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The extensive application of deep learning in the field of quantitative risk

management is still a relatively recent phenomenon. This article presents the key

notions of Deep Asset-Liability-Management (“Deep ALM”) for a technological

transformation in the management of assets and liabilities along a whole term

structure. The approach has a profound impact on a wide range of applications

such as optimal decision making for treasurers, optimal procurement of

commodities or the optimization of hydroelectric power plants. As a by-product,

intriguing aspects of goal-based investing or Asset-Liability-Management (ALM)

in abstract terms concerning urgent challenges of our society are expected

alongside. We illustrate the potential of the approach in a stylized case.
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1. Introduction

Mismatches between opposing fixed and floating prices along a whole term structure

are omnipresent in various business fields and raise substantial business risks. Already

humble approaches lead to analytically intractable mathematical models entailing high-

dimensional allocation problems with constraints in the presence of frictions. This

impediment often leads to over-simplified modeling (which still needs sophisticated

technology), uncovered risks or overseen opportunities. Spectacular successes of deep

learning techniques in language processing, image recognition, learning games from tabula

rasa, or risk management, just to name a few, are stimulating our imagination that asset-

liability-management (ALM) might enter a new era. This novel approach, briefly denoted

“Deep ALM”, raises a huge field of mathematical research questions such as feasibility,

robustness, inherent model risk and inclusions of all economic aspects. If we answer these

questions, this could possibly change the ALM practice entirely.

ALM is a research topic that may be traced back to the seventies of the previous century

when Martin L. Leibowitz and others developed cash-flow matching schemes in the context

of the so-called dedicated portfolio theory; see Fabozzi et al. (1992). In the eighties and

nineties, ALM was an intensively studied research topic in the mathematical community.

This unanimously important branch of quantitative risk management has been dominated

by techniques from stochastic control theory; e.g., see Consigli and Dempster (1998) by

Giorgio Consigli and Michael A. H. Dempster or Frauendorfer and Schürle (2003) by

Karl Frauendorfer and Michael Schürle for articles utilizing dynamic programming. Further

aspects of the historical evolution are treated in Ryan (2013) by Ronald J. Ryan. However,

already over-simplified modeling involves a high complexity both from the analytical and

the technological viewpoint. A cornerstone in this regard is Kusy and Ziemba (1983) by

Martin I. Kusy and William T. Ziemba. They consider a rather advanced and flexible ALM
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model by specifying an economic objective (e.g., the maximization

of the present value of future profits), a series of constraints (e.g.,

regulatory requirements and liquidity assurance) and penalty costs

for constraint violations.

Prevalent approaches applied in the industry such as solely

immunizing oneself against parallel shifts of the yield curve have

remained suboptimal until this day; e.g., see Spillmann et al.

(2019) by Martin Spillmann, Karsten Döhnert, and Roger Rissi

for a recent exposition. Particularly, the empirical approach

with static replicating portfolios described in the Section 4.2

of Spillmann et al. (2019) is often applied in mid-sized retail

banks. Although the impact of stress scenarios is investigated in

the light of regulatory requirements, the holistic investment and

risk management process of many treasury departments remains

insufficient. More sophisticated approaches, such as for instance

option-adjusted spread models (e.g., see Bardenhewer, 2007 by

Martin M. Bardenhewer), have not become established in the

financial industry. Therefore, despite many achievements, it is fair

to say that ALM has not entirely fulfilled its high expectations.

The fresh approach on deep hedging by Hans Bühler,

Lukas Gonon, Josef Teichmann, and Ben Wood (see Bühler

et al., 2019) might pave a way for a new era in quantitative risk

management. It is clear that classical yet analytically intractable

problems from ALM can be tackled with techniques inspired by

deep reinforcement learning in case of an underlying Markovian

structure; see Goodfellow et al. (2016) by Ian Goodfellow,

Yoshua Bengio, and Aaron Courville for a comprehensive overview

of deep learning and Sutton and Barto (1998) by Richard S. Sutton

and Andrew G. Barto for an introduction to reinforcement

learning in particular. Reinforcement learning has found many

applications in games (e.g., see Silver et al., 2018 by a research

team of Google’s DeepMind), robotics (e.g., see Kober et al.,

2013 by Jens Kober, J. Andrew Bagnell, and Jan Peters) and

autonomous vehicles (e.g., see Kiran et al., 2020 by a joint

publication of Valeo and academic partners). Recent monographs

on machine learning for financial applications are López de Prado

(2018) by Marcos López de Prado and Dixon et al. (2020) by

Matthew F. Dixon, Igor Halperin, and Paul Bilokon. Regarding

applications of neural networks for hedging and pricing purposes,

some 200 research articles have accumulated over the last 30 years;

Ruf and Wang (2019) by Johannes Ruf and Weiguan Wang

provides a comprehensive literature review. Only a handful of these

articles exploit the reinforcement learning paradigm. In contrast

to this obvious applications of deep reinforcement learning to

ALM, deep hedging approaches to ALM are simpler but still provide

the solution relevant for business decisions. Notice, however, that

neither Markovian assumptions are needed, nor value functions

or dynamic programming principles: Deep ALM will simply

provide an artificial asset-liability-manager who precisely solves

the business problem (and not more) in a convincing way, i.e.,

provides ALM strategies along pre-defined future scenarios and

stress scenarios. The fundamental ideas will be further elaborated

on in the sections below. To the best of our knowledge, we are the

first to tackle ALM systematically by deep hedging approaches.

There are many fundamental problems arising in mathematical

finance that cannot be treated with explicit analytic formulae.

Exemplarily, explicit pricing formulae for American options in

continuous time are yet unknown even in the simplest settings

such as the Black-Scholes-framework. This is incredible in that

most exchange traded options are of American style. Optimal

stopping problems in genuine stochastic models involve so-

called parabolic integro-differential inequalities, which can be

numerically approximated by classical methods up to three

dimensions; e.g., see the Section 10.7 in Hilber et al. (2013). The

curse of dimensionality impedes the feasibility of classical finite

element methods for applications involving more than three risk

drivers. With today’s computational power of a multi-core laptop,

the runtime in six dimensions would last for many centuries. A

popular circumvention is the regression based least squares Monte-

Carlo method proposed by Francis A. Longstaff and Eduardo S.

Schwartz; see Longstaff and Schwartz (2001). Some statisticians

even perceive machine learning as a (non-linear) generalization

of such regression techniques. Machine Learning therefore just

introduces another regression basis to the Longstaff-Schwartz-

algorithm. As an example a spectacular success was achieved by

Sebastian Becker, Patrick Cheridito, and Arnulf Jentzen when they

utilized deep neural networks to price American options in as

much as 500 dimensions below 10 min; see Becker et al. (2019)

for further details. In Deep ALM we even leave away the usual

(and classically very useful) value function approach, which is

also applied in the Longstaff-Schwartz-algorithm, but we go right

away for an optimal trading strategy which is a priori completely

untrained at each point in time (and not related to each other over

time). As a consequence one is forced to abandon the fundamental

desire of directly solving a very complexmathematical equation and

must approve of the paradigm shift to the deep learning principle:

“What would a clever, generic, well-experienced and non-forgetful

artificial financial agent with a decent risk appetite do?” This change

of mindset opens the room for many possibilities not only in

quantitative finance. Computationally very intensive techniques

such as nested Monte-Carlo become obsolete. We aim at utilizing

these advances to tackle problems that were formulated back in the

eighties, e.g., by Martin I. Kusy and William T. Ziemba (see Kusy

and Ziemba, 1983), and have remained unsolved for the desired

degree of complexity ever since. Thus, the technological impact of

Deep ALM for the financial industry might be considerable.

The Markov assumption, roughly speaking that future states

only depend on the current state and not the past, usually leads to

comparatively tractable financial models and respective algorithms.

Real world financial time series often feature a leverage effect

(i.e., a relationship between the spot and the volatility) and a

clustering effect (i.e., a persistence of low and high volatility

regimes). Unless volatility becomes a directly traded product itself

(which generally is not the case) and is perceived as an integrable

part of the state, an effective hedging strategy can hardly be

found analytically. This can be analyzed within the concept of

platonic financial markets that was introduced in Cuchiero et al.

(2020) by Christa Cuchiero, Irene Klein, and Josef Teichmann.

Generally observable events and decision processes are adapted

to a strict subfiltration of the whole market filtration that is

generated by the obscure market dynamics. This concept goes in

a similar direction as hidden Markov models; e.g., see the textbook

Elliott et al. (1995) by Robert J. Elliott, Lakhdar Aggoun, and

John B. Moore for a reference. Regarding Deep ALM, this inherent
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intractability of platonic financial markets is not an impediment at

all. Certainly, the replication portfolios along a trained deep neural

network only depend on generally observable states. However, the

financial market dynamics do not have to satisfy any Markovianity

restrictions with respect to the observable states and/or traded

products. The deep neural network jointly learns the pricing and

the adaptation of hedging strategies in the presence of market

incompleteness and even model uncertainty; e.g., see El Karoui and

Quenez (1995) by Nicole El Karoui and Marie-Claire Quenez and

Avellaneda et al. (1995) by Marco Avellaneda, Arnon Levy, and

Antonio Parás for further details. Smaller filtrations or uncertainty

can be coined in the framework of partial observability, which can

be embedded into theMarkovian framework at the price of pushing

dimension toward infinity. Deep ALM approaches circumvent this

step but rather directly write strategies in a flexible way as trainable

functions of the observations. Besides these described aspects of

partial observability, also frictions, like transaction costs or price

impacts, can be easily treated within Deep ALM. Hence, Deep ALM

unifies key elements of mathematical finance in a fundamental use

case and it allows for the first time a tractable framework with fully

realistic assumptions.

An essential prerequisite for the viability of Deep ALM

in a treasury department is to come up with a sufficiently

rich idea of the macro-economic environment and bank-specific

quantities such as market risk factors, future deposit evolutions,

credit rate evolutions and migrations, stress scenarios and all the

parameterizations thereof. In the end, the current state of a bank

must be observable. In contrast to dynamic programming, machine

learning solutions are straightforward to implement directly on

a cash-flow basis without any simplifications (e.g., a divisibility

into simpler subproblems becomes redundant), and their quality

can be assessed instantaneously along an arbitrarily large set of

validation scenarios. Moreover, the paradigm of letting a smart

artificial financial agent (similar to an artificial chess player) with a

lot of experience choose the better option than human competitors

allows to tame the curse of dimensionality, which is the pivotal

bottleneck of classical methods. Further aspects such as intricate

price dynamics, illiquidity, price impacts, storage cost, transaction

cost and uncertainty can easily be incorporated without further ado;

all these aspects are hardly treated in existing frameworks. Despite

the higher degree of reality, Deep ALM is computationally less

intensive than traditional methods. Risk aversion or risk appetite

respectively can be controlled directly by choosing an appropriate

objective associated with positive as well as negative rewards in

the learning algorithm. Regulatory constraints can be enforced

through adequately chosen penalties. Hence, Deep ALM offers

a powerful and high-dimensional framework that supports well-

balanced risk-taking and unprecedented risk-adjusted pricing. It

surpasses prevalent replication strategies by far. Moreover, it allows

to make the whole financial system more resilient through effective

regulatory measures.

The article is structured as follows. In the Section 2, we describe

a prevalent replication methodology for retail banks. Furthermore,

we specify similar use cases from other industries. Subsequently,

we explain the key notion of Deep ALM in the Section 3. A hint

about the tremendous potential of Deep ALM is provided in the

Section 4 in the context of a prototype. While accounting for

the regulatory liquidity constraints, a deep neural network adapts

a non-trivial dynamic replication strategy for a runoff portfolio

that outperforms static benchmark strategies conclusively. The

last section elaborates on implications of Deep ALM and future

research. Common misunderstandings from the computational

and regulatory viewpoint are going to be clarified.

2. A static replication scheme

2.1. The treasury case of a retail bank

The business model of a retail bank relies on making

profits from maturity transformations. To this end, a substantial

part of their uncertain liability term structure is re-invested.

The liability side mainly consists of term and non-maturing

deposits. Major positions on the asset side are corporate credits

and mortgages. Residual components serve as liquidity buffers,

fluctuation reserves and general risk-bearing capital. The inherent

optimization problem within this simplified business situation is

already involved. Whereas most cash-flows originating from the

liability side are stochastic, the bank is obliged to ensure a well-

balanced liquidity management. Regarding short- and long-term

liquidity, regulations require them to hold a liquidity coverage

ratio (LCR) and a net stable funding ratio (NSFR) beyond 100%.

In contrast, market pressure forces them to tighten the liquidity

buffers in order to reach a decent return-on-equity. Asset-liability-

committees (ALCO) steer the balance sheet management through

risk-adjusted pricing and hedging instruments. Due to the high

complexity, many banks predominantly define and monitor static

replication schemes. It is worth noticing that ALCOs nowadays

often meet only once a month and supervise simplistic measures

such as the modified duration and aspects of hedge accounting on

loosely time-bucketed liabilities. Many opportunities are overseen,

and many risks remain unhedged; e.g., see the introductory

chapter of Spillmann et al. (2019). Crucial business decisions are

inconsistent over time and rather reactionary than pro-active.

Table 1 illustrates the replication scheme of a generic retail

bank. It is inspired by Section 4.2 in Spillmann et al. (2019). The

notional allocated to fixed income currently amounts to EUR 100

m, which are rolled-over monthly subject to some static weights.

The first line corresponds to a liquidity buffer that is held in

non-interest bearing legal tender.

Exemplarily, 15% or EUR 15m of the currently allocated capital

are invested in fixed income instruments with a maturity of 1y.

This portion is again split into equal portions, such that roughly

the same volume matures each month. In order to end up with

a closed cycle, this refers to as maintaining 12 tranches with a

volume of EUR 1.25 m (= 1/12 × 15m). This redemption amount

is re-invested again over a horizon of 1y at the latest market rates.

The same roll-over procedure is conducted for all other maturities.

This leaves us with 202 rolling tranches in total. Under the current

premises, 6 tranches with a total volume of EUR 24.125 m mature

each month and are re-invested consistently. The portfolio weights

are only revised from time to time. They are typically the result

of empirical and historical considerations. On the one hand, it is

lucrative to increase the portion in longer terms as long-term yields
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TABLE 1 Static investment scheme of a fixed income portfolio.

Term in Volume in Number of Volume in mEUR
Months Weight in % mEUR tranches per tranche

0 10 10

1 15 15 1 15.000

3 15 15 3 5.000

6 15 15 6 2.500

12 15 15 12 1.250

60 15 15 60 0.250

120 15 15 120 0.125

100 100 202 24.125

are often but not always higher than short-term yields. On the other

hand, if only a small portion is released each month, this leaves the

bank with a significant interest and liquidity risk. This static scheme

is typically accompanied with selected hedging instruments such

that the sensitivities with respect to parallel shifts of the yield curve

or the so-called modified durations for the asset and liability side

roughly coincide.

Certainly, dynamic strategies (including a restructuring of all

tranches) are superior to their static counterparts regarding profit

potential and resilience of the enterprise. However, dealing directly

with 202 tranches is often not feasible computationally. If we only

add a simple dynamic feature and allow for arbitrary weights

in the monthly re-investment process, this already introduces a

considerable additional complexity from the analytical viewpoint.

Even if one reduces the dimensionality of the yield curve dynamics,

one faces an intricate nested optimization exercise over all

re-investment instances. Utilizing traditional methods such as

dynamic programming and accounting for a reasonable set of

constraints is far from being trivial. Moreover, due to the necessary

model simplifications, it is uncertain whether this additional

complexity really pays off. It is therefore not surprising that many

retail banks have been implementing a rather static replication

scheme as described above. In the near future, this is likely to

change once the novel and computationally much less intensive

Deep ALM with a huge potential will be deployed.

2.2. Similar use cases

The notion of replication schemes may be applied analogously

to other use cases. In the following, we describe three of them.

2.2.1. Actuarial perspective
The situation described above can be transferred one-to-one to

the situation of insurance companies. The aspects that change are

completely different regulatory circumstances, the asset illiquidity

of hedging instruments (the retrocession) and the stochastic cash-

flow generation as well as separate extreme risks on the liability

side. Life insurance companies and pension funds must account

for the exact product terms and the mortality characteristics of

their policyholders. This includes, for instance, longevity and

pandemic risks. Non-life insurance companies model the annual

loss distribution and its unwinding over consecutive years.

2.2.2. Procurement
The producing industry is faced with a long and complex

process chain. Several raw commodities need to be bought,

delivered, stored, processed, and designed into a consumer product.

In order to control the inherent business risks and ensure

profitability, a maturity transformation in the procurement process

becomes inevitable. Even though the exact amount of the required

materials is yet unknown, the company’s exposure toward adverse

price movements needs to be hedged accordingly. Despite the

seemingly large daily trading volumes, any order comes with a

price impact. Controlling the inventory is also worthwhile due to

funding and storage cost. Therefore, slightly more involved than

the treasury case described above, we have an ALM optimization

in the presence of illiquidity, storage cost, transaction cost and

uncertainty.

2.2.3. Hydroelectric power plants
The technological advances regarding renewable energy and the

deregulation are having a huge impact on electricity markets. Wind

and solar energy make the electricity prices weather-dependent and

more volatile. Still, some segments of future markets have remained

comparatively illiquid. A peculiarity of the electricity market are

its intricate price dynamics (including negative prices) and a wide

range of more or less liquidly traded future contracts over varying

delivery periods (e.g., intraday, day ahead, weekend, week, months,

quarters, years). This makes the estimate of hourly price forward

curves (HPFC) that account for seasonality patterns (intraday,

weekday, months), trends, holiday calendars and aggregated price

information inferred from various future contracts (base, peak

and off-peak) a very challenging exercise. Electricity producers

may incur significant losses due to adverse contracts with locked-

in tariffs and mis-timed hydropower production in reservoirs.

This environment forces the suppliers to conduct a rigorous

ALM, which comprises, for instance, a competitive pricing of

fixed-for-floating contracts and daily optimized power production

plans. The situation of delivering competitive yet still profitable

margins in the presence of uncertainty is a situation banks have
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been accustomed to for decades (with a different commodity

and different rate dynamics). Deep ALM can be tailored to this

very situation and provides exactly the technological solution to

this delicate business problem. All one needs to establish is an

appropriate scenario generator for the future markets and the

HPFC. Many business-specific peculiarities can hardly be reflected

by traditional optimization techniques. As an illustration, a turbine

cannot be turned on and off on an hourly basis. This simple-looking

constraint renders the dynamic programming principle impossible.

However, this constraint can be accounted for in Deep ALM

without further ado by incorporating suitable penalties.

3. Deep ALM

Beyond professional judgment, practical problems arising in

ALM are often tackled either by linear programming or dynamic

programming. The latter requires that the problem is divisible into

simpler subproblems. For non-linear and high-dimensional cases,

one typically exploits Monte-Carlo techniques in order to derive

or validate strategies empirically along a handful of criteria. As a

matter of fact, the level of sophistication for replicating strategies

remains fairly limited due to the high intricacy and the lack of

an adequate constructional approach. Deep ALM makes all these

impediments obsolete. One directly implements the arbitrarily

complex rule book of the use case and lets a very smart and

non-forgetful artificial financial agent gain the experience of many

thousand years in a couple of hours. By incentivizing the desired

behavior and stimulating a swift learning process, one reaches

superhuman level in due course.

We consider a balance sheet evolution of a retail bank over

some time grid {0, 1, 2, . . . ,N} in hours, days, weeks ormonths. The

roll-forward is an alternating process between interventions and

stochastic updates over time; (see Figure 1). At each time instance

t, an artificial asset-liability-manager, subsequently denoted the

“artificial financial agent” (AFA), assesses the re-investment of

matured products as well as the restructuring of the current

investment portfolio. This involves various asset classes, not just

fixed income instruments. Correspondingly, the AFA is active in

both the primary market of newly issued instruments and the

secondary market of previously issued and circulating instruments.

There may be further eligible transformations of this initial state

with transaction cost, e.g., granting further credits or building

additional liquidity buffers. The balance sheet components At

(assets), Lt (liabilities) and Et (equity) come with the superscripts

“pre” and “post”, which refer to as before and after the balance sheet

restructuring respectively. Preceding interventions, an auxiliary

step for the calculation of taxes may be necessary. Subsequently,

the economic scenario generator performs a stochastic roll-

forward of the balance sheet. All accounts are updated to the

latest circumstances and macro-economic factors, e.g., certain

products pay off cash amounts such as coupons or dividends,

certain products need to be written off due to the bankruptcy of

the referenced entity, clients withdraw certain portions of their

deposits, etc. It needs to be noted that the described situation is kept

simplistic for illustrative purposes. It is the main target of future

research work to reach an acceptable level of sophistication in order

to make the technology eligible for real world ALM. A first step

toward that goal is Englisch et al. (2023).

The superiority of the dynamic replication scheme requires

that the trained AFA can perfectly trade-off benefits from a

restructured portfolio and the incurred transaction cost of the

restructuring. Furthermore, the trained AFA must impeccably

weigh up different objectives such as complying with regulatory

constraints, earning a risk-adjusted spread, maintaining an

adequate level of liquidity, keeping sufficient margins for adverse

scenarios, etc. The fundamental idea is to parameterize the decision

process at each time instance t through a deep neural network

(DNN) and to incrementally improve its performance through

techniques inspired by machine learning. By concatenating these

deep neural networks along the time axis, one ends up at a holistic

dynamic replication strategy that easily deals with non-stationary

environments. The learning process incentivizes the maximization

of an adequately chosen reward function by incrementally updating

the weights of the feedforward networks through backpropagation;

(see Figure 2). This idea allows to tame the curse of dimensionality.

These new possibilities of Deep ALM allow for a more frequent

supervision while accounting for arbitrarily many side constraints

and complicated market frictions such as illiquidity and offsetting

effects of transaction cost in hedges. Thus, the full power of

dynamic strategies can be deployed.

Traditional numerical schemes describe an algorithm either

in order to solve an equation or in order to optimize a

certain functional. Typically, algorithms are only accepted by the

mathematical community if they come with two supplements,

namely a proof that the recipe terminates with a certain accuracy

at the desired level, on the one hand, and a statement about

the rate-of-convergence, on the other hand. In the context of

Deep ALM, we coin the notion of convincing strategies because we

are likely not able to prove that the randomly initialized deep neural

network will end up at some optimal replication strategy. In fact, we

intend to derive non-trivial but still realistic dynamic replication

strategies within a reasonable time that significantly outperform

those strategies currently used in the financial industry. From the

mathematical viewpoint, Deep ALM entails a delicate paradigm

shift. The results will be derived empirically based on scenarios

representing the experience of many thousand years. By repeating

the learning process a few times, we will corroborate the robustness

of the approach. Furthermore, we will validate and challenge the

performance of the deep neural network on unseen testing data. If

the gradient descent algorithm can only further reduce the training

loss with some overfitting strategy at the cost of the validation

loss, we have ended up at a local optimizer. Even though we will

not be able to prove global optimality, the strategy might still beat

conventional models as well as seasoned professionals and, thus, be

more than convincing.

4. Empirical study on a stylized case

4.1. The runo� case

We aim at optimizing the replication strategy when unwinding

a runoff portfolio over 10 years in the context of an equity index

and a large fixed income universe. At every time instance, roughly
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FIGURE 1

Balance sheet roll-forward.

200 bonds are active. This prototype demonstrates the feasibility

of Deep ALM in a stylized case. In the end, every balance sheet

roll-forward is a superposition of runoff portfolios. Furthermore,

we give an indication about the potential of dynamic replication

strategies.

The liabilities are backed by a static legacy investment portfolio.

Roughly two thirds of the assets are invested in the fixed income

market and 10% are invested in equities. The remainder is held

in cash. Every month, six new bonds are issued in the primary

market with the face amount of 100 monetary units and the

maturities 1, 3, 6m, 1, 5, and 10y. The first three series only pay

a coupon at the final redemption date, the other three pay semi-

annual coupons. At issuance, all bonds trade at par. The legacy

investment portfolio has attributed equal portions to all of the

six bond series and has conducted an equally distributed roll-over

strategy based on historical data from the European Central Bank

(ECB). Future yield curve scenarios are simulated consistent with

a principal component analysis. For simplicity, we assume that

there is no secondary market. Hence, bonds cannot be sold on

in the market and must be held to maturity. Furthermore, we

preclude credit defaults. Regarding equities, we generated scenarios

based on a discretized geometric Brownian motion.1 Changing the

position in equities involves proportional transaction cost. Due to

legal requirements, at least 10% of the asset portfolio must be held

in cash; this is just an arbitrary choice in order to incorporate a

regulatory constraint. Any discrepancy is penalized monthly with

a high interest rate. The initial balance hosts assets worth 100

monetary units. The term structure of liabilities with the same

1 Wemake this popular choice for reasons of simplicity and reproducibility.

For well-founded considerations in the financial industry, more complicated

models or more realistic scenarios would be advisable. Still, the applicability

of the approach would not be a�ected.

FIGURE 2

Deep neural network architecture.

face amount is spread across the time grid according to some beta

distribution.

4.2. The implementation strategy

A well-established approach to tackle quantitative finance

problems with deep reinforcement learning is to follow the

standard routine inspired by games. A game is a stochastic

environment in which a player can act according to a set of rules

and can influence the course of events from start to finish to a

certain degree. The game terminates after a prespecified number

of rounds. A rule book includes the model drivers and their

interdependence, the constraints and the penalties for constraint

violations, the control variables and the objective function. Notably,

we actually do not solve the game for all initial states nor

do we assume any Markovian structure. We implemented the

“game” according to the rule book specified below in a Python

script such that the random outcome of any strategy could be

simulated arbitrarily often. To this end, we defined an economic
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scenario generator that hosted the yield curve dynamics and

spot prices for equities. Having this environment in place, one

can test the performance of any naïve or traditionally derived

replication portfolio. The step of translating the rule book into

model dynamics is crucial for understanding the game, for ensuring

a well-posed optimization problem and for streamlining the logic

of the subsequent tensorization. The evolution of R
N-valued

quantities can be inferred from historical time series with a

principal component analysis as proposed by Andres Hernandez

in Hernandez (2016). Subsequently, the game is embedded in a

deep neural network graph architecture using TensorFlow such that

an AFA can run many games in parallel and adaptively improve

its performance. The graph constitutes of many placeholders and

formalizes the logic of the game. The first decision process of

the AFA is managed through the randomly initialized weights

of a neural network with a handful of hidden layers. Its input

layer is a parameterization of the initial state, concerning both the

balance sheet structure and the market quotes, and the output layer

characterizes the eligible balance sheet transformation. The balance

sheet roll-forward is accomplished by connecting the output of the

neural network with a whole bunch of efficient tensor operations

reflecting the balance sheet restructuring, new inputs for the non-

anticipative scenario updates and the input layer of the next

decision process. Iterating this process yields the desired deep

neural network.

4.3. Term structures

We are given a discrete time grid T0 = {0, 1, 2, . . . ,N} in

months, where N = 120 refers to as a planning horizon of 10 years.

The initial term structure of liabilities with the face amount of 100

monetary units is spread across the time grid according to a beta

distribution with the parameters a = 1.5 and b = 2.5, i.e., if Fa,b
denotes the corresponding cumulative distribution function, then

the cash-flow

L(t) : =
(

Fa,b
(

t/N
)

− Fa,b
(

(t − 1)/N
)

)

× 100

becomes due in month t ∈ T : = T0 \ {0}. We briefly write

L : =
(

L(1), L(2), . . . , L(N)
)

for the collection of all payables.

At some fixed time instance, any active bond is characterized

through its future cash-flows B =
(

B(1),B(2), . . . ,B(N)
)

∈ R
N .

If Y =
(

Y(1),Y(2), . . . ,Y(N)
)

∈ R
N denotes the current yield

curve with the yield Y(T) for the maturity T/12 in years and

D =
(

D(1),D(2), . . . ,D(N)
)

∈ R
N with D(T) = e−T/12·Y(T)

for all

T ∈ T the consistent discount factors, then the value of B is simply

V(B) = 〈D,B〉, where 〈·, ·〉 stands for the standard inner product.

The coupons are chosen such that each bond trades at par. The

cash-flow generation at issuance is straightforward. It corresponds

to solving a linear equation. Exemplarily, a bond with a maturity of

5y and semi-annual coupons carries an annualized coupon rate

c =
12

6
·
1− D(60)

10
∑

k=1

D(6·k)

.

Therefore, it holds

B(6·k) =
c

2
·100 for all k ∈ {1, 2, . . . , 9}, B(60) =

(

1+
c

2

)

·100,

and all other components are zero. When going from one time

instance to the next, B(1) is paid off and one simply applies to the

scheme B the linear update operator

U =

















0 1 0

0 1

. . .
. . .

0 1

0 0

















∈ R
N×N .

A k-fold application of the update operator is denoted by Uk. We

utilize data from the European Central Bank (ECB) in order to

model the historical and future yield curves. ECB publishes for

each working day the Svensson parameters β0, β1, β2, β3, τ1, and

τ2 of its yield curve. The corresponding yield curve is the vector

Y =
(

Y(1),Y(2), . . . ,Y(N)
)

∈ R
N with

Y(T) = β0 + β1
1− e−T/(12τ1)

T/(12τ1)
+ β2

1− e−T/(12τ1)

T/(12τ1)− e−T/(12τ1)

+ β3
1− e−T/(12τ2 )

T/(12τ2)− e−T/(12τ2)
.

We fix some historical time series inRN and conduct a principal

component analysis. To this end, we assume stationary daily yield

curve increments 1X with expected value E[1X] ≡ µ ∈ R
N

and covariance matrix cov(1X) ≡ Q ∈ R
N×N . We spectrally

decompose Q = 3L3⊤ into the normalized eigenvectors 3 ∈
R
N×N and the ordered eigenvalues L = diag{λ(1), λ(2), . . . , λ(N)}

with λ(1) ≥ λ(2) ≥ . . . ≥ λ(N). The last historical yield curve

is the day when we acquire the runoff portfolio. The stochastic

yield curve increments from 1 month to the next are consistently

sampled according to

1Y = 22 · µ +
n
∑

k=1

Zk3·k,

where we choose n = 3 and Zk ∼ N
(

0, σk
2
)

for σk =
√
22 · λ(k).

The factor 22 accounts for the number of trading days per month.

If i denotes the maturity in number of months, the legacy bond

portfolio has been investing each month a face amount of 15/i

monetary units in that particular bond series for i ∈ I : =
{1, 3, 6, 12, 60, 120}. This is consistent with the replication scheme

from Table 1.

4.4. The equity market

We assume that the stochastic process S = (St)t∈T0 follows a

discretized geometric Brownian motion, i.e., it holds for all t ∈ T

log
St

St−1
∼ N

(

(

m−
1

2
s2
)

·
1

12
,
s2

12

)
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with initial level S0 = 100, drift m = 5% and volatility s = 18%.

Changing the position in equities involves proportional transaction

cost κ = 0.50%.

4.5. The balance sheet

We proceed iteratively. Let Yt ∈ R
N denote the current yield

curve for t ∈ T0 \ {N} and Dt consistent discount factors. Before

restructuring, the left hand side of the balance sheet with a total

present value of A
pre
t consists of three additive components: the

held cash C
pre
t , the legacy bond portfolio with the value V

pre
t , and

the equity position worth G
pre
t = 1

pre
t · St . The right hand side of

the balance sheet consists of the liabilities

L
pre
t = 〈Dt ,U

tL〉

and the residue E
pre
t = A

pre
t − L

pre
t .

4.6. The deep neural network architecture

For any t ∈ T0 \{N}, we consider a feedforward neural network

Ft =
(

φ ◦W(2)
t

)

◦
(

φ ◦W(1)
t

)

◦
(

φ ◦W(0)
t

)

with some affine functions

W
(0)
t :R

10 −→ R
15,W

(1)
t :R

15 −→ R
15,W

(2)
t :R

15 −→ R
7.

and the ReLU activation function φ(x) = max{x, 0}. The input layer
consists of the leverage ratio E

pre
t /A

pre
t , the liquidity ratio C

pre
t /A

pre
t ,

the risk portion G
pre
t /A

pre
t , the holding in equities 1

pre
t and the

yields Y
(i)
t for i ∈ I of the latest bond series. The output layer reveals

the outcome of the restructuring at the time instance t. The first six

components represent the holdings h
(i)
t for i ∈ I in the latest bond

series, the last component represents the holding 1
post
t in equities.

Note that the activation function implies long-only investments.

4.7. The restructuring

The restructuring implicates the updated balance sheet items

C
post
t = C

pre
t − 100 ·

∑

i∈I
h
(i)
t −

(

(

1
post
t − 1

pre
t

)

+ κ ·
∣

∣1
post
t − 1

pre
t

∣

∣

)

· St ,

V
post
t = V

pre
t + 100 ·

∑

i∈I
h
(i)
t ,

G
post
t = 1

post
t · St ,

A
post
t = C

post
t + V

post
t + G

post
t ,

L
post
t = L

pre
t ,

E
post
t = A

post
t − L

post
t .

4.8. The roll-forward

Let B
post
t ∈ R

N denote the aggregated future cash-flows of

the whole fixed income portfolio after restructuring at time t.

Furthermore, let π (1)
:R

N −→ R denote the projection onto the

first component. If one does not adhere to the regulatory constraint

of holding at least 10% of the assets in cash, one is penalized with

liquidity cost of p = 24% per annum on the discrepancy. Once

the yield curve has been updated stochastically to the state Yt+1

with consistent discount factors Dt+1 and the equity index has

been updated stochastically to the state St+1, this leaves us with the

roll-forward

C
pre
t+1 = C

post
t + π (1)

(

B
post
t

)

− π (1)
(

UtL
)

−
p

12
·max

{

10% · Apost
t − C

post
t , 0

}

,

V
pre
t+1 = 〈Dt+1,UB

post
t 〉,

G
pre
t+1 = 1

post
t · St+1 = 1

pre
t+1 · St+1,

A
pre
t+1 = C

pre
t+1 + V

pre
t+1 + G

pre
t+1,

L
pre
t+1 = 〈Dt+1,U

t+1L〉,
E
pre
t+1 = A

pre
t+1 − L

pre
t+1.

4.9. Objective

For different maturities T ∈ T, a common approach in

mathematical finance is to maximize E
[

u
(

E
post
T /E

pre
0

)]

, where

u(x) =











x1−γ − 1

1− γ
, if γ 6= 1

log x , if γ = 1

denotes the iso-elastic utility function with constant relative risk

aversion γ ≥ 0. This is not directly applicable in our case since

we cannot prevent E
post
T from becoming negative. Instead, we aim

at maximizing

E

[

u

(

(

ε + φ
(

E
post
T

)

)

/E
pre
0

)]

for a small constant 0 < ε ≪ 1. Provided that the final equity

distribution is positive, the case γ = 1 corresponds to the quest

for the growth optimal portfolio that maximizes the expected log-

return; see Platen and Heath (2006). An intriguing alternative is

quadratic hedging, where one aims at minimizing

E

[

(

E
post
T − (1+ r)T/12E

pre
0

)2
]

for some annualized target return-on-equity r > 0. Either case

leads to convincing strategies.

4.10. Results

The optimization is only non-trivial for non-negative yield

curves. If the mid-term yields are consistently negative (as they

have been in the EUR area for quite some years), holding cash
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FIGURE 3

Line-up between the benchmark and the trained AFA.

is superior to the considered fixed income investments (within

the simplified premises specified above). As starting point, we

choose the ECB yield curve as per December 31, 2007. In that

case, the initial value of the liabilities amount to L
pre
0 = 86.0

monetary units. As outlined above, the exercise of optimizing the

equity distribution after the settlement of all liabilities is extremely

challenging with conventional methods. The investment universe

consists at each time instance of 204 active assets, namely the

fixed income universe, an equity index and legal tender. We

propose a simple benchmark strategy that allocates the available

cash beyond 10% of A
pre
t to bonds with a maturity of 1m,

provided that the coupons are positive. Equities are divested

linearly over time. Moreover, we train an AFA on 10 000 unwinding

scenarios following the ideas of Deep ALM. An until only recently

inaccessible dynamic strategy outperforms the benchmark strategy

conclusively after a short learning process of roughly 10 min.

Using another 10 000 previously unseen validation scenarios, the

enclosed chart illustrates the final equity distributions after 10

years for a classical static strategy in blue and for the dynamic

strategy in orange. The dynamic strategy does not involve extreme

risk taking. It simply unveils hidden opportunities. The systematic

excess return-on-equity with respect to the benchmark is beyond

2% per annum; (see Figure 3).

5. Outlook and further research

5.1. Potential of Deep ALM

The real potential can hardly be foreseen. One achievement

will lead to another and trigger further accomplishments. Despite

the optimism, the technique is not mature enough and requires an

adequate level of research. Market participants across all use cases,

who we spoke with, like the intriguing idea of Deep ALM. However,

only a few dare being the first movers in this precompetitive phase.

ALM is at the heart of risk management for any enterprise in

the financial industry. In the light of the new opportunities, it is

not acceptable how simplistic and ineffective prevalent replication

schemes are to this day. All of us are directly affected by unhedged

risks of bank deposits, insurance policies and pension funds.

This can be illustrated exemplarily with Finland whose banking

sector caused a devastating financial crisis in the early 1990s. In

the aftermath, official unemployment rates escalated to roughly

18%. Deep ALM offers a powerful framework that supports well-

balanced risk-taking and unprecedented risk-adjusted pricing.

Thus, its rigorous application may prevent a financial crisis sooner

or later. Likewise, it is becoming increasingly important to spend

resources wisely. Deep ALM promotes this attitude with significant

efficiency gains in the procurement of commodities and the energy

production; see also Curin et al. (2021) for a real world application.

These are promising prospects for Deep ALM indeed.

5.2. Necessity of further research

Some people argue that machine learning will facilitate the

enterprise risk management, make it more effective and make

some of the current tasks even redundant. We agree that the

new opportunities will allow for more consistent and sound risk

taking. However, we are convinced that legitimate applications of

Deep ALM will entail a lot of additional work since the previously

inaccessible analyses do not come for free. Moreover, they will raise

a huge portion of new economic challenges and obligations. Thus,

it is essential that the research community prepares a solid ground

for this technological transformation.

5.3. Feasibility

Optimizing a whole term structure of assets and liabilities by

utilizing techniques inspired by deep reinforcement learning is

a novel approach and its feasibility needs to be demonstrated.

In the light of recent advances, we are optimistic that this

goal can be achieved in due course. Nonetheless, this challenge

opens a great field of research questions from the mathematical,

computational and economic viewpoints. Regarding feasibility, it is

an important concern that we do not just want to feed an utterly

complex mathematical system into a powerful supercomputer

and see whether we get something out. In contrast, we aim at

formulating and optimizing dynamic replication schemes that meet

the requirement of industrial applicability, on the one hand, and

operability on a moderately enhanced computer, on the other hand.

Particularly, this involves an assessment whether the behavior of the

trained AFA is interpretable, whether it follows sound economic

reasoning and whether the non-anticipative dynamic replication

strategies fulfill the basic requirement of practical viability. Solving

a high-dimensional utility maximization problem that entails

unrealistic leverage or arbitrary rebalancing frequencies is futile for

real world applications. For this purpose, Deep ALM must trade

off many objectives such as cost and benefit of liquidity, drawdown

constraints, moderate leverage ratios, profit expectation, regulatory

interventions, risk appetite, short sale restrictions, transaction cost,

etc. Most aspects can be accounted for in the model by means of

penalties that incentivize the AFA’s behavior accordingly. Others

such as drawdown constraints and profit expectation typically enter

the target function of the optimization. Finding the right balance
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between all the different goals without adversely affecting the

robustness of the learning process entails some engineering work.

However, once a convincing and stable economic model choice has

been established, this has a tremendous impact on the economic

research field. Previously inaccessible price tags to crucial economic

notions such as, for instance, cost of liquidity for a retail bank

can be evaluated quantitatively. All one needs to do is to line up

performance measures of trained AFAs when short sale restrictions

of the cash position are enforced and dropped respectively.

5.4. Goal-based investing

A closely related subject to Deep ALM is goal-based investing;

e.g., see Browne (1999) by Sid Browne for a neat mathematical

treatment. One aims at maximizing the probability to reach a

certain investment goal at a fixed maturity. From the theoretical

viewpoint with continuous rebalancing, this is equivalent to

replicating a volume-adjusted set of digital options (unless the

target return is smaller or equal than the risk-free rate). Despite

being very intuitive, this result is only of limited use for practical

applications. Discrete rebalancing and the payoff-discontinuity

at the strike lead, as one gets closer and closer to maturity, to

an inherent shortfall risk way beyond the invested capital. It

needs to be investigated whether Browne’s setting can be modified

accordingly for real world applications. This involves more realistic

dynamics of the economic scenario generator, exogenous income

(as inspired by Section 7 of Browne, 1999), maximal drawdown

constraints and a backtesting with historical time series. An attempt

in this direction can be found in Krabichler and Wunsch (2021).

5.5. Generalization

If we take one step further and look at ALM as an

abstract framework, Deep ALM may contribute crucially to urgent

challenges of our society such as combating the climate change or

dealing with pandemics. It trains a player to reach a certain goal

while minimizing the involved cost. Regarding the climate change,

there is a complex trade-off in implementing protection measures,

incentivizing behavioral changes, transforming the energy mix, etc.

Regarding COVID-19, rigorous emergency policies were enforced

throughout the world in order to protect individual and public

health. These measures involved extreme cost such as temporary

collapses of certain industries, closed schools, restricted mobility,

etc. These are again high-dimensional problems, which cannot be

tackled with classical methods. Deep ALM is a first step toward

these more difficult challenges.

5.6. Impediments

A challenge will be to overcome the commonmisunderstanding

that deep learning requires a lot of historical data (that banks or

commodity companies usually do not have), that deep learning

is an incomprehensible black box, and that regulators will never

approve of Deep ALM. Firstly, the above approach does not

necessarily require any historical data. All one needs are model

dynamics of ordinary scenarios and stress scenarios. The training

data can be fully built upon these premises synthetically. Still,

for the calibration of selected parameters, the availability of

historical data can of course be useful. Secondly, the performance

of deep neural networks can be validated without further ado

along an arbitrarily large set of scenarios. To our mind, this

is one of the most striking features of Deep ALM (which is

not satisfied by traditional ALM models). Traditional hybrid

pricing and risk management models entailed an intensive

validation process. This intensive work becomes obsolete and

can be invested into stronger risk management platforms instead.

Thirdly and lastly, as long as one provides the regulators with

convincing arguments regarding the accuracy and resilience

of the approach (e.g., in terms of a strong validation and

model risk management framework), they will never object

to use deep learning. As a rule, regulators emphasize being

model agnostic.

5.7. Regulatory perspective

The complex regulatory system in place is supposed tomake the

financial system less fragile. However, designing and implementing

effective policies for the financial industry, which do no promote

wrong incentives and which are not (too) detrimental to economic

growth, is very demanding. This is highlighted exemplarily in

the IMF working paper (Sharma et al., 2003). An illustration

that certain measures do not necessarily encourage the desired

behavior can be found in Grossmann et al. (2016) by Martin

Grossmann, Markus Lang, and Helmut Dietl. Initially triggered

by the bankruptcy of Herstatt Bank (1974), the Basel Committee

on Banking Supervision has established a framework that specifies

capital requirements for banks. It was revised heavily twice since

its publication in 1988. The current framework, also known as

“Basel III” (see Basel Committee on Banking Supervision, 2011),

was devised in the aftermath of the 2007/2008 credit crunch.

Amongst others, it proposed requirements for the LCR and

the NSFR. The impact of these liquidity rules was empirically

assessed in Dietrich et al. (2014) by Andreas Dietrich, Kurt

Hess, and Gabrielle Wanzenried. Due to limited historical data

and the intricate complexity between the plethora of influencing

factors, the true impact of the new regime can hardly be

isolated. Deep ALM opens an extremely appealing new way of

appraising the effectiveness of regulatorymeasures. To this end, one

investigates how a very smart and experienced AFA changes her

behavior when certain regulatory measures are enabled or disabled

respectively. This approach allows to truly identify the impact

of supervisory interventions and the compatibility amongst each

other. These quantitative studies will be a promising supplement of

Deep ALM.

5.8. Model risk management

The supervisory letter SR 11-7 of the U.S. Federal Reserve

System (“Fed”) has become a standard for considerations of model
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risk management; see Board of Governors of the Federal Reserve

System (2011). Controlling the inherent model risk and limitations

will be a key challenge before Deep ALM may be exploited

productively. While the performance of proposed strategies can

be checked instantaneously for thousands of scenarios within the

model, an assessment of the discrepancy between the Deep ALM

model and the real world is a crucial research topic. Once a

robust Deep ALM learning environment has been established,

these aspects can be explored by means of various experiments.

For instance, one can analyse the sensitivities of the acquired

replication strategies with respect to the model assumptions or the

performance of those in the presence of parameter uncertainties.

These uncertainties may concern both the assumed states (e.g.,

the term structure of deposit outflows) and the concealed scenario

generation for both the training and the validation (e.g., the

drift assumptions of equities). Some people propose to utilize

generative adversarial networks (GANs) in order to identify both

the nature and the impact of adverse scenarios, on the one hand,

and to improve the AFA through additional training iterations

even further, on the other hand; e.g., see Flaig and Junike

(2022).

5.9. Risk policy perspective

Another intriguing question is the quest for locally stable

strategic asset allocations. Typically, the trained neural network

will reshuffle the balance sheet structure right from the beginning.

Characterizing no-action regions corresponds to locally optimal

initial states. Concerning the model risk management, revealing

the link between different model assumptions and the internal risk

policies, on the one hand, and the no-action regions, on the other

hand, will be a powerful tool for risk committees.
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