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Precise detection and localization of the Endotracheal tube (ETT) is essential for
patients receiving chest radiographs. A robust deep learning model based on
U-Net++ architecture is presented for accurate segmentation and localization of
the ETT. Di�erent types of loss functions related to distribution and region-based
loss functions are evaluated in this paper. Then, various integrations of distribution
and region-based loss functions (compound loss function) have been applied to
obtain the best intersection over union (IOU) for ETT segmentation. The main
purpose of the presented study is to maximize IOU for ETT segmentation, and
also minimize the error range that needs to be considered during calculation of
distance between the real and predicted ETT by obtaining the best integration of
the distribution and region loss functions (compound loss function) for training
the U-Net++ model. We analyzed the performance of our model using chest
radiograph from the Dalin Tzu Chi Hospital in Taiwan. The results of applying the
integration of distribution-based and region-based loss functions on the Dalin
Tzu Chi Hospital dataset show enhanced segmentation performance compared
to other single loss functions. Moreover, according to the obtained results,
the combination of Matthews Correlation Coe�cient (MCC) and Tversky loss
functions, which is a hybrid loss function, has shown the best performance on
ETT segmentation based on its ground truth with an IOU value of 0.8683.

KEYWORDS

endotracheal tube, chest radiograph, deep learning, medical image segmentation,

U-Net++

Introduction

ETT is a wide-bore plastic tube that is inserted into the trachea to provide the capability

of artificial ventilation for patients with in intensive care units (ICU). These tubes are

produced in different sizes and have a balloon at the tip to prevent gastric contents

entering into the lungs. Adult tubes are usually 1 cm in diameter. These tubes are visible

on radiographs since a radiopaque strip is designed within it (Chethan and Hughes, 2008).

Computed Tomography (CT) and X-ray imaging techniques are widely used in medical

applications, such as for the classification of COVID-19 (Barstugan et al., 2020; Özkaya et al.,

2020; Öztürk et al., 2021) and the diagnosis of tumors (Aswathy and Kumar, 2023). A frontal

chest radiograph is usually used to assess the ETT position. The coordinate of the ETT in
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the patient’s body also relies on the position of his or her head;

if the neck is flexed, the tip of the tube would be in the trachea

(Henschke et al., 1997). Chest radiography has been used to confirm

the ETT position in ICU but, in most cases, this method causes

delays which could lead to serious complications and even death.

Considering these facts, experts have advised having a precise ETT

placement which needs to be confirmed through clinical signs and

the detection of exhaled carbon dioxide. The urgency of improving

traditional ETT detection methods has been raised and researchers

have focused on the implementation of machine vision and image

processing techniques to obtain a precise and fast detection. In fact,

accuracy has played a key role in models; thus, this paper has tried

to improve this criterion through applying different loss functions.

In order to achieve proper positioning of the inserted ETT, the

American college of radiology recommends the acquisition of chest

radiographs during intubations in the ICU (Godoy et al., 2012).

Their findings showed that, in about 15% of cases, a repositioning

of ETT was required (Brown et al., 2022). The safe distance of an

inserted ETT within the mid trachea is about 7 cm above the carina

as its upper boundary and at least 3 cm away from this part of the

patient’s body as its lowest boundary (Brown et al., 2022).

It is worth mentioning that there might be a risk of incorrect

intubation which may lead to vocal cord injury if the mentioned

restrictions are neglected (Popat et al., 2012). If the ETT tip gets

too close to the carina, situations such as the partial or complete

collapse of the lung, hyperinflation of the lung, pneumothorax, or

even death of the patient could occur.

Various suggestions have been proposed so far, such performing

radiography after ETT intubation. The ICU is usually equipped

with a portable X-ray machine and chest radiographs (CXRs) are

obtained in a supine anteroposterior (AP) view, however several

challenges, such as external monitoring devices, tubes, or catheters,

can cause ambiguity in the position of an ETT and carina which

can restrict the detection accuracy (Mao et al., 2022). Thus, in

order to reduce these complications, different methods to obtain an

accurate ETT detection have been the main concern of researchers

in this area. Increasingly they have focused on computer-aided

detection (CAD) methods to enhance the detection of incorrect

ETT intubation and reduce the burden on healthcare systems.

The applied strategy in previous automatic CAD methods for

ETT detection can be summarized in four steps: preprocessing,

finding the neck, seed generation, and region growing (Mao et al.,

2022). Having applied feature extraction to detect ETT, these

methods obtained reasonable outcomes. However, the mentioned

approaches are not able to solve the problem since the manual

templates and hyperparameters should be determined according

to experience or the implemented morphology in the process

(Goodman et al., 1976).

An artificial neural network, which is a type of advanced

machine learning algorithm, can be considered as the basis for

the most important deep learning techniques. More recently,

different deep learning techniques have been applied to a wide

range of vital demands related to image processing, including image

segmentation, which has played an important role in this research

to detect the ETT (Goodman et al., 1976).

Detection of the tip position of the ETT using X-ray images

in order to reduce the related error to the ground truth value is

the main concern of the presented study. Although deep learning

models are widely used for ETT segmentation, finding appropriate

loss functions and encoders has remained a major challenge.

Because of this, finding the best loss function is one of the main

objectives of the presented paper. For this purpose, different loss

functions from distribution and region-based groups are evaluated

in this study. Then, their different integrations are used to obtain

the best compound loss function for ETT segmentation and

localization. Moreover, three well-known encoders are studied

to obtain the best feature extraction network to achieve the

predefined purpose.

Efforts have been made to implement compound loss functions

based on distribution and region loss functions to enhance the

results for ETT segmentation and localization in this paper. A U-

net++model has been optimized based on different loss functions

and different encoders. Finally, its performance has been evaluated

by implementing different loss functions.

Our paper makes several significant contributions to the field

of ETT segmentation and localization. Firstly, we collected expertly

annotated data from the Dalin Tzu Chi Hospital, ensuring high-

quality data for accurate ETT segmentation. Secondly, we proposed

novel compound loss functions based on distribution and region-

based approaches, designed to address specific challenges in ETT

segmentation and improve accuracy.We evaluated the effectiveness

of various loss functions and combined them to train the U-Net++

model. Thirdly, we investigated the impact of different encoders

on ETT segmentation performance, focusing on RegNet and

ResNet encoders with U-Net++ architecture. This exploration was

important to identify limitations in existing encoders and provide

insights into selecting the most effective ones for this task. Our

experimental results demonstrated that the proposed combination

of distribution and region-based loss functions outperformed single

loss functions for ETT segmentation and localization.

The paper is structured as follows. In Section 2, we provide

a brief review of previous works on ETT segmentation and

localization. Section 3 outlines our proposed methods based on

U-Net++ and introduces two main categories of loss function.

The results and discussion are presented in Section 4, and the

conclusion is provided in Section 5.

Related works

Portability, rapid image acquisition, and availability of

immediate information on the bedside have turned chest

radiography into the most common imaging technique in the ICU.

The severity of underlying disease and the frequency with which

a patient needs to be monitored are the two main criteria making

ICU patients more likely to develop side effects of their disease

or intervention. To monitor the disease process and also prevent

further difficulties from interventions, the existence of a portable

chest radiography in the ICU is essential; however, it is subject

to overuse especially in patients with a stable condition. Chest

radiograph usage in the ICU should not be used when it could

lead to severe harm. The emerging role of bedside lung ultrasound,
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which was implemented by clinicians, has been studied in recent

literature (Suh et al., 2015).

Detection of an endotracheal tube (ETT) in the patient’s

body with high precision is vital in the ICU setting, where

timely identification of a mispositioned support device like an

ETT may prevent mortality. Thus, a series of deep learning-

based algorithms which have been designed to detect ETT’s

position relative to the carina on chest radiographs has been

proposed (Kara et al., 2021). In some cases, patients with ETT

intubation are most likely to receive a chest x-ray (CXR) to

see if the process has been correctly completed or if it should

be repositioned. A radiologist evaluates the ETT position with

its ground truth value (Harris et al., 2021). A machine learning

model, such as the updated version of the YOLO-V3 framework,

is applied to achieve this objective. To measure the ETT-

Carina distance, a V3 deep Neural Network has been developed

and showed its effective performance for detecting ETTs. The

efficiency of deep learning segmentation models for ETT position

on frontal CXRs has been studied in Schultheis and Lakhani

(2022).

Deep learning has demonstrated an acceptable performance

on the images and the obtained outcomes of CNN models can be

applied on the image datasets, which have been designed for feature

extraction from images.

Previously, CNN models were not capable of dealing with

temporal or spatial features. This motivated researchers to create

“U-Net” models, which contain two sections: the first part is

a “classic” Convolutional Neural Network that scans the image,

extracts its related patterns, then adds high resolutions features

to them. Then, to recreate a full binary image, the predesigned

network increases the scale of its hidden layers. Taking a full

image as input and generating another image as the output can

be considered as the expected task of the presented models. It

is expected that, in the output image, the background would be

delimited from the existing object since it contains values of 0 and

1 (Du et al., 2020).

Later U-net++models have implemented dense block ideas to

improve the system three ways, namely having convolution layers

on skip pathways, having dense skip connections on skip pathways

and having deep supervision, which enables model pruning (Zhou

et al., 2019).

The efficacy of deep convolutional neural networks (DCNNs)

in determining subtle, intermediate, and more obvious image

differences in radiography has been studied in Lakhani (2017).

FIGURE 1

Proposed system for ETT segmentation.
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Others have investigated different aspects, such as if a directed

clinical evaluation could eliminate the need for routine daily CXRs

(Brengman et al., 1999). Other studies like Brengman et al. (1999)

believes that on demand radiography is equivalent to daily routine

chest radiography (Brengman et al., 1999). The frequency of daily

CXRs for patients who were hospitalized in the USA had been

monitored in Hejblum et al. (2008).

In this paper, U-Net++ model is used for ETT segmentation.

Different well-known encoders and loss functions are evaluated

to obtain the best-trained U-Net++. Then, the compound loss

functions based on distribution and region-based loss functions

are proposed to achieve the best results for ETT segmentation

and localization.

Methodology

Deep learning structures were used to obtain the best

performance for ETT segmentation (Goodman et al., 1976).

According to the literature and our research, selecting appropriate

encoders and loss functions has an effective impact on ETT

segmentation and localization.

The main contributions of this study are (1) evaluating

different encoders, (2) investigating the different distribution

(Dice, Tversky, and Jaccard) and region-based (BCE, Focal, and

MCC) loss functions for training U-Net++, and (3) integrating

distributed-based loss functions and region-based loss functions

(compound loss functions) to obtain the best performance accuracy

for ETT segmentation and localization, which is shown in

Figure 1.

The proposed method consists of five major steps: dataset,

preprocessing, developing a model based on different loss

functions, evaluation, and visualization of the results.

Step 1: The data from the Dalin Tzu Chi Hospital are used for

evaluating ETT segmentation.

Step 2: This step is preprocessing, which includes maxpooling

and cropping for decreasing raw images’ size (reducing

computational complexity) and preparing them for the

next step.

Step 3: In this step, the obtained images are fed into U-Net++

models for detecting ETT appropriately. In this step,

distribution and region-based loss functions along with

compound loss functions are used for ETT training.

Step 4: After obtaining the trained U-Net++model, Euclidean

distance between the predicted tip and the ground truth

point are calculated, then the percentage of samples with

the error less than a specific value (PSE) is obtained.

Step 5: Predicted tip and the ground truth point are shown on

input images, in the visualization step.

FIGURE 2

Samples of data and its annotation in the Dalin Tzu Chi dataset.
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TABLE 1 The amount of training, validation, and test samples in our

dataset.

Number of folds Train (all data) Validation Test

Fold 1 148 (292) 49 47

Fold 2 147 (291) 49 49

Fold 3 147 (291) 49 49

Fold 4 147 (291) 49 49

Fold 5 148 (292) 48 49

It is worth mentioning that the procedure is carried out in three

phases, namely training, validation, and testing. The segmentation

task is performed only for the testing phase on unseen image data

with different loss functions. The five steps of the proposed method

are described as follows.

Dataset

A chest x-ray dataset was applied to analyze the impact of the
proposed method. The data were collected from chest radiographs

of intubated ICU patients which had been confirmed by doctors

from the Dalin Tzu Chi Hospital and who corrected the ground
truth (see Figure 2).

The deviation of 5-fold cross validation is shown in Table 1,

where 144 additional images from the Royal Australian and New

Zealand College of Radiologists (RANZCR) Catheter and Line
Position (CLiP) challenge dataset (Jarrel Seah et al., 2023) are also

added to the training dataset of each fold. This study was approved

by the institutional review board (IRB) of the Buddhist Dalin Tzu
Chi Hospital (IRB number: B11103010).

Pre-processing

For preprocessing, the input images were preprocessed to

enhance the generalization ability and speed up the process of

model training so that the model could be trained better. To

downscale images by extracting the most important feature, the

maxpooling with kernel 3 × 3 was performed (step A in Figure 3).

Then, the images were cropped based on the center of images

since this area is the approximate position of ETT (step B in

Figure 3).

Moreover, during the training stage, data augmentation

techniques were used to reduce the overfitting and increase the

robustness and generalizability of the model. First of all, 50% of

input images were flipped horizontally around the y-axis. Then,

affine transforms with scale range between 85 and 115% along with

5 degrees for rotation were randomly applied on these images,

which then shifted for 0.1. Finally, Contrast Limited Adaptive

Histogram Equalization (CLAHE) with an upper threshold value

of (1, 4), and 0.7 for probability of applying the transform

were applied. The augmentation stages were applied to both

original input images and their ground-truth. Figure 4 displays

several examples of data augmentation applied to the original

input images.

Deep learning model based on loss
functions

The U-Net model was developed and applied to medical

image segmentation, which submitted the best performance in

two IEEE International Symposium on Biomedical Imaging (ISBI)

challenges, including neural structure segmentation and cell

tracking (Ronneberger et al., 2015). U-Net++ (Zhou et al., 2018)

is the main architecture used in for ETT segmentation in this

study. Figure 5 demonstrates the changes to the skip connection

structure of the U-Net. The idea of improvement is to use the

dense skip connections. Compared to the U-Net, these dense

skip connections can maintain more detailed information by

improving the encoder’s feature maps before combining them with

the decoders, whereas feature maps with the same scale can be

combined through the U-Net.

Figure 5 illustrates the U-Net++ architecture utilized in our

study. The main structure consists of an encoder sub-network

followed by a decoder sub-network. The black sections indicate

the original U-Net architecture, while the blue and green sections

indicate the dense convolution blocks on the skip pathway. The

red sections indicate the deep supervision mechanism. These

components (red, green, and blue) are the primary differences

between U-Net and U-Net++.

Suppose xi,j denotes the output of Xi,j where i and j denote

the down-sampling layer and the convolution layer. The xi,j is

formulated as follows:

xi,j =







H
(

xi−1,j
)

j = 0

H

([

[

xi,k
]j−1

k=0
, ⊓(xi+1,j−1)

])

j > 0
(1)

Here, ⊓(.) indicates the up-sampling layer and H (.) denotes

a convolution operation. Also, the notation [ ] represents the

concatenation layer.

ResNet and RegNet have an acceptable performance in the

recent deep learning applications (He et al., 2016; Radosavovic

et al., 2020). Hence, we have explored the use of ResNet and RegNet

on ImageNet as an encoder for feature extraction.

U-Net++ model has demonstrated a high performance in the

previous ETT segmentation works (Frid-Adar et al., 2019). In this

paper, distributed, region, and compound loss functions, which are

used for training the U-Net++model, can be listed as Binary Cross

Entropy (BCE) loss (Kuang and Tie, 2021), Dice loss (Shen et al.,

2018), Focal loss (Li et al., 2020), Jaccard loss (Duque-Arias et al.,

2021), Tversky loss (Salehi et al., 2017), andMCC (Chen et al., 2016;

shown in Figure 6).

Loss functions that have been applied in the current approach

are going to be reviewed in this section briefly. Before that, however,

it is worth clarifying the definitions of these three categories and

their natures.

As shown in Figure 6, three different loss functions are

evaluated and proposed in this paper. The first category,

distributed-based loss functions, are based on the distribution of

labels (Rajaraman et al., 2021) whereas Region-based loss functions

have been applied to decrease the mismatch or increase the overlap

regions among ground truth and predicted value in segmentation

(Jadon, 2020). Each loss function is going to be introduced here.
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FIGURE 3

Preprocessing step—Maxpooling and cropping the input image.

FIGURE 4

Samples of data augmentation (flip, a�ne, and rotation transforms).

Distribution-base loss function

BCE loss
Binary cross-entropy loss function (Kuang and Tie, 2021) has

been implemented for classification problems with a single output

unit whereas categorical cross-entropy can be considered as the loss

function for multiclass classification. This loss function combines a

sigmoid layer with a BCE Loss in one single class. The presented

version is numerically stable in comparison with previous plain

sigmoid along with a BCE loss function implemented on one layer

which has taken advantage of applying the long-sum-exp trick.

If I unreduced (i.e., with reduction set “o ‘n’ ne”) loss between

ground truth
(

y
)

and (x) stand as predicted value then loss can be

described as:

l
(

x, y
)

= BCEL =
{

l1,...,lN
}T

ln = −ωn[yn.logσ (xn) +
(

1− yn
)

. log(1− σ (xn))] (2)

Where l stands for values of loss in different batches, BCEL is

the set of loss values, N indicates the batch size, σ is the sigmoid

function, and ω is the weight of nth input. If the value of reduction

is not equal to “none” (default “mean”) then:

l
(

x, y
)

=

{

mean (L) , if reduction = ‘mean’;

sum (L) , if reduction = ‘sum’
(3)

It is used to measure the rate’s error of a reduction, for instance

an auto-encoder. Remember that the ground truth y[i] should

depict its values in the interval of [0,1].

By adding weights to positive instances there would be the

possibility of commutating recall and precision. In the case of

multi-label classification, the given formula can be used to describe

the loss function:

lc
(

x, y
)

= Lc =
{

l1,c, . . . , lN,c
}T

Ln,c = −ωn,c[pcyn,c.logσ
(

xn,c
)

+
(

1− yn,c
)

. log(1− σ (xn,c))]

(4)

Where c is the class label (c > 1 for multi-label binary

classification, c = 1 for single-label binary classification), n is the

sample’s number in each single batch, and pc stands as the weight of

the positive answers for the class c. If pc > 1 then it is expected to

have an increase in the recall and in case of pc < 1 the precision’s

value would increase.
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FIGURE 5

Model architecture using RegNet encoder with U-Net++ decoder.

FIGURE 6

Region, distributed loss functions, and di�erent combination of them (compound) used for U-Net++ training phase.

Focal loss
Class imbalance has been addressed through focal loss (Li et al.,

2020) during training steps for problems like object detection.

By implementing a modulating term to the cross-entropy, focal

loss focuses on learning the hard-misclassified instances. It can

be considered as a dynamically scaled cross entropy loss function,

where the scaling factor goes to zero as the confidence in the correct

class increases in value. This scaling factor would automatically

decrease the weight of easy samples’ contribution during the

training process while simultaneously causing the model to focus

on hard ones. Generally, the factor (1− pt)
γ has been added to the

standard cross entropy criterion throughout the focal loss function.

It should be mentioned that p is a value between 0 and 1 which is

known as the model’s estimated probability and pt is defined as

pt =

{

p if y
(

label of sample
)

= 1

1− p O.W
(5)

Setting γ > 0, which is known as tunable focusing parameter,

would reduce the relative loss for well-classified samples (pt > 0.5),

and would attract more attention on hard, misclassified samples.

Here, the tunable focusing parameter is a non-negative value

(γ ≥ 0).

FL
(

pt
)

= −(1− pt)
γ log(pt) (6)
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FIGURE 7

Calculate the distance between real and predicted ETT.

MCC loss
MCC loss (Chen et al., 2016) is an informative metric which

can also be implemented in cases of skewed distributions and has

been shown to be an optimal metric when designing classifiers for

imbalanced classes. The most useful expression for computation

was from the original article by Gorodkin. Multi-classMCC is often

called “RK statistics.”

RK =
NTr (C) −

∑

kl C̃K Ĉl
√

N2 −
∑

kl C̃kĈ
T
l

√

N2 −
∑

kl C̃
T
k
Ĉl

(7)

Where N is the samples’ number, C̃k is the Kth row of the

confusion matrix C, C̃l the 1th column of C, CT is C transposed,

and Tr(C) is the trace of C.

Region-based loss function

Dice loss
Dice loss (Shen et al., 2018) is a metric function used to evaluate

the similarity of two samples in the given interval of [0,1]. The

larger the value, the more similar the two mentioned samples are.

DL
(

y, x
)

= 1−
2yx+ 1

y+ x
(8)

Where x is the prediction of the model and y is its ground

truth value.

Jaccard loss
Jaccard loss (Duque-Arias et al., 2021) and Dice loss are similar;

it is also applied to optimize the segmentation metric directly. It

actually calculates the similarity between two finite sample sets

(ground truth values and predicted values), and it is defined as the

measure of the mentioned set’s intersection divided by the measure

of their union:

J
(

x, y
)

=
|x ∩ y|

|x ∪ y|
(9)

Tversky loss
Tversky loss assigns different weights to false negative (FN) and

false positive (FP). This is different to dice loss as it uses equal

weights for FN and FP (Salehi et al., 2017).

Let α,β > 0 and y, x ∈ [0, 1]M . Then the smooth Tversky index

corresponding to y and x respectively defined as ground truth and

the output of the predicted value is defined as:

τα,β
(

y, x
)

=
yx

yx+ α
(

1− y
)

x+ βy(1− x)
(10)

Clearly if y, x ∈ {0, 1}M , τα,β
(

y, x
)

then it is the same as the

discrete Tversky index described by the given equation:

Tα,β
(

y, x
)

=
TP

TP + αFP + βFN
(11)

In the given formula, TP stands for True Positive and FP and

FN are known as false positives and false negatives, respectively.

Compound loss function

Getting close to the ground truth value of the ETT position

motivated the authors to implement and evaluate different loss

functions from distribution and region-based loss function and

combine them to find the best loss function for U-Net++

training phase. Doing so would eliminate the mentioned obstacles

that might happen in hospitals and reduce the risks of ETT

mispositioning, thereby improving the safety of the procedure.

Nine different combinations of distribution-based and region-

based loss functions (compound loss part in Figure 6) that have

been studied in the presented paper are going to be discussed in

the further section of the paper.

Evaluation metrics and visualization

Two performance evaluations are considered for the

effectiveness of the U-Net++ model with different backbones and
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TABLE 2 IOU score obtained from UNet++ for di�erent encoders.

Encoders IOU score

Fold1 Fold2 Fold3 Fold4 Fold5 Mean

regnetX_120 0.8757 0.8554 0.7916 0.8453 0.8711 0.8478

regnetY_120 0.9033 0.8253 0.7260 0.8036 0.8331 0.8182

resnet50 0.8796 0.8558 0.7237 0.8036 0.8331 0.8191

different loss functions: IOU [Jaccard loss in Equation (9)] for

evaluating ETT segmentation and calculating distance between

real ground truth and predicted ETT for assessment of the

ETT localization.

Figure 7 represents the Euclidean distance between the

predicted tip and the ground truth point is calculated through:

d =

√

(

b2 − b1
)2

+
(

(a2 − a1
)2

(12)

Where (a1, b1) and (a2, b2) are respectively considered as the

coordinates of the predicted tip and the ground truth tip positions.

The percentage of samples with the error less than a specific

value (PSE) is given by:

PSE =
Number of samples with d < value

Total number of samples
× 100 (13)

Where value belongs to {0.25, 0.5, 1, 1.5, 2} and d stand for

calculated Euclidean distance for each sample.

Results

The different experiments on the dataset (described in Section

3.1) are conducted to evaluate the impact of loss functions

for ETT segmentation and the effectiveness of the proposed

method. The results for different loss functions and different

encoders are presented and compared. Finally, the distance

between the true location and predicted location obtained

from the proposed method are compared. All simulations have

been carried out in Python 3.8.13 using PyTorch package

on a machine equipped with core i9 process with speed

2.90 GHz and 64 GB of memory and NVIDIA GeForce

RTX 3080 Ti.

Evaluation of di�erent encoders

The main step in image processing is feature extraction,

which was provided by statistical algorithms or applying some

filters in the past. However, features have recently been extracted

automatically by introducing deep learning models. Some have

become popular and applied for different data analysis domains.

These networks are now used for features extraction or in

the beginning of any deep learning model and its named

encoders. In this paper, the three encoders are evaluated as

the pretrained neural network: regnetX_120, regnetY_120 from

RegNet encoder, and resnet50 from ResNet encoder. The IOU

scores are calculated for these encoders and presented in

Table 2.

As is expected, the IOU score which has been applied to object

detection problems can measure the overlaps of a predicted value

vs. actual bounding box of an object. The closer the predicted

bounding box values to their actual bounding box values, the bigger

the intersection would be and as a result the value of IOU would

increase (Kim and Lee, 2020).

In Table 2, obtained values of IOU Score related to

three different implemented encoders, namely regnetX_120,

regnetY_120, and resnet50, on five various folds along with

their means are summarized. Thus, according to the definition

of IOU criteria, performance of regnetX_120 on Fold1 has

been allocated the IOU value of 0.8757 in comparison with

other encoders. Performance of regnetY_120 model on the

1st-fold has allocated the maximum value of 0.9033 among

the other encoders and the same situation happened for

resnet50 with the maximum value of 0.8796. According to

the presented mean values of the models, it can be concluded

regnetX_120 with the mean value of 0.8478 has shown the

best performance in predicting the ETT position among the

mentioned encoders.

Evaluation of di�erent loss function

The calculated IOU scores on the training dataset for different

loss functions are listed in Table 3 along with their mean

values. From the presented values, it can be seen that the

maximum IOU score related to BCE loss function happened

on Fold1 with a value of 0.8648 but, by considering Dice

loss function as a substitute of the previous loss function,

its related IOU score would still occur on the same encoder,

namely Fold1 with the value of 0.8583. For the remaining

loss functions, namely Focal, Jaccard, and MCC loss functions,

the IOU score has allocated its maximum values on Fold1

respectively as 0.8849, 08571, and 08841. In the case of Tversky

loss function, the IOU score achieved its highest value on

Fold 5 with the value of 0.8396. Based on the obtained mean

values listed in the given table, MCC loss function would

lead to the highest value of IOU score which can be seen as

the best implemented loss function. In terms of IOU score,

distribution-based loss functions performed better than region-

based loss functions. The average value corresponds to the mean

parameter for mentioned loss functions respectively obtained

as 0.8361 and 0.7560.
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TABLE 3 IOU score for ETT segmentation based on single loss function.

Groups Loss function IOU score

Fold1 Fold2 Fold3 Fold4 Fold5 Mean

Region-base loss Dice 0.8583 0.8453 0.7290 0.7391 0.7797 0.7902

Tversky 0.6864 0.7201 0.7119 0.7541 0.8396 0.7424

Jaccard 0.8571 0.7007 0.6322 0.7229 0.7653 0.7356

Average= 0.7560

Distribution-based loss BCE 0.8648 0.8377 0.7893 0.8421 0.7865 0.8240

Focal 0.8849 0.8319 0.8004 0.8308 0.8412 0.8378

MCC 0.8841 0.8419 0.7732 0.8731 0.8616 0.8467

Average= 0.8361

TABLE 4 IOU score for ETT segmentation based on combined loss functions.

Loss function IOU score

Fold1 Fold2 Fold3 Fold4 Fold5 Mean

1 BCE-Dice 0.8963 0.8839 0.7691 0.8603 0.8852 0.8590

2 BCE-Jaccard 0.8965 0.8498 0.7915 0.8671 0.8728 0.8555

3 BCE-Tversky 0.8697 0.8712 0.7781 0.8707 0.8728 0.8525

4 Focal-Dice 0.8963 0.8617 0.8283 0.8709 0.8689 0.8652

5 Focal-Jaccard 0.8928 0.8623 0.8175 0.8691 0.8800 0.8643

6 Focal-Tversky 0.8934 0.8802 0.8128 0.8706 0.8733 0.8661

7 MCC-Dice 0.9005 0.8550 0.7801 0.8687 0.8667 0.8542

8 MCC-Tversky 0.8984 0.8775 0.8247 0.8711 0.8699 0.8683

9 MCC-Jaccard 0.8812 0.8753 0.7932 0.8725 0.8594 0.8563

Average= 0.8601

The bold values in each column indicates the highest IOU score.

Evaluation ETT segmentation for
combining loss functions

IOU score values of hybrid loss functions are listed in Table 4.

These functions are BCE-Dice, BCE-Jaccard, BCE-Tversky,

Focal-Dice, Focal-Jaccard, Focal-Tversky, MCC-Dice, MCC-

Tversky, and MCC-Jaccard. The maximum value of IOU score

in Fold 1 is related to MCC-Dice loss function with the value

of 0.9005. For Fold 2, the mentioned value is related to the

BCE-Dice loss function with the value of 0.8839, whereas IOU

has allocated the maximum value on Fold 3 through Focal-Dice

with the value of 0.8283. In the case of Fold 4, IOU reached its

maximum value of 0.8725 through MCC-Jaccard loss function.

BCE-Dice loss function has assigned the maximum value of

0.8852 to IOU parameter on Fold 5. The mean value of each loss

function is given in the last column of the table and is based on

the achieved maximum value which is related to the MCC-Tversky

loss function; it has the best performance among all nine loss

functions on all 5-folds. Moreover, the average value of IOU

score for all combinations is 0.8601, which demonstrates the

better performance of individual region-based and distribution

loss functions (in Table 3). Therefore, the integration of the

region and distribution-based loss functions demonstrated the

higher capability for ETT segmentation based on the achieved

IOU score.

Distance between real and prediction ETT
locations

In Table 5, the distance between real and prediction ETT

locations are summarized. Minimum distance obtained through

distribution-based loss functions including BCE, Focal and MCC

is related to Focal loss function whereas the Dice loss function

has shown the best performance among the other region base

loss functions to determine the average distance on 5 studied

folds. The maximum value of mean parameters on all 5 studied

folds for the entire set of loss functions is related to the MCC-

Tversky with the value of 0.8683, which demonstrates its great

performance on different folds. In the third group of the given

table, which is related to the compound loss functions and includes

BCE-Dice, BCE-Jaccard, BCE-Tversky, Focal-Dice, Focal-Jaccard,

Focal-Tversky, MCC-Dice, MCC-Tversky, and MCC-Jaccard, the

best fitted value is related to the first member of this group with
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the value of 0.2901. Since obtaining the minimum error between

ground truth value and model prediction of ETT position is the

main objective of the given table, BCE-Dice loss function from the

compound loss function group has the best performance among

all implemented loss functions with a mean value of 0.2901.

Three different values have been calculated correspond to three

TABLE 5 The calculated distance (cm) between real and predicted ETT locations.

Group Loss function Distance (cm)

Fold1 Fold2 Fold3 Fold4 Fold5 Mean

Region-based loss Dice 0.3244 0.3741 0.6841 0.6814 0.5624 0.5253

Tversky 0.7420 0.4166 0.5843 0.5407 0.4392 0.5446

Jaccard 0.3909 0.5124 1.6230 0.7222 0.5468 0.7591

Average= 0.6096

Distribution-based loss BCE 0.3847 0.4069 0.4670 0.3993 0.3498 0.4015

Focal 0.2225 0.4317 0.3255 0.4192 0.4765 0.3751

MCC 0.2996 0.4503 0.4447 0.3289 0.4114 0.3870

Average= 0.3878

Compound loss BCE-Dice 0.1835 0.2579 0.3905 0.3385 0.2803 0.2901

BCE-Jaccard 0.1728 0.4875 0.3546 0.3446 0.3897 0.3498

BCE-Tversky 0.2464 0.3244 0.4573 0.3880 0.3897 0.3611

Focal-Dice 0.2180 0.5053 0.2742 0.3420 0.3489 0.3377

Focal-Jaccard 0.2154 0.3368 0.3352 0.3454 0.2734 0.3012

Focal-Tversky 0.2304 0.2455 0.3052 0.2899 0.4418 0.3168

MCC-Dice 0.1959 0.3377 0.4748 0.3506 0.4079 0.3534

MCC-Tversky 0.2358 0.3014 0.4137 0.4270 0.4019 0.3560

MCC-Jaccard 0.3608 0.2420 0.3449 0.3897 0.3993 0.3473

Average= 0.3348

The bold value indicates the minimum average error on different studied folds.

TABLE 6 Comparison of distribution, region, and compound loss function for ETT localization.

Group Loss function PSE (%)

Error < 0.25 Error < 0.5 Error < 1 Error < 1.5 Error < 2

Distribution-based loss BCE 42.77 74.56 93.99 96.55 97.39

Focal 53.92 84.11 92.74 95.34 96.17

MCC 53.13 83.16 93.97 94.39 96.08

Region-based loss Dice 45.27 77.41 91.06 94.00 96.14

Tversky 46.38 69.48 84.45 90.55 93.53

Jaccard 31.84 59.57 80.48 86.97 90.46

Compound loss BCE_Dice 62.08 88.77 94.41 96.93 97.39

BCE_Jaccard 65.47 88.81 93.14 95.71 97.86

BCE_Tversky 59.44 84.44 92.25 94.40 96.50

Focal_Dice 61.65 87.14 94.87 97.43 98.32

Focal_Jaccard 63.91 87.08 94.44 96.14 97.86

Focal_Tversky 63.58 87.99 95.29 97.82 98.28

MCC_Dice 59.34 82.57 93.91 96.14 97.44

MCC_Tversky 61.68 87.56 93.57 95.67 96.55

MCC_Jaccard 63.80 85.32 93.13 95.76 96.18

The bold values in each column indicate the highest PSE performance through its related loss function.
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different groups of loss functions. Values of the mean parameter

corresponding to distribution-based loss, region-based loss, and

compound loss functions have been obtained as 0.3878, 0.6096,

and 0.3348. Therefore, the proposed compound loss functions

have shown the best performance for ETT localization among the

studied groups, whereas in the other two cases the distribution-

based loss functions have better performance for ETT localization.

An ideal ETT placement has been measured by the distance

between ETT’s tip and its ground truth value. Five different

categories based on misplacement of ETT have been shown in

Table 6. The first category which has been indicated by Error <

0.25(cm) depicts the percentage of error’s rate in ETT placement

among 15 different studied loss functions which has been studied

on test samples. It can be seen that BCE_Jaccard loss function has

achieved the best performance in ETT placement, since 65.47%

of test samples have errors <0.25 between model prediction and

its ground truth value. The same measurements in the cases of

the other four categories have been investigated. BCE_Jaccard

loss function in 88.81% of studied test cases has depicted error

values <0.5; in 95.29% of studied test samples Focal_Tversky loss

function has error values <1; in 97.82% of studied test samples

Focal_Tversky loss function has shown errors with values of <1.5;

and 98.32% of studied test samples which have implemented

Focal_Dice loss functions have error values of <2.

Conclusion

In this paper, the impact of different loss functions and encoders

is evaluated for ETT segmentation and localization. Moreover, the

various combinations of region-based and distributed-based loss

functions were assessed to obtain the optimum configuration of U-

Net++ for ETT segmentation. We tested the proposed integration

loss functions for training U-Net++ on CXR from the Dalin

Tzu Chi Hospital database. The results and comparison analyses

demonstrate the robustness of segmentation and localization

performance of the presented technique. According to the

obtained results, the correspondent average IOU scores for ETT

segmentation related to distribution, region, and compound loss

function groups respectively are given as 0.8361, 0.7560, and 0.8601.

The best IOU score is obtained by integration of MCC and Tversky

(MCC-Tversky from the proposed compound group) with the value

of 0.8683. Based on the calculated distance between the real and

predicted position of ETT, the compound groups demonstrate the

better performance for ETT localization. The minimum error was

obtained through BCE-Dice with the value of 0.2901 cm from the

proposed compound loss function groups.

In future works, we plan to pursue four significant study

streams. Firstly, we will consider different methods of combining

loss functions to improve the performance of ETT segmentation,

including weighting schemes. Secondly, we will investigate and

extend the proposed compound loss functions to a more generic

framework for ETT and Carina segmentation and localization.

Thirdly, we will optimize the proposed method for real-time

applications. Finally, we will explore the development of a new deep

learning model to further improve segmentation accuracy.
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