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Machine learning algorithms in
microbial classification: a
comparative analysis

Yuandi Wu* and S. Andrew Gadsden

Department of Mechanical Engineering, Intelligent and Cognitive Engineering Laboratory, McMaster
University, Hamilton, ON, Canada

This research paper presents an overview of contemporary machine learning
methodologies and their utilization in the domain of healthcare and the prevention
of infectious diseases, specifically focusing on the classification and identification
of bacterial species. As deep learning techniques have gained prominence in the
healthcare sector, a diverse array of architectural models has emerged. Through a
comprehensive review of pertinent literature, multiple studies employing machine
learning algorithms in the context of microbial diagnosis and classification
are examined. Each investigation entails a tabulated presentation of data,
encompassing details about the training and validation datasets, specifications
of the machine learning and deep learning techniques employed, as well as
the evaluation metrics utilized to gauge algorithmic performance. Notably,
Convolutional Neural Networks have been the predominant selection for image
classification tasks by machine learning practitioners over the last decade.
This preference stems from their ability to autonomously extract pertinent
and distinguishing features with minimal human intervention. A range of CNN
architectures have been developed and e�ectively applied in the realm of
image classification. However, addressing the considerable data requirements of
deep learning, recent advancements encompass the application of pre-trained
models using transfer learning for the identification of microbial entities. This
method involves repurposing the knowledge gleaned from solving alternate image
classification challenges to accurately classify microbial images. Consequently,
the necessity for extensive and varied training data is significantly mitigated. This
study undertakes a comparative assessment of various popular pre-trained CNN
architectures for the classification of bacteria. The dataset employed is composed
of approximately 660 images, representing 33 bacterial species. To enhance
dataset diversity, data augmentation is implemented, followed by evaluation
on multiple models including AlexNet, VGGNet, Inception networks, Residual
Networks, and Densely Connected Convolutional Networks. The results indicate
that the DenseNet-121 architecture yields the optimal performance, achieving a
peak accuracy of 99.08%, precision of 99.06%, recall of 99.00%, and an F1-score
of 98.99%. By demonstrating the proficiency of the DenseNet-121 model on
a comparatively modest dataset, this study underscores the viability of transfer
learning in the healthcare sector for precise and e�cient microbial identification.
These findings contribute to the ongoing endeavors aimed at harnessing machine
learning techniques to enhance healthcare methodologies and bolster infectious
disease prevention practices.
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1. Introduction

In the realm of healthcare, deep learning has emerged

as a transformative force, particularly in the identification

of microbiological species. Leveraging the power of artificial

neural networks, deep learning models have revolutionized the

way we approach complex problems, mimicking the intricate

cognitive processes of human cognition. As the healthcare

landscape evolves, data-driven solutions gain prominence.

Machine Learning (ML), a subset of artificial intelligence, plays

a pivotal role by enabling computers to learn autonomously

from data. This departure from rule-based programming

allows systems to define their own patterns and rules by

learning from information. In medical contexts, this shift

has ushered in a new era, managing copious amounts of

data efficiently (Greenspan et al., 2016; Min et al., 2017;

Xing et al., 2017; Peiffer-Smadja et al., 2020). With modern

healthcare embracing rapid data acquisition, traditional labor-

intensive approaches to diagnosis and prediction become

conspicuously inefficient.

Classic ML algorithms have already made substantial

contributions in fields like bioinformatics, utilizing regression

and classification to model diagnostics. Traditional approaches

involve crafting features for enhanced interpretability, with

models optimizing these features in a sequential process (Jordan

and Mitchell, 2015). With the advent of deep learning, novel

algorithms are capable of autonomously learning intricate features,

reducing the reliance on domain expertise (LeCun et al., 2015;

Greenspan et al., 2016). It is a field that has seen significant

success in areas such as image analysis and computer vision

(Yuan et al., 2015; Druzhkov and Kustikova, 2016; Pak and

Kim, 2017), whereby the ability to automatically determine and

categorize important features proves to be invaluable. Currently,

several types of deep neural networks exist, with each having

its respective advantages and disadvantages over the other

depending on the field of application. For the purposes of image

classification, by far the most popular form of neural network

implemented is the Convolutional Neural Network (CNN)

(Rawat and Wang, 2017). CNNs are preferred for their superior

computational efficiency with respect to calculations of model

weights and bias values, by which the model is optimized. Several

variations in the architecture of a CNN, with varying complexity

and performance, have been applied to and evaluated with

various datasets.

In spite of their accomplishments in image recognition tasks,

deep learning architectures possess inherent limitations. These

limitations stem from the substantial demand for ample high-

quality data to establish prediction accuracy and robustness.

Mitigating this constraint, data augmentation techniques are

commonly utilized. These techniques involve modifications to

the original data, aiming to enhance data volume and diversity.

Additionally, recent research in image classification has embraced

transfer learning. This entails repurposing pre-trained models

from different datasets to evaluate smaller datasets, thereby

circumventing the extensive feature extraction training process

(Zhaung et al., 2020). In the realm of healthcare, substantial time

and human resources are necessary to amass a substantial dataset

for machine learning. Traditionally, professionals in the sector

manually collect essential data using specialized tools to diagnose

and identify microorganisms. Moreover, these professionals’

expertise is indispensable for accurate labeling (Qu et al., 2019).

Machine learning and deep neural networks present an avenue for

automation, leading to reduced operational costs and heightened

industry efficiency. Leveraging transfer learning and pre-trained

models facilitates training deep neural networks like CNNs

with fewer annotated samples, all while demonstrating nearly

equivalent, if not superior, performance in classification endeavors.

This study offers a comprehensive panorama of contemporary

machine learning methodologies applied in healthcare, with

a specific focus on infectious disease prevention and the

identification of bacterial entities. The research begins with

a succinct overview of current machine learning algorithms

in the healthcare sector, emphasizing their role in diagnosing

and classifying bacterial species. Notably, the study incorporates

a meticulous literature review that spans a range of works

employing machine learning and deep learning algorithms for

microbe diagnosis. The spotlight is on Convolutional Neural

Networks, a pivotal choice for over a decade due to their ability

to autonomously extract distinguishing features with minimal

human intervention. An emerging trend of leveraging transfer

learning, which repurposes pre-trained models for microbial image

classification, is highlighted as well. Importantly, this research

advances beyond previous reviews by not only summarizing

existing research but also practically implementing and evaluating

transfer learning algorithms for microbial detection using the

DIBAS dataset. This approach adds a practical dimension to

the study, showcasing the real-world efficacy and limitations of

these techniques.

Specifically, the investigation delves into deep transfer

learning algorithms’ effectiveness in microscopic bacteria

image classification. The study evaluates multiple pre-trained

CNN networks in terms of their accuracy, precision, f1-

score, convergence rate, computational complexity, and

overall efficiency. The outcomes not only advance current

understanding but also provide insights for optimizing future

image recognition tasks related to bacterial classification. This

research enhances the integration of machine learning in

healthcare and contributes to refining microbial identification

practices. The following report is structured as follows: Section

2 comprises a literature review elucidating prevalent machine

learning and deep learning techniques presently applied within

the domain of infectious disease prevention, specifically pertaining

to bacterial classification. In Section 3, an introduction to the

comparative analysis is provided, encompassing foundational

information regarding CNNs and detailing the experimental

configuration encompassing dataset usage and executed data

augmentations. Section 4 examines the utilized transfer learning

algorithms and their efficacy on the dataset. The study involves

exploring common transfer learning models and assessing their

performance on a dataset of bacterial species images. The achieved

performance metrics are meticulously organized. Following

this, a meticulous analysis determines the optimal architectural

approach. Lastly, Section 5 encapsulates the concluding remarks of

the study.
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TABLE 1 Summary of ML algorithms and their application in diagnostics and classification.

Study name Year
published

Techniques
employed

Description Reference

Tuberculosis bacteria
detection based on Random
Forest using fluorescent
images

2016 Random forest,
linear SVM, cross
validation SVM

Proposes a new RF-based tuberculosis bacilli detection
method using fluorescent microscopic images and feature
extraction techniques. Conducted on a dataset comprising
768 positive objects and 1,664 negative objects. The
RF-based approach outperforms other popular machine
learning methods, such as LinSVM and CVSVM, in terms of
sensitivity, specificity, and accuracy

Zheng et al. (2016)

Diagnosing tuberculosis with
a novel support vector
machine-based artificial
immune recognition system

2015 SVM, KNN Introduces a hybrid system that incorporated an SVM into
Artificial Immune Recognition System for diagnosing
tuberculosis. The dataset used was patient epacris reports
consisting of 114 positive samples for tuberculosis and 60
negative samples. Classification performance was evaluated
using 10-fold cross-validation, and the proposed method
achieved an accuracy of 100%, sensitivity of 100%, specificity
of 100%, Youden’s Index of 1 Area Under the Curve of 1,
and RMSE of 0

Saybani et al. (2015)

An automated tuberculosis
screening strategy combining
X-ray-based computer-aided
detection and clinical
information

2016 Random forest,
extremely
randomized trees

Developed machine learning-based combination framework,
evaluated on a dataset of 392 patient records from suspected
tuberculosis subjects. Framework utilizes computer-aided
detection scores from chest radiographs and 12 clinical
features to estimate the risk of active disease. Results show
that the combination framework outperforms individual
strategies, achieving higher area under the receiving
operating characteristic curve (0.84 vs. 0.78 and 0.72),
specificity at 95% sensitivity (49% vs. 24% and 31%), and
negative predictive value (98% vs. 95% and 96%)

Melendez et al.
(2016)

In-vitro diagnosis of single
and poly microbial species
targeted for diabetic foot
infection using e-nose
technology

2015 KNN, linear
discriminant
analysis, neural
networks

Developed an electronic nose technique for rapid
identification of pathogenic bacteria responsible for diabetic
foot infections. Using statistical approaches such as Support
Vector Machine (SVM), K Nearest Neighbor (KNN), Linear
Discriminant Analysis (LDA), and neural networks like
Probability Neural Network (PNN), the authors identified
both single and poly microbial species with up to 90%
accuracy, indicating its potential as a complementary
diagnostic tool for diabetic foot infections

Yusuf et al. (2015)

Prospects for clinical
application of electronic-nose
technology to early detection
of Mycobacterium
tuberculosis in culture and
sputum

2006 SVM, KNNMLP Explores the potential of gas sensor array to detect different
Mycobacterium species and Pseudomonas aeruginosa in
cultures and spiked sputum samples, aiming to provide a
rapid and automated method for early diagnosis of
respiratory infections. The device demonstrated promising
results, correctly predicting culture-positive patients with
89% accuracy. The method shows a sensitivity and specificity
of 89% and 91% respectively

Fend et al. (2006)

Toward automated detection,
semi-quantification and
identification of microbial
growth in clinical
bacteriology: A proof of
concept

2017 Random Forest Presents algorithms for intelligent image analysis for
automated detection, semi-quantification, and identification
of bacterial colonies. The algorithms demonstrated high
sensitivity (97.1%) and specificity (93.6%) for microbial
growth detection, accurate quantification (80.2% and 98.6%
with 1 log tolerance), and identification accuracy (98.3% to
99.7% depending on bacterial species)

Croxatto et al.
(2017)

2. Literature survey

2.1. Classical machine learning techniques
reviewed

The healthcare sector has witnessed notable achievements

through the implementation of machine learning (ML) algorithms.

Over the past decade, a multitude of novel ML systems

have been devised to facilitate the decision-making process

within diverse medical contexts. Classical ML techniques have

garnered considerable utilization for tasks involving classification

and regression, as delineated subsequently. However, these

conventional ML approaches necessitate substantial human

involvement in the curation of informative features—distinctive

attributes or quantifiable characteristics (Greenspan et al., 2016).

Noteworthy models like support vector machines (SVM), random

forests, and logistic regression have demonstrated remarkable

efficacy in healthcare applications, particularly in the realm of

classification tasks. A concise overview encompassing the surveyed

literature is presented in Table 1.

Zheng et al. made comparisons between three ML classifier

algorithms in the detection of Tuberculosis bacteria from
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fluorescent images. Images were captured from processes such

as fluorescent microscopy and or bright field microscopy (Zheng

et al., 2016). To extract feature representations of the bacteria

object, diverse techniques were employed. Notably, Hu Moment

Invariants, a set of seven parameters derived from central

image moments, were used due to their resistance to image

transformations (Huang and Leng, 2010). Additional methods

included geometric shape properties and histograms of oriented

gradients, effectively capturing the distinctive rod-like morphology

of Tuberculosis bacteria. The study focused on binary classification,

employing the aforementioned algorithms. Of which, the Random

Forest classifier consistently showed higher performance than

SVM methods with regard to sensitivity, specificity and accuracy

metrics. In relation to computational complexity and efficiency,

it is observed that the cross-validation SVM approach exhibited

the highest level of complexity. The computation times associated

with this method were approximately two orders of magnitude

greater than those of the second most intricate algorithm, namely

the Random Forest.

Saybani et al. (2015) developed a novel method of

Mycobacterium Tuberculosis diagnosis in patients with the

use of an SVM artificial immune recognition system (Saybani et al.,

2015). Artificial immune systems simulate the human immune

system, utilizing prior memory to identify and recognize patterns.

Research done in this area involves Watkins’ supervised algorithm,

the Artificial Immune Recognition System (Watkins, 2001), and

Brownlee’s modification to the previous system, Artificial Immune

Recognition System 2 (Brownlee, 2005). The group innovated on

this model further by providing an alternate, and more effective

SVM classifier with radial basis function kernel as opposed to

the KNN classifier used in previous studies. The dataset involves

175 samples from a patient pool afflicted with Mycobacterium

Tuberculosis and features various statistical measurements of key

biological bodies or chemical compounds, the presence of various

symptoms, patient biological information, as well as whether the

patients tested positive for Mycobacterium Tuberculosis. The

classification criterion involves the minimization of the mean

squared error. A 10-fold cross-validation was performed. Alternate

measures of performance involve sensitivity and specificity,

Youden’s Index, and Area Under the Curve (AUC). Overall, the

researchers attained a 100% accuracy, sensitivity, and specificity in

their outcomes, alongside an absence of mean squared error.

Regarding tuberculosis diagnosis, Melendez et al. (2016)

conducted research in this area. Their study involved the

development of an automated system that collects patient data

using X-ray-based computer-aided detection in conjunction with

clinical information (Melendez et al., 2016). Feature selection was

determined from both X-ray imaging, as well as patient’s clinical

data, and selected utilizing the minimum redundancy maximum

relevance algorithm. The classification was performed using a

combination of the Random Forest algorithm and the Extremely

Randomized Trees (ERT). Both methods share commonalities

through their utilization of randomization and their categorization

as tree ensemble methods. However, a distinguishing feature ERTs

compared to RandomForest lies in the nature of decision tree splits.

ERT employs random splits for decision trees, in contrast to the

deterministic splits employed by Random Forest. The optimization

process encompassed adjustments to the count of decision trees

and the maximal depth of these trees. The learning process was

performed and evaluated using 10-fold cross-validation. Evaluation

metrics were accuracy, sensitivity specificity, area under the curve

and negative predictive value. The study evaluated various metrics

including accuracy, sensitivity, specificity, area under the curve,

and negative predictive value. The combined dataset framework

showed superior accuracy and specificity compared to using X-

ray imaging or clinical data alone. The results of the reviewed

study demonstrated that the combination framework outperforms

individual strategies in terms of AUC (0.84 vs. 0.78 and 0.72),

specificity at 95% sensitivity (49% vs. 24% and 31%), and negative

predictive value (98% vs. 95% and 96%).

Yusuf et al. (2015) also performed classification of bacteria

through their analysis of Volatile Organic Compounds (VOCs)

with electronic noses (Yusuf et al., 2015). In their study, the

diagnosis of Mycobacterium tuberculosis was performed via

analysis of multivariate data through the Principal-component

analysis (PCA), discriminant function analysis (DFA), and a back

propagation neural network. Overall, the system was capable of

predicting 89% of culture-positive patients.

Analysis of VOCs was also the approach utilized by Fend

et al. (2006) in the rapid diagnosis of microbes causing

diabetic foot infection (Fend et al., 2006). The group utilized

a combination of Linear Discriminant Analysis (LDA) with

alternative classification algorithms such as SVM, KNN, and the

Multi-Layer Perceptron (MLP) neural network model on data from

solid phase microextraction mass spectroscopy. The hybrid system

outlined demonstrates improved robustness and performance

over conventional methods, accurately forecasting culture-positive

patients with an 89% precision rate. The approach displays

sensitivity and specificity rates of 89% and 91%, respectively.

The Random Forest algorithm was employed by Croxatto et al.

(2017) in their study to undertake classification, quantification,

and identification of microbial entities. The study employed

the Boruta Algorithm to select feature inputs due to its

balanced performance-computational speed trade-off. Notably, the

automated classification accuracy varies between 98.3% and 99.7%,

contingent on the bacterial species.

2.2. Deep learning techniques in clinical
diagnostics and classification of microbial
species

In contrast to conventional techniques in machine learning,

deep learning methodologies are highly regarded for their inherent

capacity to autonomously discern pertinent features intrinsic to

a given dataset. In the domain of diagnostic procedures and

taxonomical categorization of microorganisms, an assortment of

deep learning approaches has been adeptly harnessed. Among

these methodologies, neural networks, inspired by the cognitive

information processing paradigm of biological neural ensembles,

have garnered conspicuous prominence. Evidencing their prowess,

neural networks have demonstrated adeptness in furnishing precise

approximations to intricate problem sets, registering achievements
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commensurate with those of domain experts (Sarvamangala

and Kulkarni, 2022). Diverse instantiations of neural network

architectures have been scrutinized within the purview of the

healthcare domain. One paradigmatic manifestation, denoted as

the Multilayer Perceptron (MLP) model, entails an arrangement

of neuron-stratified tiers through which informational propagation

occurs unidirectionally. In the more contemporary landscape,

the Convolutional Neural Network (CNN), initially conceived by

LeCun et al. (2015), has garnered conspicuous traction. The salient

attributes of CNNs encompass heightened computational efficiency

along with the proficiency to effectually ameliorate and condense

the multidimensionality characterizing image datasets. Inclusive of

these developments, an encapsulation of pertinent scholarly works

is succinctly tabulated in Table 2 for comprehensive reference.

The field of spectroscopy is a study of the interaction

of radiation with matter, encompassing absorption, emission,

reflection, transmission, and scattering of light or other forms

of electromagnetic radiation by different materials. Within this

area of study, (Lasch et al., 2018) and (Bosch et al., 2008) made

use of characteristic bacterial absorption and transmissions of five

different microorganisms as single or mixed cultures of infrared

light for the purposes of pathogenic bacteria identification. The

technique employed to capture bacteria information is known

as the Fourier transformed infrared spectroscopy (FTIR). Both

studies feature MLP networks trained using the resilient back-

propagation learning algorithm to classify the spectra generated

by the FTIR. Multiples of such networks were utilized to form

a modular hierarchical network, in which the top-level network

categorized bacteria in a broad sense.

In the paper by Lasch et al. (2018), the MLP network consists

of the most basic 3 layers: an input, an output and one hidden

layer. A top-level MLP network performs the task of automatic

spectral quality tests. Whereas the following network performs

classification on spectra corresponding to 11 strains of bacteria,

previously classified as positive quality by the top-level network.

Through this basic framework, an accuracy of 954 out of 1,274

pixel spectra, or around 75% of the data was correctly classified.

The study by Bosch et al. (2008) also consists of an MLP network

and may be summarized as follows: A top-level neural network

classified species of P. aeruginosa, S. maltophilia, Achromobacter

xylosoxidans, Acinetobacter spp., R. pickettii, and Burkholderia

cepacia complex bacteria. The model consists of an input layer

of size 60, 2 hidden layers, and an output layer of size 6. An

accuracy of 98.1% was achieved by the top-level network. The

second neural network serves to classify 4 specific sub-strains of

bacteria: B. cepacia, B. multivorans, B. cenocepacia, and B. stabilis,

under Burkholderia cepacia complex bacteria, and utilizes a similar

model with an output layer of size 4 instead. This model achieved

an accuracy of 93.8%.

In another study by Ho et al., a CNN architecture was

employed for the rapid classification of pathogenic bacteria

through Raman Spectroscopy (Ho et al., 2019). Through this

approach, Ho et al. effectively classified 30 species of pathogenic

bacteria, with an average classification accuracy of 82%. The CNN

architecture consists of 25 convolutional layers. Each layer takes

a one-dimensional vector as input, representing the spectra. An

important innovation within this study involves the omission

of pooling layers in the CNN design. Instead, the approach

incorporates strided convolutions to maintain precise spectral

point positioning of interest. Baseline comparisons were made

with classical ML algorithms such as the SVM and Logistic

regression. The study’s results indicate that CNNs exhibited

superior performance compared to conventionalMLmethods, with

SVM having a 75.7% accuracy, and Logistic regression having a

74.9% accuracy.

In the research conducted by Ferrari et al. (2017), CNNs and

SVMs were employed to execute the tasks of bacteria colony

quantification and classification. Captured images are segmented

utilizing SVM with Radial Basis Function kernels to generate

a binary mask of colonies, effectively forming the input data.

The CNN is trained using Stochastic Gradient Descent (SGD)

with momentum, and consists of 4 convolutional layers, followed

by a fully connected layer and a soft-max layer. A dropout of

75% was utilized on the outputs of the fully connected layer, to

reduce overfitting. In all, CNN was able to achieve an accuracy

of 91.5%. For the SVM classifier, features were extracted using

Elliptic Fourier Descriptors (Kuhl and Giardina, 1982). A Random

Forest algorithm was utilized for feature selection, and features

were classified with the SVM approach with Radial Basis Function

kernels. An accuracy of 79.5 % was reported.

In the realm of diagnostic methodologies, Er et al. (2010)

have made a notable contribution through their investigation into

the potential applications of neural networks for Tuberculosis

diagnosis (Er et al., 2010). Specifically, their study revolves

around the utilization of a Multilayer Perceptron (MLP) model.

The study involves a comparative analysis of outcomes derived

from two distinct architectures of the MLP. The experimental

dataset encompassed 150 samples derived from patient records.

Each of these samples comprised 38 essential attributes, which

encompassed a range of biological data, patient-reported

symptoms, as well as quantified concentrations of various

compounds including cholesterol, calcium, blood urea nitrogen,

chlorine, among others. The architectural configuration of

the MLP model incorporates an input layer of dimension 38,

succeeded by either one or two hidden layers comprising 50

neurons each. The terminal layer, constituting the output, exhibits

a dimensionality of 2. This specific two-dimensional output

signifies the binary classification associated with the presence or

absence of Mycobacterium Tuberculosis. Neural networks are

trained with two different algorithms: backpropagation, and the

Levenberg-Marquardt algorithm (Hagan and Menhaj, 1994). In

general, the Levenberg-Marquardt algorithm converges faster

than that of traditional gradient descent algorithms, however,

gradient descent has been shown to be more stable and robust

(Amin et al., 2011). Overall, the researchers determined that

increasing hidden layers of neurons also increases the performance

of the network. It was determined that for this application, the

Levenberg-Marquardt algorithm demonstrates a higher level of

performance in comparison to the SGD method, with the highest

accuracy of 95.08% when utilized to train an MLP with two

hidden layers.

On the same topic, Santos et al. (2007) also utilized

neural networks in their diagnosis of smear-negative pulmonary

Tuberculosis. The network architecture comprises a three-layer
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TABLE 2 Summary of deep learning algorithms and their application in diagnostics and classification.

Study Name Year
published

Techniques
employed

Description Reference

FT-IR Hyperspectral Imaging
and Artificial Neural Network
Analysis for Identification of
Pathogenic Bacteria

2018 Two level MLP
model trained with
Resilient Back
Propagation

Employs FT-IR hyperspectral imaging and optimized
artificial neural networks for rapid and cost-effective
identification of pathogenic bacteria, involving machine
learning-based image segmentation for taxonomic
resolution. The neural network classifiers are trained using
spectral data from biological replicates, including spectral
quality assessment and PHB interference removal, utilizing
NeuroDeveloper software and rprop learning algorithm

Lasch et al. (2018)

Fourier Transform Infrared
Spectroscopy for Rapid
Identification of
Nonfermenting
Gram-Negative Bacteria
Isolated from Sputum
Samples from Cystic Fibrosis
Patients

2008 Two level MLP
model trained with
back propagation

Introduces a novel method utilizing FTIR combined with
ANNs for the rapid identification of nonfermenting
gram-negative rods, including various bacterial species
prevalent in cystic fibrosis patients, achieving high
identification success rates of 98.1% for broader categories
and 93.8% for specific Burkholderia cepacia complex species

Bosch et al. (2008)

Rapid identification of
pathogenic bacteria using
Raman spectroscopy and deep
learning

2019 CNN, SVM, logistic
regression

Presents a deep learning-based method for accurately
identifying 30 common bacterial pathogens using Raman
spectroscopy, achieving isolate-level accuracies over 82%
and antibiotic treatment identification accuracies of
97.0±0.3%, including distinguishing between MRSA and
MSSA with 89±0.1% accuracy, validated on clinical isolates
from 50 patients, with potential for culture-free pathogen
identification and antibiotic susceptibility testing using
minimal spectra

Ho et al. (2019)

Bacterial colony counting
with convolutional neural
networks in digital
microbiology imaging

2017 CNN trained with
SGD, SVM, random
forest

Explores automated bacterial colony counting using
machine learning, comparing a handcrafted feature-based
SVM approach with a CNN-based deep learning method,
with the CNN approach significantly outperforming the
handcrafted features in bacterial load estimation, presenting
an overall accuracy of 79.5%

Ferrari et al. (2017)

Accurate prediction of blood
culture outcome in the
intensive care unit using long
short-term memory neural
networks

2018 MLP, CNN Presents a novel approach using a bidirectional long
short-term memory neural network to predict the outcome
of blood culture tests based on nine clinical parameters
measured over time, achieving high predictive accuracy
(AUC: 0.99, precision-recall AUC: 0.82) and outperforming
non-temporal machine learning models, offering potential
for early detection of bloodstream infections in ICU patients

Kuhl and Giardina
(1982)

Tuberculosis disease diagnosis
using artificial neural
networks

2010 MLP trained with
Backpropagation
and Levenberg
Marquardt
algorithm

Presents a study on tuberculosis diagnosis using multilayer
neural networks, comparing two such network structures
(one with one hidden layer and the other with two hidden
layers) and a general regression neural network using
Levenberg-Marquardt algorithms for training; achieving a
highest classification accuracy of 94.88%

Er et al. (2010)

Neural networks: an
application for predicting
Smear negative pulmonary
tuberculosis

2007 MLP trained with
Backpropagation

Introduces a neural network model for diagnosing
smear-negative pulmonary tuberculosis based solely on
symptoms and physical signs, achieving a 77% correct
classification rate on a test sample of 136 patients

Santos et al. (2007)

Multilayer Perceptron (MLP) consisting of an input layer, a

hidden layer, and an output layer. This design is influenced by

the model introduced in (Haykin, 1994). The optimal neuron

count within the hidden layer is identified as four. Empirical

experiments demonstrate that introducing additional neurons,

for the context of this study, leads to issues such as overfitting

and reduced generalization. The dataset encompasses 136 patient

samples. Among these, three distinct sets of variables are extracted,

encompassing patient biological data and symptoms, which

collectively form the input vector. In the case of variables, binary

attributes are encoded as 1 or −1, while qualitative attributes are

coded as follows: 1 for presence, 0 for disregard, and−1 for absence.

The output of the network consists of a solitary neuron, and its

activation corresponds to the estimated likelihood of Tuberculosis

presence. Metrics for evaluation of network performance included

accuracy, sensitivity and specificity, achieving a 77%, 87%, and 71%

in the aforementioned fields respectively.

Deep learning methodologies, particularly neural networks,

have gained prominence in the healthcare domain for their ability

to autonomously discern relevant features within complex datasets.

In the context of bacterial identification and diagnostics, neural

networks have been employed to analyze data from various

spectroscopic techniques. In studies using Fourier-transformed

infrared spectroscopy (FTIR), Multilayer Perceptron (MLP)
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networks were trained to classify bacterial spectra. These studies

achieved high accuracy, with one achieving 75% and another

achieving 98.1% accuracy for broad bacterial categorization.

In contrast, Convolutional Neural Networks (CNNs) were

employed for rapid classification of pathogenic bacteria through

Raman spectroscopy, achieving an average accuracy of 82%.

Compared to classical machine learning algorithms like SVM and

logistic regression, CNNs outperformed them, highlighting the

effectiveness of deep learning in this context.

In bacterial colony quantification and classification, a

combination of CNNs and SVMs was used, achieving an accuracy

of 91.5% for CNN and 79.5% for SVM. The dataset in this study was

segmented using SVM, and CNNs were trained using stochastic

gradient descent with momentum. Additionally, in tuberculosis

diagnosis, MLP models were employed to analyze patient data

and biological attributes, achieving high accuracy levels of up to

95.08%. The choice of training algorithm, such as backpropagation

or the Levenberg-Marquardt algorithm, played a crucial role in

determining the network’s performance. Another study focused

on diagnosing smear-negative pulmonary tuberculosis using a

three-layer MLP, achieving an accuracy of 77% with sensitivity and

specificity of 87% and 71%, respectively. Overall, deep learning

techniques, especially neural networks, have demonstrated

their effectiveness in bacterial identification, spectroscopy

analysis, and disease diagnosis within the healthcare sector,

often outperforming traditional machine learning approaches.

These methods leverage the capability of deep learning to

automatically extract intricate patterns and features from complex

datasets, contributing to improved accuracy and efficiency in

medical applications.

2.3. Transfer learning techniques in clinical
diagnostics and classification of microbial
species

Transfer learning is a methodology that centers on leveraging

acquired insights from one task to address a closely aligned task.

Contemporary advancements in transfer learning frameworks have

enabled several researchers to enhance the efficacy of systems

designed for the categorization of microbiological entities. An

overview encompassing the body of literature employing transfer

learning techniques within the realm of bacteria classification is

presented in Table 3.

Huang et al. employed neural networks for the purpose of

classifying 18 strains of prevalent human pathogenic bacteria

based on their morphological characteristics (Huang and Wu,

2018). The utilized approach involved the implementation of a

Convolutional Neural Network (CNN) trained with the Stochastic

Gradient Descent (SGD) algorithm incorporating momentum.

This network’s performance was assessed in comparison to a pre-

trained CNN known as AlexNet. Notably, relevant features were

extracted from input images at the fully-connected layer of the

CNN, subsequently forming a matrix of features. In conjunction

with a pre-labeled classifier matrix, an SVM may be constructed to

classify each strain. Through analysis, the two approaches shared

comparable results in terms of accuracy. In terms of sensitivity,

AlexNet exceeds that of conventional CNNs due to its highly

compressed convolutional layers.

Zieliński et al. also evaluated the classification capabilities of

several machine learning models in their study (Zieliński et al.,

2017). The group employed the Digital Images of Bacterial Species

(DIBaS) dataset. The dataset contains over 660 digital images of 33

strains of bacteria. Through their study, Zieliński et al., have, for

the first time, made the DIBaS dataset publicly available, leading

to a plethora of follow-up experimentations and studies by other

authors in the field. For their study itself, Zieliński et al. utilized

a variety of techniques in tandem. CNNs such as AlexNet, VGG-

D, and VGG-VD were employed in conjunction with Dense SIFT

to obtain local descriptors. Descriptors are refined with the Fisher

vector and pooling encoders to obtain the feature vectors from

images belonging to the DIBaS dataset. Classification is performed

with Support Vector Machines (SVM), or the Random Forest

technique, with an overall classification accuracy of 97% achieved.

Owing to the constrained data availability within the DIBaS

Dataset, Khalifa et al. (2019) introduced a transfer learning

paradigm utilizing the architectural framework of AlexNet,

augmented by data enrichment strategies (Khalifa et al., 2019).

Traditional neural networks demand a substantial dataset for

effective training, thereby encountering challenges of overfitting

or underfitting in cases where dataset magnitude falls short of

prescribed criteria. To further enhance the amount and variety of

data made available to deep learning models, Khalifa et al. (2019)

employed data augmentation techniques to increase the size of the

DIBaS dataset to a sample of 6,660 images for the training set, and

5,940 images for the validation set. Overall, the group was able to

achieve an accuracy of 98.22% with their architecture.

Nasip and Zengin (2018) also utilize the AlexNet CNN

architecture to classify 33 species of bacteria in the DIBaS

dataset. The study employed the Visual Geometry Group Network

(VGGNet). The network incorporates increased depth within the

conventional Convolutional Neural Network (CNN) architecture,

aimed at enhancing overall performance. Typical structures of

VGGNet consist of 16 or 19 convolutional layers and max

pooling. The activation function utilized in the network is the

ReLU function. In all, Nasip and Zengin were able to achieve

a top-1 accuracy of 97.53% for AlexNet and a 98.25% accuracy

for VGGNet.

Mai and Ishibashi (2021) introduced an innovative compact

CNN architecture designed for classification tasks utilizing the

DIBaS dataset. The proposed model employs a concise five-layer

structure, comprising slightly over 3.23 million parameters, which

notably contrasts with the parameter counts of contemporary

leading models. Notably, despite its streamlined design, the model

devised by Mai and Ishibashi attains a remarkable peak accuracy

of 96.28%.

In a related study, Patel conducted a parallel analysis on the

DIBaS dataset, utilizing a modified iteration of the VGG16 neural

network architecture (Patel, 2021). The researchers integrated

atrous convolutions, also known as dilated convolutions, into

their model. The extent of dilation was regulated through the

dilation rate parameter, affording the flexibility to stipulate

intervals between convolution filter values. The adoption of atrous
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TABLE 3 Summary of Transfer Learning Algorithms and their application in diagnostics and classification.

Study Name Year
published

Techniques
employed

Description Reference

Novel neural network
application for bacterial
colony classification

2018 CNN trained with
SGD, AlexNet, SVM

Presents an automatic program using deep convolutional
neural networks (CNNs) for classifying bacterial colony
morphology, achieving a 73% overall classification accuracy
and up to 90% accuracy and specificity for individual
bacterial species, demonstrating potential for efficient
bacterial pre-screening

Huang and Wu
(2018)

Deep learning approach to
bacterial colony classification

2017 AlexNet, VGG-D,
VGG-VD

Employs deep Convolutional Neural Networks for texture
analysis of bacterial images, utilizing Support Vector
Machine or Random Forest for classification, achieving a
recognition accuracy of 97.24±1.07% on a new dataset of
660 images containing 33 bacterial genera and species

Zieliński et al.
(2017)

Deep bacteria: Robust deep
learning data augmentation
design for limited bacterial
colony dataset.

2019 CNN Introduces a deep neural network architecture for classifying
bacterial colonies, utilizing data augmentation to address
limited dataset size, achieving a testing accuracy of 98.22%

Khalifa et al. (2019)

Deep learning based bacteria
classification

2018 AlexNet, VGGNet Presents a study on deep learning-based bacteria
classification using the DIBaS dataset, employing VggNet
and AlexNet training models in MATLAB; achieving
classification accuracies of 98.25% with VggNet and 97.53%
with AlexNet for 33 different bacteria species.

Nasip and Zengin
(2018)

Small-scale depth wise
separable convolutional
neural networks for bacteria
classification

2021 CNN Presents a method for automated classification of 33 bacteria
strains using a compact five-layer depthwise separable
convolutional neural network architecture, achieving a
recognition accuracy of 96.28% on a dataset of 6,600 images,
with low computational cost suitable for limited-resource
devices

Mai and Ishibashi
(2021)

Bacterial colony classification
using atrous convolution with
transfer learning

2021 VGG16 Presents an atrous convolution based network with transfer
learning for automated bacterial colony classification using
deep neural networks, achieving high accuracies of 95.06%
training, 93.38% validation, and 94.85% test accuracy on a
dataset of 660 bacterial colonies with 33 classes

Patel (2021)

An automated deep learning
approach for bacterial image
classification

2019 ResNet-50 Presents an automated deep learning approach using the
ResNet-50 pre-trained CNN architecture for classifying
bacteria species from microscopic images, achieving a high
average classification accuracy of 99.2%

Talo (2019)

An enhanced classification of
bacteria pathogen on
microscopy images using
deep learning

2021 DenseNet-201 Presents an enhanced classification technique for bacterial
pathogen identification using the DensNet201 pre-trained
CNN architecture with transfer learning and freeze layer
technique, achieving an accuracy of around 99.24%

Akbar et al. (2021)

Efficient deep learning
architectures for fast
identification of bacterial
strains in
resource-constrained devices

2021 EfficientNetMobileNet
V2, MobileNet V3,
SqueezeNet

Introduces twelve fine-tuned deep learning architectures for
bacterial classification using digital images, incorporating a
novel artificial zoom-based data augmentation technique
that significantly enhances performance, achieving top-1
accuracy scores up to 0.9738, evaluated through
cross-validation

García et al. (2021)

Efficient detection of
longitudinal bacteria fission
using transfer learning in
deep neural networks

2021 ResNet18 Presents an automated solution for classifying the
longitudinal division of bacteria employing ResNet. Transfer
learning is applied to train a binary classification model that
identifies bacterial division, achieving high test accuracy
(99%) with pre-trained models and stabilizing by epoch 5,
contrasting with a non-pre-trained model stabilizing by
epoch 12; this approach eliminates the need for manual
classification and benefits from data augmentation and
pre-trained networks

Garcia-Perez et al.
(2021)

AGAR a microbial colony
dataset for deep learning
detection

2021 Faster R-CNN,
Cascade R-CNN,
ResNet, ResNeXt,
HRNet

Presents an exhaustive analysis of various deep neural
networks for object detection in microbial colonies,
demonstrating the superiority of the Cascade RCNN with
HRNet backbone, achieving low counting errors of 4.92%
and 3.81% on different subsets, and mAP scores between
49.3% to 59.4% for detection

Majchrowska et al.
(2021)

A transfer learning-based
approach with deep CNN for
COVID-19- and
pneumonia-affected chest
X-ray image classification

2021 VGG19 Applies transfer learning using the pre-trained VGG-19
architecture to classify COVID-19, Pneumonia, and Healthy
cases from chest X-ray images, achieving a test dataset
accuracy of 97.11%, average precision of 97%, and average
recall of 97%

Chakraborty et al.
(2022)
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convolution filters facilitated a broader receptive field, amplifying

spatial coverage without significant increments in computational

burden. Positioned as the terminal layer within the cascade of

feature extraction convolutional layers in the VGG16 network, the

atrous convolution layer preceded the subsequent fully connected

layers. This configuration culminated in an achieved classification

accuracy of 94.85%.

Talo employed transfer learning for the classification of

bacterial species, utilizing the ResNet-50 architecture developed in

He et al. (2016) in their paper on “Deep residual learning for image

recognition.” He et al. (2016) demonstrated the existence of an

optimal depth threshold for convolutional neural networks (CNNs)

to prevent accuracy degradation. They introduced the concept of

skip connections, which enable the incorporation of prior layer

outputs into subsequent layers, facilitating smoother information

propagation within the network. This innovation allows for the

training of significantly deeper neural networks while maintaining

accuracy. Through the ResNet-50 model, Talo (2019) was able

to achieve a validation accuracy of 99.2% through 5-fold cross-

validation, and an average accuracy of 99.12%(Talo, 2019).

Akbar et al. proposed a transfer learning model centered

around the DenseNet-201 pre-trained CNN model for the

classification of pathogenic bacteria species (Akbar et al., 2021).

A set of 40,000 images containing six species of bacteria were

evaluated with the DenseNet-201 model. Furthermore, for the

purpose of benchmarking, the utilization of both the ResNet-50 and

VGG-16 models was also incorporated into the analysis. Overall,

it was determined that the DenseNet-201 Model boasted superior

accuracy and performance with regards to the other two models, at

an accuracy of 99.24%.

García et al. performed a similar bacteria classification

task in their study “Efficient Deep Learning Architectures for

Fast Identification of Bacterial Strains in Resource-Constrained

Devices” (García et al., 2021). The study evaluated the performance

of 4 separate transfer learning models on the classification of the

Digital Image of Bacterial Species dataset. The learning models

employed in this study were the EfficientNet model, MobileNet V2

and MobileNet V3, and SqueezeNetThe research team also utilized

data augmentation by implementing various cropping techniques

to decompose the initial images into multiple smaller sub-images.

Through their experimentation, García et al. concluded that

MobileNet V3 was superior in terms of accuracy, with a top-1

accuracy rating of 97.38%.

In their research, (Garcia-Perez et al., 2021) devised a transfer

learning framework employing the ResNet-18 architecture. The

investigation centered on quantifying longitudinally dividing

bacterial species, exemplified by Candidatus Thiosymbion oneisti.

Through this transfer learning paradigm, Garcia-Perez et al.

successfully engineered a binary classification model with the

capacity to effectively discern bacterial cells in the midst of division,

achieving a remarkable accuracy of up to 99.75%.

In the study byMajchrowska et al. (2021) the group contributed

a set of 18,000 images of five species of both single and mixed

culture micro-organisms for the purpose of building a deep

learning network (Majchrowska et al., 2021). The dataset, known

as the Annotated Germs for Automated Recognition (AGAR)

dataset, is comprised of five species from different bacterial

groups, namely, five representatives from different bacterial groups,

namely: S. aureus subsp. aureus ATCC 6538, B. subtilis subsp.

spizizenii ATCC 6633, P. aeruginosa ATCC 9027, E. coli ATCC

8739, and C. albicans ATCC 10231. The authors further identified

and classified each sample imaged as countable, uncountable,

and empty. In total 11,270 images were classified as countable,

4,513 images as uncountable, and the remaining as empty. These

classifications were further separated by image quality, with images

separated based on their quality into the subgroups bright (2,088

images), dark (8,560 images), vague (971 images), and lower-

resolution (5,830 images). The countable class, containing 12,270

images, is further examined by experts in the field with regard

to colony location and specific species of bacteria. In total,

336,442 colonies of the five microbial species distributed over

the countable class were labeled. Additionally, Majchrowska et al.

(2021) developed Convolutional Neural Network (CNN) models to

accurately classify and count bacterial colonies within the AGAR

dataset. The basis for these models stemmed from the work of

Girshick et al. (2014), who introduced the concept of Region-

Based Convolutional Neural Networks (R-CNN) with a focus

on object detection. In their study, Majchrowska et al. explored

two R-CNN variants: Faster R-CNN and the Cascade R-CNN

models. These models were rigorously evaluated alongside pre-

trained models like ResNet, ResNeXt, and HRNet. Evaluation

metrics included the Mean Absolute Error and symmetric Mean

Absolute Percentage Error, which collectively demonstrated that

both network architectures achieved similar levels of accuracy,

with errors as low as 4.92%. This exceptional performance was

attributed to the comprehensive AGAR dataset, allowing the

models to generalize effectively to new data, marking a substantial

advancement in the field.

Transfer learning has also been applied to detect and classify

cases of COVID-19 virus and pneumonia in patients via images

from chest X-rays (Chakraborty et al., 2022). Chakraborty et al.

(2022) performed the study in their evaluation of a set of 3,979

chest X-ray images. The dataset is comprised of 1184 images from

patients afflicted with the COVID-19 virus, 1,294 images from

those afflicted with Pneumonia, and 1,319 images from healthy

patients. The VGG19 pre-trained model was employed, with the

last three fully connected layers replaced by a single layer composed

of three neurons to represent the available classes. The classifier

identifies individuals that are healthy, individuals afflicted with

pneumonia, or individuals afflicted with COVID-19 from features

extracted. An overall accuracy of 97% was achieved on the dataset.

3. Comparative analysis of existing
networks

The utilization of machine learning algorithms within

the healthcare sector holds significant potential, particularly

concerning the identification and categorization of bacterial

species. As an array of deep learning algorithms becomes

increasingly accessible, a critical evaluation of their efficacy and

computational performance becomes imperative, facilitating the

selection of optimal strategies for specific tasks. Bridging the

gap between the theoretical insights gained from the literature
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FIGURE 1

Sample of images of bacterial species from DIBaS dataset (Zieliński et al., 2017).

review conducted prior and the real-world results of a comparative

analysis, the following sections aim to deliver a comprehensive

overview of contemporary applications of deep transfer learning

algorithms within the domain of microscopic bacteria image

classification. The primary focus lies in their capacity to accurately

categorize digital representations of bacterial species. In pursuit

of this objective, an assessment of diverse pre-trained CNNs was

conducted, encompassing crucial performance metrics such as

accuracy, precision, F1-score, convergence rate, computational

complexity, and overall efficiency of the network. The present

study seeks to elucidate the effectiveness and suitability of deep

transfer learning algorithms in the realm of bacterial species

classification through an analysis of the findings. The insights

garnered herein not only bridge the gap between theory and

practice but also hold the potential to form a foundational basis for

future advancements in the domain of medical image recognition,

thereby contributing to the refinement of precise and efficient

diagnostic tools tailored for bacterial classification. The following

sections offer a detailed explanation of the complexities within the

study, including an analysis of the dataset used for examination,

the contextual framework that forms the foundation of CNNs, and

the methodological structures utilized during the course of the

experimentation phase.

3.1. Dataset evaluated

3.1.1. Dataset description
Dataset utilized for evaluation in this study is the Digital

Image of Bacterial Species (DIBaS) dataset, published by Zieliński

et al. in their study: “Deep learning approach to bacterial colony

classification” (Zieliński et al., 2017). The dataset consists of 33

classes, representative of the species of bacteria captured. Each class

consists of, on average, a set of ∼20 digital images. A sample of

ten labeled images from the DIBaS dataset is provided in Figure 1.

Images within each class depicts the respective species of bacteria

after Gram staining. Samples were captured with the Olympus

CX31Upright BiologicalMicroscope and the SC30 camera. In total,

689 images of size 2,048× 1,532 pixels were acquired. For reference,

species names, and the number of available digital images of species

are summarized in Table 4.

It is essential to acknowledge the limitations associated with

relying solely on the DIBaS dataset for assessing the effectiveness

of our proposed method. While our approach has demonstrated

TABLE 4 Summary of DIBaS dataset.

Species name No.
images

Species name No.
images

Acinetobacter. baumanii 20 Lactobacillus. plantarum 20

Actinomyces. israeli 23 Lactobacillus. reuteri 20

Bacteroides. fragilis 23 Lactobacillus. rhamnosus 20

Bifidobacterium. spp 23 Lactobacillus. salivarius 20

Candida. albicans 20 Listeria. monocytogenes 22

Clostridium. perfringens 23 Micrococcus. spp 21

Enterococcus. faecalis 20 Neisseria. gonorrhoeae 23

Enterococcus. faecium 20 Porfyromonas. gingivalis 23

Escherichia. coli 20 Propionibacterium. acnes 23

Fusobacterium 23 Proteus 20

Lactobacillus. casei 20 Pseudomonas. aeruginosa 20

Lactobacillus. crispatus 20 Staphylococcus. aureus 20

Lactobacillus. delbrueckii 20 Staphylococcus. epidermidis 20

Lactobacillus. gasseri 20 Staphylococcus. saprophiticus 20

Lactobacillus. jehnsenii 20 Streptococcus. agalactiae 20

Lactobacillus. johnsonii 20 Veionella 22

Lactobacillus. paracasei 20

promising results within the context of the DIBaS dataset, its

performance could potentially differ when applied to other datasets

that encompass distinct characteristics and challenges. Various

factors contribute to this variation, including differences in image

quality, lighting conditions, staining techniques, and bacterial

growth patterns among different datasets. Additionally, the DIBaS

dataset might not encompass the full spectrum of bacterial species

diversity that exists in real-world scenarios, thereby limiting the

generalizability of our method to broader bacterial classifications.

Therefore, caution should be exercised when extrapolating the

success observed on the DIBaS dataset to real-world applications

where the dataset’s unique attributes might not align with the

complexities encountered in other datasets. To address this

limitation and enhance the robustness of our proposed method,

future research should include evaluation on diverse datasets to

ensure its adaptability and effectiveness across a wider range of

bacterial species and imaging conditions.
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FIGURE 2

General architecture of a Convolutional Neural Network.

3.1.2. Data augmentation
Data augmentation is the artificial inflation of data quantity

via the generation and concatenation of new data to the original

dataset. New data is generated from original data and involves

minor alterations, such as geometric transformations or image

color alterations. Overall, the objective of data augmentation

is to increase data quantity and data diversity. In this study,

due to the limited data available (689), data augmentation was

performed to increase the amount and variety of training datamade

available to the deep learning network for increased robustness

and performance. Data augmentation is performed using the

transform method provided by the TorchVision Library. In total,

from the original 689 images, data augmentation was performed to

form a combined dataset of 5512 images. Transformations utilized

are as follows: Horizontal flip, application of random rotation

was applied, application of random image shear and scale, and

translations. In addition to this, image brightness and saturation

are varied through the color jitter function, contrast through the

auto contrast function, and image hue through the invert function.

Further to the aforementioned transforms, all images are resized to

a size of 224 lengthwise pixels by 224 widthwise pixels by 3 color

channels. The resizing operation is performed by means of Bilinear

interpolation (Smith, 1981) to match the input size for the transfer

learning models utilized.

3.2. Convolutional neural networks
background

Neural networks, at their core, consist of substantial quantities

of artificial neurons interconnected to form a network. This

network structure gives rise to various types of neural networks.

Among these architectures, a specific design of significance

to the present study is the Convolutional Neural Network

(CNN). The CNN model encompasses multiple layers of neurons.

Particularly in tasks related to image classification, these layers

can be categorized into two groups: the feature extraction layers

and the classifier layers. Each layer takes as input the vector

output from the preceding layer, subject to specific mathematical

operations determined by the layer’s nature. With every layer of

transformation, a progressive level of abstraction is introduced

to the representation. The CNN model, functioning as a form

of supervised learning, finds utility when ample labeled data is

available, following the insights elucidated by LeCun et al. (2015).

A visual representation of this model is accessible in Figure 2.

CNNs are typically composed of convolution layers, nonlinear

layers, pooling layers, and fully connected layers. In the following

section, the functionality and operation of the aforementioned

layers will be discussed. The convolutional layer functions as the

overall feature extractor. In each convolutional layer, a weight

vector is or convolved across data to produce a feature map, or

matrices of locally weighted sum. In accordance with LeCun’s

definition (LeCun et al., 2015), the convolution action may be given

mathematically as:

S
(

i, j
)

=
(

I∗k
)

(i, j) =
∑

m

∑

n

I (m, n)K(i−m, k− n) (1)

Whereby the image I is convolved with filter kernel K. Due

to this convolution action, the CNN is capable of accounting for

local connectivity, allowing for the capability to detect features

invariant of location in the image. A nonlinear activation function

is typically applied after convolutions. Typical activation functions

utilized are the hyperbolic tangent function, the sigmoid function

or the rectified linear unit (ReLU). Of interest to this study is the

ReLU activation function. The ReLU function may be represented

mathematically as:

ReLU : f (x) = max(0, x) (2)

Of the activation functions listed above, the ReLU activation

function is particularly popular due to its simplicity, as well as faster

convergence and higher computational efficiency in comparison

to the other activation functions mentioned above (Nair and

Hinton, 2010). In addition, the ReLU function stands out due to its

capability in mitigating the vanishing gradient problem, which was

validated in the work by Ertam andAydonn, where the group tested

several activation functions for classification tasks. It was found that

the ReLU performed the best in comparison, with an accuracy of

98.43% (Ertam and Aydin, 2017).
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Pooling layers are generally inserted between convolutional

blocks to reduce the image size and the number of variables to

be calculated while maintaining descriptions of features. Rather

than the precise feature locations outputted by the convolutional

layer, subsequent operations are performed on the summarized

features from the pooling layer, allowing for the network to bemore

robust to variations in feature locations. Popular pooling methods

involve max pooling and average pooling, in which the maximum

or average value within a local region is selected to represent

its entirety. The fully connected layers refer to layers of densely

connected neurons, serving to reduce the 2-dimensional features

extracted into 1-dimensional vectors. In general, with classification

tasks, the last layer of the fully connected layer is composed of

neurons, each of which represents the probability of a certain class

being the correct selection.

The learning process of the CNN model is facilitated with

training algorithms. Optimization of the network is typically

performed with gradient methods, such as gradient descent

or stochastic gradient descent (SGD). Algorithms such as

Adagrad (Duchi et al., 2011) and RMSProp perform SGD

while simultaneously altering learning rates adaptively, boasting

increased robustness and capabilities for dealing with sparse data.

In this study, the adaptive moment estimation optimizer, or Adam

optimizer, was employed (Hinton et al., 2012). Initially developed

by Kingma and Ba, the Adam optimizer is another variant SGD

optimizer capable of altering learning rates adaptively (Kingma and

Ba, 2014). This method is especially efficient when dealing with

models with large numbers of parameters and has been shown to

outperform popular optimizers such as Adagrad and RMSProp in

terms of accuracy and training cost (Chen et al., 2018).

4. Results and discussion for transfer
learning models employed

As is common with various deep learning algorithms, CNNs

rely heavily on annotated data. As briefly elaborated in the

preceding section, CNNs generally acquire high-level features

through their convolutional layers via learning algorithms, and

subsequently execute classification tasks utilizing their fully

connected layers. However, to facilitate this process, the dataset

under consideration must possess sufficient scale. This ensures that

the deep learning algorithms can effectively capture the inherent

patterns and distinctive attributes within the data. Transfer learning

involves the retention of knowledge and insights acquired while

addressing a specific problem. This accumulated knowledge is

subsequently repurposed and applied to solve distinct yet related

problems (Bozinovski and Fulgosi, 1976). This approach obviates

the necessity for models to be trained entirely from scratch,

leading to notable reductions in resource demands, computational

requirements, data volume, variance, and training duration. In

fields such as microbiology, characterized by challenges in data

acquisition due to specialized equipment needs and labor-intensive

processes, leveraging data augmentation and transfer learning can

be particularly advantageous. In light of this context, consider the

example of the DIBaS dataset, comprising a modest collection of

660 digital images. The dataset’s limited size imposes constraints

on the effectiveness and robustness of deep learning models,

particularly if training were initiated anew. To address this

challenge, apart from the data augmentation techniques expounded

upon in section 3.1.2, the application of transfer learning emerges

as a viable strategy to alleviate the dataset limitations.

4.1. Experimental setup

Models were built with the Python programming language,

employing modules from the PyTorch and TorchVision libraries,

which have gained great popularity in the research community

as an open-source machine learning framework. All models were

trained on the 0.82 GHz 2-core NVidia K80 GPU. The GPU used

has a Random Access Memory (RAM) of 12GB. As specified in

Section 3.1, the dataset employed is the Digital Image of Bacterial

Species (DIBaS) dataset, published by Zieliński et al. in their

study: “Deep learning approach to bacterial colony classification”

(Zieliński et al., 2017). Data augmentations were performed as

specified in Section 3.2. Data inputted are split, allocating 80% of

the total augmented dataset as training data, and 10% of the dataset

as validation dataset, and 10% as testing dataset.

Evaluation of the performance of transfer learning models were

determined based on several metrics. From literature, the most

commonmetrics for evaluation of machine learning algorithms are

parameters such as accuracy, precision, sensitivity (also known as

recall), and F1 score (Fawcett, 2006). These parameters are usually

calculated or derived from the confusion matrix: a table that plots

the algorithm’s confidence in the predicted classification versus the

true classification of the test dataset. The confusion matrix allows

for the visualization of algorithm performance. Evaluations based

on the function for receiver operating characteristics curve and

area under the curve are also popular, but are mainly employed

for binary classification. With respect to the DIBaS dataset, with

its 33 classes, an approach toward the evaluation of multiclass

classification was deemed to be more suitable. The metrics of

accuracy, precision, sensitivity, and F1 score were applied. Metrics

for evaluation may be calculated from the Confusion matrix based

on counts of True Positives (TP), True Negatives (TN), False

Positives (FP) and False Negatives (FN), where positive or negative

denotes the models prediction of class, and True or False denotes

whether the model is correct in its prediction of class.

Accuracy may be represented as the fraction of correct

predictions that the model has made, amongst all predictions made.

It may be represented mathematically as:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision describes the fraction of correct predictions, in the

case that the model prediction is positive. It may be represented

as the fraction of TP overall positive predictions. Mathematically,

precision may be represented as:

Precision =
TP

TP + FP
(4)

Recall describes the rate of correct positive predictions, in

the case whereby the true value is positive. It is represented

as the fraction of actual true positive instances that the model
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TABLE 5 Transfer learning models reviewed in study.

Model name Associated research paper Year published Reference

AlexNet ImageNet classification with deep convolutional neural networks 2012 Krizhevsky et al. (2012)

GoogLeNet Going deeper with convolutions 2014 Szegedy et al. (2015)

Inception V3 Rethinking the inception architecture for computer vision 2015 Szegedy et al. (2016)

Visual geometry group networks Very deep convolutional networks for large-scale image recognition 2015 Simonyan and Zisserman (2014)

ResNets Deep residual learning for image recognition 2016 He et al. (2016)

DenseNets Densely connected convolutional networks 2018 Huang et al. (2017)

correctly classifies, amongst all instances that are true positives.

Mathematically, the formula for recall is given as:

Recall =
TP

TP + FN
(5)

The F1-score is defined as the harmonic mean of recall and

precision. The metric is employed as an objective method to

compare the performances of classifiers. It is usually desirable to

maximize both recall and precision. This is typically difficult in

practice, due to the computing nature of precision and recall. The

F1 score provides a metric that effectively combines the recall

and Precision metrics to determine the performance of the model

objectively. Mathematically, the F1 score is given as:

F1 = 2∗
Precision× Recall

Precision+ Recall
(6)

4.2. Pre-trained architectures analyzed in
comparative study

All models employed were trained on the ImageNet Dataset, a

large, publicly available repository of more than 14 million images,

of more than 20,000 different classes. All images are manually

annotated with labels associated with objects that the image depicts.

Models were initialized with their pre-trained weights from the

ImageNet Dataset (Deng et al., 2009), then allowed to update

their respective weights in accordance with features learned from

the DIBaS dataset. Due to the amount and variety of data made

available in the ImageNet dataset, various high-level features may

be learned and re-applied to the visual recognition of bacteria

species based on their physical features. Optimal hyper-parameter

initialization is key to the performance of a neural network. Hyper-

parameters such as batch size, learning rate and the number of

epochs were selected with a manual search. In summary, batch size

was varied from a range of 16 to 64, and the learning rate was varied

from 0.00005 to 0.00015. A summary of the models employed

and their associated documentation are provided in Table 5. The

parameters used to tune the model examined with respect to

the DIBaS dataset are summarized in Table 6. Additionally, the

process by which models undergo training on the DIBaS dataset

is summarized in the flowchart depicted in Figure 3.

TABLE 6 Hyperparameters employed for transfer learning models.

Model name Initial learning rate Batch size

AlexNet 0.00008 128

GoogLeNet 0.0001 32

Inception V3 0.0001 32

VGG16 0.0001 64

VGG19 0.0001 64

ResNet-18 0.0001 64

ResNet-34 0.00008 72

ResNet-50 0.0001 64

ResNet-152 0.00008 32

DenseNets-121 0.0001 32

DenseNets-161 0.0001 16

DenseNets-169 0.0001 16

DenseNets-201 0.00008 16

4.2.1. AlexNet
The AlexNet architecture, introduced by Krizhevsky et al.

(2012), is a CNN design that underwent training using the

ImageNet dataset. Its structure encompasses five convolutional

layers with accompanying max-pooling operations, succeeded by

three fully connected layers. The activation function employed is

ReLU, chosen for its observed rapid convergence when compared

to alternative functions such as hyperbolic tangent and sigmoid

activations. In contrast to its predecessor, the LeNet-5 model,

AlexNet integrates additional convolutional and pooling layers

to achieve data normalization, rendering it adept at processing

substantial data volumes. However, this stacked architecture

implies an elevated parameter count, leading to computational

inefficiencies relative to other explored models.

In this investigation, the final layer of the AlexNet Model’s

classifier is adjusted to yield 33 activations. Experimental findings

indicate the model’s generalizability, achieving a validation

accuracy of 95.74% and a training accuracy of 98.82%. Themarginal

∼3% variance between training and validation performance can

be attributed to the model’s familiarity with training data and

its relative novelty with respect to the validation dataset. Initial

performance was modest, with validation and training accuracies at

15.70% and 34.45% respectively, but significant growth occurred in
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FIGURE 3

Flowchart of general training process for transfer learning models examined.

the first six epochs, culminating in a validation accuracy of 89.04%.

Subsequent epochs yielded diminishing returns, particularly after

the ninth epoch, where validation accuracy plateaued at 94.52%

and validation loss reached 0.0014. Minimal improvements (<1%)

were observed thereafter, indicating a slowdown in the acquisition

of new features.

4.2.2. Inception networks
The architecture GoogLeNet, referred to as Inception V1, is

predicated upon the work outlined in the research publication

titled “Going Deeper with Convolutions” authored by Szegedy

et al. (2016). This neural network comprises a total of 27 layers,

integrated with max pooling operations. A notable contribution of

this study is the introduction of the inception module paradigm.

The integration of increased depth into deep neural networks

frequently engenders challenges related to performance, notably

encompassing concerns such as overfitting, as well as the vanishing

and exploding gradient phenomena. Additionally, the utilization of

stacked convolutional layers tends to exhibit suboptimal resource

utilization in terms of memory allocation and computational

efficiency. The innovation of the Inception Module, as devised

by Szegedy et al., mitigates these challenges by employing a

configuration in which multiple filters of distinct dimensions

convolve across a singular layer. The schematic depiction of an

Inception Module’s fundamental structure is provided in Figure 4.

By employing 1x1 convolutional filters, a reduction in input

dimensionality is achieved, thereby enhancing the computational

efficiency of subsequent operations. Modulating the filter size

imparts an additional advantage of enabling the network to

discern features across varying scales. In lieu of augmenting

depth, the inception model opts for lateral expansion. Each

convolutional stratum is accompanied by the application of

a ReLU activation function. The outcomes yielded by diverse

filters are subsequently amalgamated to form the outputs of the

inception module. The GoogLeNet framework integrates nine such

modules throughout its architecture, succeeded by a global average

pooling layer. The inclusion of average pooling layers serves to

supplant the conventional fully connected stratum in standard

CNNs. Contrary to the conventional practice of channeling feature

outputs through a fully connected layer, the mean value of each

feature map undergoes direct processing through the SoftMax

classifier function. This strategic shift confers the advantageous

attribute of heightened resilience against overfitting by virtue of the

absence of parameter modulation. Furthermore, the adaptability

of convolutional networks to this classification approach is
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FIGURE 4

Inception module architecture.

enhanced, given its establishment of a discernible correlation

between feature maps and anticipated classes. In totality, Szegedy

et al. have substantiated the superior performance and efficiency

of this architecture in comparison to the conventional stacked

CNN counterparts.

For this study, the output of the final classifier layer was

modified to have an output layer consisting of 33 neurons,

corresponding to the probability of each species of bacteria being

identified. The GoogLeNet architecture performed significantly

better than that of AlexNet, with the model converging to a test

accuracy of 98.63%. Initial estimates in the first epoch are alsomuch

more accurate with the GoogLeNet model, at 80.15% test accuracy.

This high initial estimate may be attributed to various factors.

One possible explanation is that the initial weights imported from

training on the ImageNet dataset, when arranged in the GoogLeNet

model, are more suitable for classifying data from the DIBaS

dataset. Improvements to results slowed significantly near the 5th

epoch, with further epochs demonstrating marginal improvements

(<1%). The GoogLeNet model also features a significantly smaller

gap between test and training accuracies and losses, with both

converging to∼99%.

Szegedy et al. made substantial enhancements to the existing

network architecture by introducing Inception V3, as documented

in their paper titled “Rethinking the Inception Architecture for

Computer Vision” (Szegedy et al., 2015). Several novel techniques

were introduced to augment the Inception V3 model’s capabilities.

To address the computational demands posed by large convolution

filters, Szegedy et al. proposed a strategy to factorize larger filters

into smaller ones. In employing this approach, equivalent coverage

to that of larger filters can be achieved at a reduced computational

cost. For instance, within the Inception V1 model, the previously

utilized 5-by-5 filter was replaced with two 3-by-3 filters, resulting

in a notable reduction in trainable parameters per filter. To further

mitigate computational load, the Inception V3 model incorporated

the use of asymmetrical filters. This approach involves replacing an

n-by-n filter with a combination of an n-by-1 and a 1-by-n filter.

The integration of batch normalization was another enhancement

introduced in the Inception V3 model. In addition to these

advancements, the paper also introduced grid size reduction as an

alternative technique for dimensionality reduction, complementing

the conventional employment of pooling layers. This involved

incorporating parallel convolutional layers in tandem with the

pooling layer and subsequently concatenating the resulting output

feature maps, akin to the architecture of Inception Networks.

The Inception V3 model shared similar performance to the

V1 model, with a test accuracy of 98.18%. Similar to GoogLeNet,

the re-use of weights from the ImageNet database yielded very

high initial accuracy with the DIBaS dataset, as high as 80.78%

on the first epoch. The rate of convergence was also similar, with

improvements in accuracy becoming marginal (<1%) at around

the 5th epoch. The additional complexity introduced, however, with

respect to the Inception V1 model, did not appear to contribute to

any further improvements in performance of the model.

4.2.3. Visual geometry group networks
The Visual Geometry Group Network (VGGNet), developed

by Simonyan and Zisserman, was designed for application to

the ImageNet Dataset, as discussed in their work titled “Very

Deep Convolutional Networks for Large-Scale Image Recognition”

(Simonyan and Zisserman, 2014). This study scrutinizes two

specific architectures: VGG16 and VGG19 models. Both of these

networks utilize ReLU activation functions alongside max pooling.

Notably, these models prioritize the incorporation of smaller

convolutional filters with increased depth, as opposed to a

solitary larger filter. This design philosophy shares parallels with

the Inception networks, where the adoption of smaller filters

contributes to reduced trainable parameters and a heightened

number of weight layers. Empirical evidence provided by

Simonyan and Zisserman underscores the improved performance

and computational efficiency of this configuration compared to

architectures like AlexNet, which relies on larger 7-by-7 filters.

VGG16 features 13 convolutional layers, followed by three fully

connected layers, whereas the VGG19 architecture employs the use

of 16 convolutional filters with three fully connected layers. In the

context of this investigation, alterations were exclusively applied to
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the final layer to introduce 33 output activations. It is worth noting

that the architecture of VGG exhibits a configuration characterized

by cascaded convolutional layers, resulting in a higher parameter

count compared to the alternative architectures examined.

The complex nature of these systems becomes apparent

through their performance evaluation using the DIBaS dataset. The

heightened complexity resulted in extended training durations and

greater utilization of GPU RAM space. The performance of the

VGG16model is akin to that of the Inception networks, converging

to a final test accuracy of 97.34% and loss of 0.015. The initial

accuracy of the first epoch is 79.96%. For the VGG19 structure, the

additional convolutional layers did not appear to aid in the effective

feature extraction and learning of the network, as the final accuracy

converged to a value of 97.26%. The initial accuracy was also lower

at 62.38%, although this may be attributed to the weight parameters

from the ImageNet database within the VGG19 network not being

as suitable for the DIBaS dataset.

4.2.4. Residual networks
With the development of neural networks consisting of

additional layers, an interesting phenomenon to note is that, as

depth approaches a certain threshold, the performance of the

network ceases to increase. Instead, the performance of very deep

neural networks is, on occasion, lacking behind their shallower

counterparts. This phenomenon has been attributed to various

speculated causes, such as the activation function employed,

overfitting, or the vanishing gradient problem. He et al. (2016)

introduced a solution to the declining performance of neural

networks with depth, through their introduction of residual, or

skip connections (He et al., 2016). By means of these residual

connection blocks, the information emanating from preceding

layers is incorporated into successive layers. This enables a more

unhindered transmission of information throughout the network,

thereby enabling deeper layers to achieve performance parity

with shallower layers. The structure of a residual block may be

represented mathematically as:

xl = Hl

(

xl−1
)

+ xl−1 (7)

Whereby the inputs of layer (xl) are comprised of previous layer

information (xl−1) combined with the previous layer information

parsed through some transfer function (H) via element-wise

addition. The function H maps the input of x to some output,

based on the set of weights applied and activation functions,

through the convolution operation typical of CNNs. In this fashion,

much deeper neural networks may be trained without suffering

losses in accuracy. In the research conducted by He et al., it

has been established that Residual Networks exhibit superior

convergence speed and precision in comparison to conventional

neural networks with equivalent depth. Notable distinctions are

present within the structural composition of residual blocks

employed in the ResNet architectures. Refer to Figure 5A for

a visualization of the residual blocks used in ResNet-18 and

ResNet-34 models, while Figure 5B illustrates the residual blocks

utilized in ResNet-50 and ResNet-152 models.

In this investigation, the sole alteration applied involved

adjusting the quantity of activation neurons within the output

layer. Overall, the ResNet framework exhibited notably swift

convergence rates, wherein a majority of models accomplished

approximately 90% accuracy on the testing dataset and a loss

of around 0.005 following a solitary epoch. In comparison with

the stacked convolutional layers of the VGG model, the Residual

networks achieved similar results with fewer training. With the

ResNet-152 model, the initial test accuracy was the highest of

all models tested, at 93.11%, and ultimately converging to a final

accuracy of 98.82% over the course of 20 epochs. The other

architectures of residual networks achieved less notable results,

with an accuracy of 97.88%, 98.23% and 98.12% for the ResNet-18,

ResNet-34 and ResNet-50 respectively.

4.2.5. Densely connected networks
DenseNets were formulated by Huang and colleagues in

their research titled "Densely Connected Convolutional Networks”

(Huang et al., 2017). Analogous to the approach seen in Residual

Networks, the paper’s authors also adopted the strategy of

integrating inputs from preceding layers. However, in contrast to

the summation of output feature maps, each individual layer within

a DenseNet generates an output through concatenation of the

outputs from all preceding layers. As opposed to the ResNet, this

relation may be represented as:

xl = Hl(x0, x1, . . . , xl−2, xl−1) (8)

Whereby each dense layer (xl) is represented as a function

of all prior layers. The motivation behind DenseNets is to

address the challenge posed by the vanishing gradient problem,

thereby enhancing accuracy. In terms of structure, DenseNets are

constituted by dense blocks and transitional layers. Each dense

block is comprised of several collections of batch normalization,

ReLU, and convolution layers. As previously mentioned, within

every dense block, each grouping of batch normalization, ReLU,

and convolution layers are densely interconnected with all

preceding groupings. It is important to highlight that inside

the dense block, the dimensions of all feature maps are

consistent, thereby enabling subsequent convolutional operations.

Transitional layers are responsible for carrying out the down-

sampling or pooling task. Every transitional layer is composed of

a batch normalization step, a 1-by-1 convolution, and a 2-by-2

average pooling operation. The loss and accuracy curves of each

model are depicted in Figure 6. The presence of densely connected

convolutional layers in the DenseNet framework enhances the

capacity of successive layers to acquire a broader range of dataset

features in a more streamlined manner. The interconnectedness

of these layers ensures that each feature map is employed by

all subsequent layers within a given dense block. Consequently,

the DenseNet architecture demonstrates a heightened proficiency

in assimilating intricate features, all the while curtailing the

acquisition of unnecessary and indistinct features. Notably, owing

to the limited dataset size, the practice of reusing features seems to

have notably augmented performance and convergence outcomes.

The DenseNet-121 model, amongst the models tested, boasted

the highest accuracy, with a test accuracy converging to 99.08%.

Convergence was also exceptionally fast, with marginal (<1%)

improvements to accuracy and loss occurring as early as the 3rd

epoch. Overall, the DenseNet-121 model generalized the best to

the new dataset provided, although this may be attributed to the

Frontiers in Artificial Intelligence 16 frontiersin.org

https://doi.org/10.3389/frai.2023.1200994
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Wu and Gadsden 10.3389/frai.2023.1200994

FIGURE 5

(A) Architecture of residual block employed in the ResNet-18 and ResNet-34 models. (B) Architecture of residual block employed in the ResNet-50
and ResNet-152 models.

FIGURE 6

(A) Training Loss of DenseNet architectures. (B) Validation Loss of DenseNet architectures. (C) Training Accuracy of DenseNet architectures. (D)
Validation Accuracy of DenseNet architectures.
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TABLE 7 Tabulated accuracy, precision, recall and F1 scores for models

examined.

Model Top-1
accuracy

Precision Recall F1 score

AlexNet 95.74% 95.90% 95.55% 95.56%

GoogLeNet 98.63% 98.86% 98.82% 98.82%

Inception V3 98.18% 98.67% 98.64% 98.63%

VGG16 97.34% 97.69% 97.55% 97.47%

VGG19 97.26% 98.79% 98.73% 98.73%

ResNet18 97.88% 98.05% 97.91% 97.92%

ResNet34 98.23% 98.33% 98.28% 98.28%

ResNet50 98.12% 97.44% 97.10% 97.10%

ResNet152 98.87% 98.89% 98.82% 98.82%

DenseNet121 99.08% 99.06% 99.00% 98.99%

DenseNet161 98.17% 99.12% 99.09% 99.08%

DenseNet169 98.40% 98.87% 98.82% 98.82%

DenseNet201 98.57% 98.96% 98.91% 98.90%

sample of data available for analysis, whereby simpler models are

favored. The other DenseNet architectures performed fairly well

with accuracies of 98.17%, 98.40%, and 98.57% for DenseNet-161,

DenseNet-169 and DenseNet-201 respectively.

4.3. Analysis of results

A summary depicting the performance of the diverse networks

enumerated in the preceding section can be located within

Table 7. The assessment of performance involved the consideration

of accuracy, precision, recall, and F1 Score. Furthermore, the

depiction of the confusion matrix for the most proficient model

is presented in Figure 7. The computational time and parameter

count requiring training for each model are subjected to analysis,

as presented in Table 8. The training of all models spans 20

epochs, facilitating a basis for comparison concerning the duration

allocated to training and validating the data. The study’s outcomes

reveal modest standard deviations due to the relatively limited

size of the training dataset. Accuracy metrics span from 95.57%

to 99.03%, precision ranges from 95.90% to 99.12%, recall varies

between 95.55% and 99.09%, and the F1 score ranges from

95.56% to 99.08%. Most models have demonstrated commendable

adaptability to the novel dataset, with the least accurate being

AlexNet at 95.57%. Notably, among the assessed models, VGG19,

possessing the highest complexity with 139,705,441 parameters,

demonstrates inferior accuracy compared to all other models,

barring just AlexNet. This observation could potentially be ascribed

to the uncomplicated nature of the dataset. The dataset, post

augmentation, comprises a mere 5940 images, possibly rendering

more straightforward models more suitable. The substantial

parameter count within the VGG19 model might be considered

surplus when confronted with the expanded DIBaS dataset.

Among the various models assessed, it becomes evident that the

DenseNet-121 model exhibited the highest level of accuracy. When

considering precision, recall, and F1 score metrics, the DenseNet-

161 model displayed superior performance compared to the other

models. Specifically, the metrics recorded values of 99.12%, 99.09%,

and 99.08%, respectively. However, the accuracy achieved by this

model was slightly lower, standing at 98.17%. Notably, the dataset

maintains a reasonably balanced distribution across its classes,

with approximately 20 images representing each bacterial species

category in the original dataset. In this context, accuracy emerges

as the more reliable predictor of model effectiveness. Based on the

examination of 13models, it can be deduced that the DenseNet-121

model emerges as the most favorable architecture concerning the

DIBaS dataset. In the realm of performance versus computational

cost, the GoogLeNet or Inception V1 model showcased the least

parameter count, totaling 6,194,625 trainable parameters within

the model. Notably straightforward, this model also exhibited the

swiftest training time, requiring only 49 minutes and 0 seconds

to complete 20 epochs. Despite its simplicity, the model managed

to achieve results on par with the top-performing DenseNet-121

model, converging toward a test accuracy of 98.63%.

In the context of the DIBaS dataset (Digital Image of

Bacterial Species), which comprises 660 images encompassing

33 distinct genera and species of bacteria, it is noteworthy that

transfer learning algorithms, specifically DenseDets, have exhibited

occasional misclassification of images, despite achieving an overall

classification accuracy of 99.12%. This intriguing observation

raises questions about the underlying factors contributing to such

misclassifications within this specific dataset. Several potential

explanations can be considered to elucidate these phenomena.

Firstly, it is crucial to acknowledge that DIBaS presents a unique

set of challenges due to the diversity and intricacy of bacterial

species represented. These challenges include variations in bacterial

morphology, staining techniques, and imaging conditions, which

may introduce subtle but significant differences across images.

Transfer learning algorithms like Densenets are often pretrained on

large-scale datasets with different statistical properties, potentially

leading to a domain gap between the source and target datasets.

As a consequence, the model may struggle to adapt effectively

to the specific characteristics and nuances of the DIBaS dataset.

Furthermore, the presence of rare or atypical bacterial species

within DIBaS may pose challenges for transfer learning algorithms.

Pretrained models may not have encountered such rare instances

during their training on general datasets, resulting in a lack of

representative knowledge for accurate classification. These rare

species could be particularly susceptible to misclassification due to

their limited presence in the training data.

Among the misclassifications observed in the DIBaS dataset,

it is noteworthy that some of the most prominent errors pertain

to distinguishing between images of Acinetobacter baumannii

and Pseudomonas aeruginosa, as well as Lactobacillus gasseri

and Bacteroides fragilis. These specific misclassifications may

be attributed to several dataset-related factors and image

characteristics.The challenges in discriminating between

Acinetobacter baumannii and Pseudomonas aeruginosa could

be attributed to their morphological similarities, particularly

when observed under varying imaging conditions and staining

techniques. Both species can exhibit similar rod-shaped or

coccobacillary forms, making it challenging for a model to capture

the subtle differentiating features. The limited availability of
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FIGURE 7

Confusion matrix derived for the DenseNet-121 model.

diverse images capturing distinct variations of these species in the

DIBaS dataset may contribute to the model’s difficulty in effectively

distinguishing between them. Similarly, the misclassifications

involving Lactobacillus gasseri and Bacteroides fragilis may
arise from their overlapping characteristics in terms of cellular

shape and arrangement, which may be challenging to discern in
microscopic images. These genera share similarities in cellular

morphology, such as being gram-positive rods or cocci, further
complicating the classification task. The relative scarcity of images

representing unique variants of these species within the DIBaS
dataset may hinder the model’s ability to generalize accurately to

distinguish them.

In summary, while Densenets demonstrate comparatively high

performance on the DIBaS dataset, the occasional misclassifications

observed highlight the importance of understanding the

dataset-specific challenges and intricacies. Factors observed above

may collectively contribute to the misclassification phenomenon

and warrant further investigation and potential dataset-specific

fine-tuning strategies to enhance the performance of transfer

learning algorithms on the DIBaS dataset.

4.4. Limitations and future work

With respect to the dataset employed, one limitation of our

proposed method is that, although it demonstrated promising

results for the Digital Image of Bacterial Species (DIBaS) dataset

used in this study, its performance may exhibit variability when

applied to different datasets. This variability can be attributed

to the unique characteristics and challenges presented by various

datasets, which might not align with the specific features of the

DIBaS dataset. As a potential avenue for future work, our study

could be extended to encompass a diverse range of datasets

beyond the Digital Image of Bacterial Species (DIBaS) dataset. This

extension would allow us to assess the adaptability and robustness

of our proposedmethod across datasets with varying characteristics

and challenges, thereby addressing the limitation of potential

performance variability highlighted earlier. By exploring multiple

datasets, we can gain a more comprehensive understanding of the

method’s generalizability and effectiveness in different contexts.

Furthermore, some limitations in generalizability exist for the
study performed. Analysis was mainly performed on an initial
dataset of 689 images. Although data augmentations have been
performed, the augmented dataset is only comprised of 5,512 digital

images. Additionally, the transfer learning models examined are
built upon the ImageNet database, which consists of a wide variety

of images of real-world objects. Althoughmany image features may

be learned with the ImageNet database as a foundation, the dataset

may not be specialized in bacteria species identification. Due to the

limited dataset of bacterial species available, the transfer learning

model may not be optimized for the task of bacterial identification.

For the purposes of training a deep learning architecture, a higher
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TABLE 8 Tabulated training time and the number of parameters for

models examined.

Network name Number of
parameters
to be trained

Time Parameters
trained per
second

AlexNet 57,139,041 47min 7 s 20,211

GoogLeNet 6,194,625 49min 2,107

InceptionV3 27,194,297 1 h 9min 51 s 6,488

VGG16 134,395,745 1 h 4min 49 s 34,557

VGG19 139,705,441 1 h 11min 23 s 32,618

ResNet18 11,689,512 48min 24 s 4,025

ResNet34 25,557,032 50min 49 s 8,382

ResNet50 25,557,032 53min 51 s 7,909

ResNet152 60,192,808 1 h 31min 25 s 10,982

DenseNet121 8,011,889 1 h 7 s 2,221

DenseNet161 28,714,033 1 h 21min 5 s 5,902

DenseNet169 14,182,513 1 h 6min 22 s 3,561

DenseNet201 20,046,961 1 h 12min 13 s 4,626

robustness and accuracy may be achieved with higher quantities

of training data. Future work in this area may involve a more

refined strategy of data augmentation or the construction of

an alternate dataset specialized for the application. Furthermore,

models explored in this study rely mainly on altering the structures

and connections of traditional CNNs. As the field of deep learning

and image processing evolves, innovations on the structure and

layout of deep learning networks are already prevalent with the

integration with image processing strategies such as of Vision

transformers. As newer, more refined algorithms are developed, a

comparative analysis may prove valuable in the determination of

optimality with regards to industry specific applications.

5. Concluding remarks

In conclusion, this study provides a comprehensive overview

of modern machine learning methodologies applied within the

healthcare context, specifically concentrating on their role in

preventing infectious diseases and identifying bacterial entities.

The research commences with a concise examination of current

machine learning algorithms utilized in healthcare, underscoring

their significance in the realm of bacterial species diagnosis

and classification. Noteworthy is the thorough literature analysis

encompassing a wide array of studies employing machine learning

and deep learning algorithms for microbial diagnostics. Various

methodologies for categorizing bacterial micro-bodies using

machine learning approaches were examined. Among the 29

instances of literature surveyed, 7 (24.14%) focused on classical

machine learning algorithms applied to bacterial identification.

Additionally, 9 (31.03%) works explored the implementation

of deep learning methods, including the multilayer perceptron

model and convolutional neural networks. Furthermore, 11

(37.93%) studies incorporated transfer learning by leveraging

pre-trained convolutional neural network architectures along

with data augmentation. The analysis of the compiled literature

reveals the predominance of convolutional neural networks as the

preferred deep learning model for image classification, yielding

favorable outcomes. The study also assesses the efficacy of

current transfer learning algorithms when dealing with limited

data samples, particularly in the context of microscopic bacteria

image classification.

Particular emphasis is placed on Convolutional Neural

Networks (CNNs), a pivotal choice for over a decade due to

their autonomous feature extraction capabilities with minimal

human intervention. A noteworthy trend in the field is the

increasing utilization of transfer learning, repurposing pre-trained

models for classifying microbial images. Importantly, this study

goes beyond prior reviews by not only summarizing existing

research but also by actively implementing and evaluating transfer

learning algorithms for microbial detection, using the DIBAS

dataset. This pragmatic approach adds a tangible dimension

to the study, demonstrating the real-world effectiveness and

limitations of these techniques. To assess the performance of

different convolutional neural network architectures, pre-trained

weights from the ImageNet database were employed. These

models (totaling 13) were evaluated using the Digital Images

of Bacterial Species dataset. The evaluation encompassed both

statistical metrics and overall model complexity and efficiency.

From a statistical standpoint, the DenseNet-121 model, boasting

approximately 8 million trainable parameters, exhibited superior

performance in the classification task. It achieved an accuracy

of 99.08%, precision of 99.06%, recall of 99.00%, and an

F1 score of 98.9%. Comparatively, the DenseNet-161 model

outperformed its counterparts in terms of precision, recall, and

the F1 score. While it achieved an accuracy of 98.17%, its

precision reached 99.12%, recall was 99.09%, and the F1 score

reached 99.08%.
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