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In order to address a long standing challenge for internal medicine physicians

we developed artificial intelligence (AI) models to identify patients at risk of

increasedmortality. After querying 2,425 records of patients transferred from non-

intensive care units to intensive care units from the Veteran A�airs Corporate Data

Warehouse (CDW), we created two datasets. The former used 22 independent

variables that included “Length of Hospital Stay” and “Days to Intensive Care

Transfer,” and the latter lacked these two variables. Since these two variables are

unknown at the time of admission, the second set is more clinically relevant. We

trained 16 machine learning models using both datasets. The best-performing

models were fine-tuned and evaluated. The LightGBM model achieved the best

results for both datasets. The model trained with 22 variables achieved a Receiver

Operating Characteristics Curve-Area Under the Curve (ROC-AUC) of 0.89 and

an accuracy of 0.72, with a sensitivity of 0.97 and a specificity of 0.68. The

model trained with 20 variables achieved a ROC-AUC of 0.86 and an accuracy

of 0.71, with a sensitivity of 0.94 and a specificity of 0.67. The top features for

the former model included “Total length of Stay,” “Admit to ICU Transfer Days,”

and “Lymphocyte Next Lab Value.” For the latter model, the top features included

“Lymphocyte First Lab Value,” “Hemoglobin First Lab Value,” and “HemoglobinNext

Lab Value.” Our clinically relevant predictivemortality model can assist providers in

optimizing resource utilizationwhenmanaging large caseloads, particularly during

shift changes.
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1. Introduction

Predicting mortality and morbidity amongst hospitalized patients has long been a

struggle for inpatient Internal Medicine physicians. Sepsis, in particular, leads to over half

the mortality in US Hospitals (Sweeney et al., 2018). Very few recent models offer some hope

for an early warning system to predict worsening outcomes from sepsis (Adams et al., 2022;

Mayampurath et al., 2022; Nestor et al., 2022; Yan et al., 2022). To prevent physicians from

burnout, more hospital organizations are turning to shift work for the care of hospitalized

patients, similar to the Internal Medicine training programs that follow the 80-h work limit

for physicians set by the Accreditation Council for Graduate Medical Education (ACGME).

Such shift work frequently leads to a handoff of patients, with many physicians often being

the sole provider in the hospital for close to 100 patients. Handoff tools such as I-PASS

and other tools can prove ineffective due to subjectivity, inconsistency of updates, and
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copying and pasting practices, which can negatively impact care.

We propose developing an artificial intelligence model that could

predict which patients will be most at risk of increased mortality as

a resource for physicians to prioritize which patients they should

concentrate on during their shift. Unfortunately, physicians on

shift work tend to be reactive to calls of distress from the nursing

or other support staff rather than proactive in addressing urgent

issues. This can often result in patients requiring transfers to

the intensive care unit (ICU). A measure called ward transfer

mortality in the Veterans Healthcare System looks at the death

rate of patients within 30 days of being transferred to the ICU.

This measure is critical in patients with aggressive infections such

as sepsis, pneumonia, bacteremia, abscesses, and endocarditis. All

these require timely interventions for improved outcomes.

In our model, we attempted to look at patients who were

transferred to the ICU at the James A. Haley Veterans’

Hospital. Our high complexity facility follows the usual

academic center model of having trainees such as residents

and fellows working with attending staff. We examined

patients with significant infectious states and those with

pulmonary, neurological, and cardiology diagnoses. In addition,

we looked at the following factors concerning their ward

transfer mortality:

• Drop in Leukocyte count of 50 percent or greater before they

were deemed to require transfer to the ICU;

• Drop in Hemoglobin level of 25 percent or greater before they

were deemed to need transfer to the ICU;

• Presence of a C-Reactive Protein (CRP) being ordered on the

patient during the hospitalization before they were deemed to

require transfer to the ICU;

• Age of the patient;

• Prior hospitalizations before the index hospitalization where

there was a transfer to the ICU.

Our objective was to create an alert notification system

for physicians. When the model’s outcome surpasses the

predetermined threshold, it will alert the doctor of increased risk

of deterioration in the patient’s health status. This will assist the

physicians in prioritizing patients who may require additional

attention. Such an alert would prompt the physician to act in order

to prevent further deterioration. For example:

• Increase use of imaging in patients with infection with no

confirmed source;

• Increase use of broad-spectrum antibiotics and/or infectious

diseases specialist consultation in patients with signs of

systemic infections;

• Increase use of advanced care settings such as Progressive

Care Units (PCU) or Step-down units in order to monitor the

patient better and avoid the need of the ICU admission;

• Consider other advanced procedures such as

bronchoscopy, transesophageal echocardiograms, or

incision/debridement interventions.

It would also help prevent certain heuristic errors in clinical

decision-making, such as anchoring bias (Croskerry, 2003).

2. Materials and methods

2.1. Dataset

Records of patients who were transferred from non-intensive

care units to intensive care units were queried from the Veteran

Affairs Corporate Data Warehouse (CDW). We extracted all the

admissions that resulted in ICU transfer for the period from

10/1/18 to 5/28/22. Two thousand four hundred twenty-five

(2,425) such records were identified. The dataset did not contain

any patient-identifiable information. The patient outcome was

designated as a dependent variable, with bad outcome defined as

the patient dying within 30 days of admission and good outcome as

the patient being alive within 30 days of admission. For a complete

list and description of variables, see Table 1.

The veteran population is predominantlymale, which can cause

the ML models not to generalize well to female veterans (Cao et al.,

2022). Unfortunately, due to the limited dataset (less than twenty-

five hundred data points), we were not able to address this potential

problem in the pilot study. We do plan to address it in a follow-up

project with a vastly enlarged dataset.

TABLE 1 Description of variables.

Variable Description

Outcome 0= Good, 1= Bad (Death within 30 days of

admission)

Age Age of the patient at the time of admission

ED visit flag Was the patient seen first in the Emergency

Room

Admit specialty Admitting specialty name

Transfer ward Intensive Care Unit (ICU) Type

Diagnosis MDC Diagnostic Category

Infection MDC Presence of infection

Platelet 25 drop flag 25% platelet drop

Lymphocytes 50 drop flag 50% lymphocytes drop

Platelet labs found Were platelet results present

Platelet first lab value Platelet values at admission

Platelet next lab value Platelet values right after transfer to ICU

CRP labs found Were CRP results present

Albumin labs found Were Albumin results present

Lymphocytes first lab value Lymphocytes values at admission

Lymphocytes next lab value Lymphocytes values right after transfer to ICU

Hemoglobin labs found Were hemoglobin results present

Hemoglobin first lab value Hemoglobin results at admission

Hemoglobin next lab value Hemoglobin results right after transfer to ICU

Admissions within Prev Year Number of admissions in 12 months prior to the

current admission

Admit to ICU transfer days Days of stay from admission to ICU transfer

Total LOS Total length of stay in the hospital
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The study has been approved by the Research

and Development Committee of the James A. Haley

Veterans’ Hospital, which includes the Ethics Committee.

They have classified it as a non-research Quality

Improvement project.

2.2. Data cleaning and preparation

Columns with more than 20% missing values were deleted.

Other missing values were replaced with “other” for categorical

variables and with the mean value of the column for continuous

FIGURE 1

(A) Confusion matrix for the dataset with 22 independent variables (0 – good outcome, 1 – bad outcome). (B) Confusion matrix for the dataset with

20 independent variables (0 – good outcome, 1 – bad outcome).
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TABLE 2A Results for the dataset with 22 independent variables.

ML method lr GBC LightGBM qda rf xgboost

Test accuracy 0.41 0.88 0.72 0.76 0.58 0.78

Test AUC 0.87 0.87 0.89 0.82 0.84 0.89

Test sensitivity 0.97 0.31 0.97 0.87 0.94 0.91

Test specificity 0.33 0.97 0.68 0.74 0.52 0.76

Threshold 0.1 0.5 0.1 0.4 0.2 0.1

lr, Logistic Regression; gbc, Gradient Boosting Classifier; LightGBM, Light Gradient Boosting Machine; qda, Quadratic Discriminant Analysis; rf, Random Forrest; xgboost, Extreme Gradient

Boosting.

TABLE 2B Results for the dataset with 20 independent variables (without Total Length of Stay and Days to Intensive Unit Transfer).

ML method lr GBC LightGBM qda rf xgboost

Test accuracy 0.37 0.86 0.71 0.68 0.62 0.81

Test AUC 0.83 0.84 0.86 0.86 0.83 0.83

Test sensitivity 1 0.22 0.94 0.91 0.94 0.41

Test specificity 0.28 0.96 0.67 0.65 0.57 0.87

Threshold 0.1 0.5 0.3 0.4 0.2 0.5

lr, Logistic Regression; gbc, Gradient Boosting Classifier; LightGBM, Light Gradient Boosting Machine; qda, Quadratic Discriminant Analysis; rf, Random Forrest; xgboost, Extreme Gradient

Boosting.

variables. In addition, some numeric features were converted to

categorical features based on histogram distribution, with the final

dataset of 8 numeric features and 14 categorical features. Finally,

the data was split into training/validation (90%) and testing (10%)

using the Scikit-Learn Python library.

2.3. Data visualization

The AutoViz Python library was used to graph the dependent

variable (outcome) relationship to various independent variables.

2.4. Model training and evaluation

The PyCaret Python library was used to train, evaluate, and

test sixteen various machine-learning models, including Dummy

Classifier, Random Forrest Classifier, Gradient Boosting Classifier,

CatBoost Classifier, Extreme Gradient Boosting, Light Gradient

Boosting Machine, Extra Tree Classifier, Ada Boost Classifier,

Decision Tree Classifier, Logistic Regression, Ridge Classifier,

Linear Discriminant Analysis, Naive Bayes, K Neighbor Classifier,

Support Vector Machine (Linear Kernel), Quadratic Discriminant

Analysis. Due to an imbalanced dataset (13% bad outcome,

87% good outcome), SMOTE (Synthetic Minority Oversampling

Technique) was used to balance the training dataset. The six

best-performing models were fine-tuned and evaluated on the

unseen data from the testing dataset. In addition, we used 10-

fold cross-validation for the training and fine-tuning of the top-

performing models. The threshold was optimized for the best

sensitivity to detect a bad outcome. The Light Gradient Boosting

Machine (LightGBM)model showed the best results (see Figure 1A;

Table 2A).

TABLE 3 List of important features for the LightGBM (Light Gradient

Boosting Machine) models.

22 Features LightGBM
model

20 Features LightGBM
model

Total Length of Stay Lymphocyte First Lab Value

Admit to ICU Transfer Days Hemoglobin First Lab Value

Lymphocyte Next Lab Value Hemoglobin Next Lab Value

Lymphocyte First Lab Value Platelet First Lab Value

Platelet First Lab Value Platelet Next Lab Value

Since two independent variables, Length of Stay and Days

to Intensive Care Unit Transfer, are unknown at the time of

admission, we removed them from the dataset and repeated the

experiments. Again, the best performance was achieved with the

LightGBM (see Figure 1B; Table 2B).

3. Results

The best results were obtained with the LightGBM models

with both datasets, one that included Length of Stay and Days

to Intensive Care Unit Transfer variables and the other without

these two variables. The former achieved Receiver Operating

Characteristics Curve-Area Under the Curve (ROC-AUC) of 0.89,

an accuracy of 0.72, a sensitivity of 0.97, and a specificity of 0.68,

while the latter achieved a ROC-AUC of 0.86, an accuracy of 0.71,

sensitivity of 0.94 and specificity of 0.67, on the unseen testing

dataset, see Table 2. The top five features for the former model were

Total Length of Stay, Days to Intensive Care Transfer, Lymphocytes

Next Lab Value, Lymphocytes First Lab Value, and Platelet First

Value. For the latter model, the top five features were Lymphocytes
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First Lab Value, Hemoglobin First Lab Value, HemoglobinNext Lab

Value, Platelet First Lab Value, and Lymphocytes Next Lab Value

(see Table 3).

4. Discussion

Previous models looking at poor outcomes were mostly based

on length of stay and days to transfer to the ICU (Paoli et al.,

2018). Such models do not help physicians proactively manage

patients and recognize possibility of clinical deterioration early

enough to prevent ICU transfer. Our artificial intelligence project

was designed to do just that. It clearly shows that there are other

factors (change in lymphocyte count values, hemoglobin values,

or platelet count values) that can be an early warning sign of

deterioration. AI can be invaluable in identifying these factors in

a timely manner.

We can explore numerous future directions regarding this

project’s expansion. One direction would be to ensure that the

hemoglobin drop and platelet count drop are not occurring in

the setting of overt disseminated intravascular coagulation (DIC).

Our project added the lymphocyte count drop, which is not

part of the DIC process and related very consistently with the

hemoglobin drop and the platelet count drop. The lymphocyte

count, in particular, had become an essential acute phase reactant

item in the face of the COVID-19 pandemic, where such dramatic

lymphocyte count drops were noted when the patient started to

become dramatically ill (Illg et al., 2021).

The future direction of this project is to continue to build on

additional factors that refine the predictability model of worsening

of the patient’s condition once admitted to a general medical

or surgical floor. For example, future projects could look at the

relationship between vital signs changes in heart rate and systolic

blood pressure readings, especially if they remain in what would

be considered normal range but still changed from the patient’s

baseline values during the initial parts of the hospitalization. In

addition, future studies may also include variables like temperature,

blood pressure, ventilation, ICD9/10 codes, and vasopressor data,

among others.

Developing an alert for physicians to help them identify

patients objectively from their laboratory values such as changes

in hemoglobin, platelet count, and lymphocyte count would be a

beneficial for medical and surgical house officers who take care of

numerous patients on shift work and often do not perform a direct

evaluation of the patient at the beginning of their shifts or even

during the duration of their shifts. Therefore, implementing an alert

system would aid in identifying patients who need extra attention

during the shift and prioritizing their care.

As hospitals develop teams of infectious disease physicians

and intensivists to help create high-reliability organizational

states, a model like the one we have brought forward in

this paper could push required targeted reviews of patients

by such infectious disease physicians and intensivists. This

would include such interventions as (a) vital signs being

run at a much higher frequency than every shift, (b) vital

orthostatic signs being obtained on such at-risk patients, (c)

employing therapeutic drug monitoring on patients receiving

antibiotic therapy to ensure that drug levels are reaching

expected levels, (d) consideration for expedited imaging

orders depending on the patient clinical situation, and (e)

consideration in academic hospital models of review of patients

by attending physicians if the medical house officer is a resident

in training.

Our pilot study created the AI predictive mortality model

prototype that assists providers and frontline staff in managing

large patient loads during shift change by helping them focus their

efforts toward improving patient outcomes. The key limitation of

our study is the small data size. Undersized data can lead to bias

by underrepresenting certain groups, for example, women and

minorities (Gianfrancesco et al., 2018). In addition, including more

clinically relevant variables could be helpful. Further studies with

more variables and a larger, diverse, and randomized dataset are

needed to make such a model more robust and to generalize better

to various patient populations.
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