual agents interchangeably within the system
for different tasks more easily than a single centralized system.
Improving capability relations (Nunes, 2014) including association,
composition, and generalization within agents is a common
approach that is utilized in facilitating modularity of agent systems.
Ideally, a resilient autonomous agent system should be able to
adopt each of these respective attributes in response to the diverse
environments and interactions it encounters.

The state-of-the-art in achieving resilience in agent systems
have mostly focussed on decentralized control architectures
(Ghedini et al., 2018; Sartoretti et al., 2019; Zhang et al.,
2020; Blumenkamp et al., 2022). As discussed by Iocchi et al.
(2001), a decentralized architecture could be distinguished from
a centralized architecture based on how the decision-making
process is designed. In a centralized system, there exists a central
governing unit, an entity, or an agent that is in-charge of organizing
and allocating tasks to the rest of the agents in the system.
There are also weak centralized architectures where the central
unit or the leader is dynamically assigned (Swaminathan et al.,
2015) or the trajectory of the leader is dynamically decided
(Rezaee et al., 2021) based on the environmental changes or
interruptions and failures. In contrast, a decentralized control
architecture (also referred to as distributed control architectures)

has no central authority or a leader and the decision-making
process is distributed among all agents in the system. These
architectures have proven to be more scalable compared to
centralized architectures as the computational burden of having
a central controlling unit is mitigated increasing adaptivity in
dynamic environments (Ismail and Sariff, 2018). However, they
are not without limitations. Efficient task distribution is still
challenging in adverse circumstances as the impacts cannot be
anticipated beforehand (Steele and Thomas, 2007). Decentralized
systems can reorganize the task allocation strategy but real-time
adaptation can introduce unforeseen issues due to conflicts in
capacity and skills associated with individual agents in the system.

Improving redundancy is another approach that has been used
to achieve resilience in agent systems (Hazon and Kaminka, 2005).
An agent system can be redundant in terms of the number of
agents that can address a functionality or in terms of the number
of approaches that a single task can be executed by the system.
A failure or malfunction of a single agent or a functionality
can be addressed by another agent or a different strategy in a
redundant system. Therefore, it has been proven that redundancy
can be leveraged to achieve parallelization in task execution
while withstanding individual failures (Hsieh and Mather, 2013).
However, coordinating and resolving the redundancies in a
system is still a challenge and requires the exploitation of
different managing criteria (Krizmancic et al., 2020). Further,
these systems can often only vary within a defined spectrum of
functions/parameters/sensory attributes and are not equipped with
the decision-making capacity to identify new strategies or solutions
to problems in real-time under dynamic circumstances.

Facilitating agent systems with distributed sensing capabilities
such that multiple agents could sense the environment, can increase
the signal-to-noise ratio of the system. This can help detect
changes in the environment and identify and track anomalies and
adversarial impacts on the system while collaboratively mapping
dynamic environments (Bossens et al., 2022). Similar measures also
include approaches such as distributed diffusion where information
collected from different sensors or input sources of multiple agents
is incorporated and the aggregation is used in decision-making
of each agent in the system (Li et al., 2020). While distributed
sensing facilitates robustness and increased relevancy of sensory
measurements, the decision-making process after collecting this
information has to be separately addressed.

The investigation of the said state-of-the-art approaches for
achieving resilience demonstrates that these models suffer from
limitations associated with anticipating dynamic and adverse
environmental conditions. While they facilitate adaptive controls
across a bounded range of potential dynamics, they lack the
capacity to analyse an existing situation and make insights into
unforeseen circumstances as a means of making predictions or
preparations to adapt to these environments.

3. Counterfactual learning as a means
to interpret machine learning models

In this section, the concept of counterfactuals is introduced as
discussed within the literature on causal inference and how it has
evolved as counterfactual learning which is an emerging technique
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used in explainable AI to improve the interpretability of machine
learning models.

Counterfactuals have long been used in inferring causal
relations (Lewis, 1974). They enable explaining past events and
outcomes, and also predict future ones through links between
causes and effects. They are essentially what-if questions; or
conditional assertions where the antecedent is false, and the
consequent describes what would have happened if it was true.
Counterfactuals take a similar form to the following: “You were
denied a loan because your annual income was $30,000. If your
income had been $45,000, you would have been offered a loan”
(Wachter et al., 2017). In this example, the statement of decision
states the current representation of the world. The counterfactual
that follows, describes what needs to change for the representation
of the world to be favorable. As such, counterfactuals are, ideally,
inferences that are made based on alternative possibilities.

Research in AI and machine learning has started recognizing
the knowledge of counterfactuals as a useful attribute in multiple
fields such as computer vision, natural language processing
(NLP), and recommender systems. It is used as a means to
supplement incomplete data and partial feedback received from
learning models to improve performance through estimations and
inferences. In computer vision models, counterfactual analysis has
been used to clarify the existences of biases. For example, Joo and
Kärkkäinen (2020) uses a model that generates counterfactural
images across the dimensions of race and gender to evaluate
the fairness of image classification techniques. Counterfactual
image generation methods are also used in open set recognition
(Neal et al., 2018) to train classifiers to detect unknown classes
which are close to the training examples yet do not belong to
any training category. Similar to computer vision models, NLP
models have also utilized counterfactuals to mitigate annotation
biases in datasets through causal inference. Tian et al. (2022)
propose a counterfactual reasoning framework to mitigate the
biases formulated in tasks of natural language inference, and
Zhu et al. (2020) use counterfactual reasoning for open-domain
dialogue generation where outcomes of alternatives for trained
policies are used in the learning framework to expand the search
space for higher performance levels. In recommender systems,
counterfactual estimators enable investigating how a particular
recommendation policy would have performed if it had been used
instead of the policy that was used (Saito and Joachims, 2021).

Among these, the most prominent applications of
counterfactuals in AI are perhaps seen in explainable AI
(XAI) where it is commonly used as a model-agnostic and
post-hoc technique to improve explainability in machine learning
models. XAI is conceptualized in three phases of explanation
which explore the aspects of: explanation generation, explanation
communication, and explanation reception (Neerincx et al., 2018).
In this regard, XAI is discussed across perceptual and cognitive
categories. Perceptual XAI is concerned with providing perceptual
foundations of agent behavior and the AI architecture used;
whereas cognitive XAI is associated with describing why a certain
action was chosen by relating them to the agents’ beliefs and goals
(Neerincx et al., 2018). Existing XAI approaches include the use
of: saliency maps that describe the important aspects of inputs to
a system (Adebayo et al., 2018); explainable BDI (belief-desire-
intention) agent architecture that provides reasoning for changes

in behavior (Harbers et al., 2012); and fuzzy-cognitive maps that
can simulate the behavior of systems under different conditions
to explain potential outcomes and decision making scenarios
(Apostolopoulos and Groumpos, 2023), among others. Causal
inferences generated through counterfactual learning could be
used in two aspects: local and non-local in generating XAI models
for agent systems in contrast to the other existing approaches.
Local counterfactual learning focuses on what features, attributes,
or characteristics would need to be changed to achieve a certain
outcome (Chou et al., 2022). Further, non-local counterfactuals can
be used to determine absence causations which identify the lacking,
failure, or non-occurrence of attributes or characteristics that lead
to certain outcomes of the system (Dowe, 2009). The dynamic
and ad-hoc explanations of these models and the understanding
of their decision-making process can be utilized to improve the
accuracy of the models as well as in increasing the trust of human
users in these systems (Byrne, 2019).

4. Proposed counterfactual
learning-based approach for resilience
in autonomous agent systems

The existing AI applications of counterfactual learning
discussed in Section 3 have identified the means of using the causal
relations generated by counterfactuals to further analyse and gain
insights into these applications. Based on this understanding, this
paper proposes that the exploitation of the causal inferences that
can be extracted through counterfactuals is useful in enhancing
the resilience of autonomous agent systems in terms of analysing
the present experiences to foresee and prepare for dynamic
environmental conditions that are beyond the boundaries of
experienced outcomes.

Figure 1 elaborates how the knowledge of counterfactuals
can be integrated in an agent system. In a typical agent-based
environment, the agent(s) are endowed with pre-knowledge on
the domain, a set of actions, and goals. As each agent senses and
interacts with the other agents and/or the environment, they build
perceptions which result in actions that affect the neighboring
environment (Samarasinghe et al., 2022b). The said perceptions can
be used in generating the counterfactual knowledge in an active
learning environment to influence and improve the actions and
thus the performance of the system. Three primary avenues on
how counterfactuals can facilitate resilience in agent systems are
focussed in this aspect. In this regard, this paper identifies that
counterfactuals can be used to:

• Generate new knowledge for agents based on their current
awareness of the system.

• Describe and assess the decision-making process of agents in
the system.

• Construct explanations of cause-effect or reason-action
relationships between events and agents in the system to
improve the implementation architecture.

As the first approach, counterfactuals can be used to generate
new knowledge based on the current awareness on a system, its
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operations, and the environment it is operating in. They have
been used in multiple applications for agent systems to supplement
incomplete and/or limited data. Counterfactuals can be used to
analyse the current situation and envisage the different outcomes by
changing the antecedents to add to the knowledge. Counterfactual
predictions are used by Jin et al. (2022) to guide the exploration
of a reinforcement learner for robotic manipulation tasks. The
active counterfactual predictions generated add to the existing
body of knowledge about the task for the learning model to
improve its performance. Mannion et al. (2016) propose a novel
reward shaping technique to improve multi-agent reinforcement
learning (MARL) for autonomous control of agents in complex
environments. The method they discuss: Estimated Counterfactual
as Potential, is capable of generating new potential functions
to shape the behaviors of the agents, using approximations of
knowledge on different evaluations using counterfactuals. The
estimated potentials of the agents can help these agents outperform
the agents learning only with system evaluation functions. Further,
counterfactual multi-agent policy gradients are also used with
similar intentions to estimate new knowledge to optimize agent
policies learned with machine learning models (Foerster et al.,
2018). However, the expected new knowledge could be unique and
belong to a different dimension from the current knowledge due
to changed environmental conditions and interactions. Therefore,
it should be noted that approaches such as logical autoregression
and extrapolation which impose strong assumptions on the agents’
rationality and the dynamics of the environment may not always
be accurate. Methods such as Robust Multi-Agent Counterfactual
Prediction (RMAC; Peysakhovich et al., 2019) can be utilized to
analyse the sensitivity of counterfactual predictions and derived
knowledge to violation of such assumptions.

Secondly, counterfactuals could be used as a means to
describe or assess how the outcome of a certain decision-
making process could have been better. Counterfactual regret
minimization (CFR) is a widely adopted algorithm in solving large
imperfect-information games (Brown et al., 2019). These games
typically simulate real world domains including cybersecurity
interactions, auctions, and negotiations which consist of partial
information-based strategic interactions between multiple agents.
CFR algorithms can train agents to solve problems under such
conditions through self-play. The current strategy of each agent
is improved by comparing it to others through calculating a
counterfactual regret for not taking an action at a particular state.
This regret represents a quantitative approximation of how good
the outcome would have been had it picked a certain action based
on the information it gains by observing the system. Counterfactual
reasoning is also used in interactive environments for motion
planning through inferences about other interacting agents that
could have led to improved results/performance. Inference about
potential motion of other agents derived through counterfactuals is
used by Bordallo et al. (2015) to understand how the currentmotion
plan could be improved in a real-time learning setting. Efficient
iterative planning is achieved for a multi-robot navigation scenario
through the predictions made on how good the outcome could be,
by observing the actions of other agents.

Finally, the construction of explanations through the
identification of cause-effect or reason-action relationships
between events can further enhance the resilience of agent systems

by incorporating the insights thus gained into the implementation
architecture. They can enable users and designers of such systems
to make inferences such as Modus Tollens (of the form: If P,

then Q. Not Q. Therefore, not P) through simulation of multiple
possibilities of interactions and events which is otherwise strenuous
within the limits of human cognitive capacity. Mueller et al. (2021)
propose a visual interactive model for robot skill learning from
visual demonstrations. An interactive augmented reality-based
approach is used to iteratively program robot skills through the
demonstrations. They utilize Robot Behavior Counterfactuals
(RBCs) to provide what-if visualizations to explain the effects
that alternatives and constraints have on adapting skills to altered
environments. The behavior verification indicators provided by the
counterfactuals support the users in gaining a better understanding
of the model and when and where it can be applied and succeed
or fail to further improve the robot training models. Similarly,
counterfactual explanations have also been used in envisioning the
potential movement paths in autonomous robotic control while
coping with the disturbances and uncertainties in the environment.
In Smith and Ramamoorthy (2020), a generative model to produce
counterfactual disturbances is proposed as a means to characterize
the potential of the robot controls. They are used to explain the
perception-action relations which in turn, can be used to modify
the configurations to achieve an expected outcome.

5. Conclusion

Intelligent agent systems demand the need for automation that
can facilitate active learning, adaptation, and evolution in order
to be able to sustain in complex and dynamic environmental
niches without direct human supervision. Therefore, such systems
should be resilient, i.e., should have the capacity to anticipate,
respond to, adapt to, and recover from adverse and dynamic
conditions in complex environments. In particular, resilient agent
systems should be able to generate agile policies that can predict
and overcome adverse conditions that are beyond the modeled
boundaries (Prorok et al., 2021). As such, a resilient system should
possess the four attributes: robustness, flexibility, scalability, and
modularity. As discussed in Section 2, each of these attributes
uniquely characterize different aspects of resilience. Robustness
is the ability to preserve the functionality of the system in
partial failures, whereas flexibility is associated with the ability
to adapt to suitable new behaviors when the environment and
circumstances change. Scalability relates to the potential of the
agents to operate with different agent group sizes facilitating
failed or newly added agents in the system. Modularity covers
the ability to use individual components/agents of the system
to operate different functionalities. A resilient agent system
should encompass all these aspects to be successful in interacting
with dynamic environments. In this perspective, this paper
proposes the use of counterfactual knowledge as a means to
facilitate resilience in agent systems with its ability to make
inferences about existing causal relations and predictions on future
impacts.

The avenues discussed in Section 3 have provided evidence
that they can enhance the boundaries of the current agent learning
models that are limited in their capacity to anticipate and react
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FIGURE 1

Incorporating counterfactual knowledge in an agent system within an active learning environment. Each agent is endowed with prior domain

knowledge, actions, and goals which are used in building the perception of the current world. The counterfactual knowledge derived from the

current perceptions can influence the actions and thus the performance of the system.

to unmodeled unforeseen scenarios. In order to cater to all
four attributes of resilience, an ensemble of all three avenues
of counterfactuals: generating new knowledge to understand
the potential of the agent system; assessing how the outcomes
of decision-making processes could improve, and explaining
the cause-effect relationships between the events; is suggested
as the way forward. The implementation of the model could
take an iterative evolutionary approach where the counterfactual
knowledge generated from the three avenues influence the actions
of the agent systemwhich in turn feed the evolutionarymodel as the
current perceptions to generate new counterfactual knowledge in
the subsequent iteration. The generation of new knowledge based
on the current awareness can be made possible with the use of
an Estimate Potential approach for counterfactuals as discussed
in Section 4. The explanations of the cause-effect relationships
of the current system can be derived from these counterfactuals
that can enhance the understanding of the decision-making
process of the agents. With the explanations, the new potential
functions generated can be used to shape the agent behaviors
in conjunction with the existing knowledge. An RMAC method
can be utilized to analyse the sensitivity of the counterfactual
knowledge to the dynamics of the environment, which can
inform the decision to of selecting the most robust actions.
CFR approach discussed in Section 4 can be used as a mean
to assess whether and how the current decision process of the
system could be improved based on comparisons against the
derived counterfactuals. The combined knowledge derived from
the union of these counterfactual-based approaches can then be
used to identify the most suitable actions for the agent system.
The variations in the environment and consequences of the actions
can then be reiterated as perceptions to feed the counterfactual
knowledge module to generate the next set of actions for the
system.

The said model can enhance the four aspects of resilience
(robustness, flexibility, scalability, and modularity) facilitating
intelligent autonomous agents that can better perform in
dynamic and complex environments. As expected of a robust
system, the ability to preserve functionalities and continue
operation amid partial failures can be ensured through the
understanding of causal inferences of the current domain
provided by counterfactual analysis. As discussed by Peysakhovich
et al. (2019), counterfactuals can be used to achieve robust
performance across different environments with changing rules.
The flexibility to switch to new behaviors as a consequence
of changed circumstances and requirements is ensured through
the avenues that explore counterfactuals in generating new
knowledge based on the current perceptions. Both scalable and
modular characteristics of an agent system that can operate
under a range of agent group sizes and optimally utilize
different components (agents or skills of individual agents) of
the system to operate multiple functions, can be facilitated
through the knowledge of current cause-effect relationships and
the understanding of how the outcomes of the decision-making
process can be improved. This can enable appropriate distribution
of tasks among the available number of agents based on their
individual skills and dynamic requirements that arise (Singh et al.,
2021).

As identified, counterfactual learning has the potential to
advance the future of intelligent resilient agent systems. However,
it is not without limitations. Specifically in agent system, there
exists a requirement for the counterfactual explanations and
new knowledge generated to represent the system’s operation
along causal, justificatory, and purposive lines (Arnold et al.,
2021). As counterfactuals can make inferences and predictions
resulting in actions that are outside the boundaries of the modeled
circumstances, another layer of validation could be required based
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on determinants and constraints on the course of actions the
agents can take. Further, there exist a tendency for counterfactuals
to be unstable with respect to the changes in the environment
(Artelt et al., 2021). A small change in the input can result in
a drastic change in the output. As a result, different actions
recommended may have arbitrary changes in complexity which
might cause issues in practicability of application. Therefore,
incorporation of counterfactuals require careful consideration
and further research into how the limitations can be overcome.
However, the discussion presented in this paper lends valuable
insights into the potential of counterfactuals as a successful
alternative to model resilient autonomous agent systems to
address the complex and dynamic requirements of the real-world
applications.
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