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This paper delves into the intricacies of synthetic data, emphasizing its

growing significance in the realm of finance and more notably, sustainable

finance. Synthetic data, artificially generated to simulate real-world data, is

being recognized for its potential to address risk management, regulatory

compliance, and the innovation of financial products. Especially in sustainable

finance, synthetic data o�ers insights intomodeling environmental uncertainties,

assessing volatile social and governance scenarios, enhancing data availability,

and protecting data confidentiality. This critical review attempts first ever

classification of synthetic data production methods, when applied to sustainable

finance data gaps, elucidates the methodologies behind its creation, and

examines its assurance and controls. Further, it identifies the unique data needs

of green finance going forward and breaks down potential risks tied to synthetic

data utilization, including challenges from generative AI, input quality, and critical

ethical considerations like bias and discrimination.
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1 Introduction

Synthetic data generation is increasingly regarded as a paradigm shift in quantitative

finance and refers to data that is artificially generated rather than being derived from real-

world events (Drechsler and Reiter, 2012; Stodden, 2015; Burgard et al., 2017). Despite the

common assumption, this data is not represented by random numbers; Rather, it is usually

carefully constructed to simulate real-world data in terms of structure, statistics, and

relevance. Various modern algorithms, including those rooted in deep learning and other

advanced computational methods, have made the generation of high-quality synthetic

data feasible and increasingly accurate. Whilst use of synthetic samples and approximated

simulations have been widely used in various fields since early 90s, especially theoretical

physics, clinical medicine, geology, astrophysics, organic chemistry and other fields, real

applications of synthetic data in finance did not really emerge until late 2000s, which

coincided with the growing interest in machine learning algorithms within trading and

portfolio optimisation realms.

The growing importance of simulated data in finance was factored by several

conditions. Primarily, the trend was driven by requirements for more resilient

risk management frameworks (White, 2021; Heim, 2022). Thus, traditional

financial models are known for their over-reliance on historical data to predict

future trends; However, unprecedented events like the 2008 financial crisis

or the COVID-19 pandemic underscored some serious limitations of such

dependencies. Synthetic data therefore emerged as a suitable alternative for modeling
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extreme but plausible scenarios to test the resilience of financial

systems and instruments. Secondly, increasing requirements of

regulatory compliance put pressure on financial institutions

to stress-test their portfolios under various scenarios; Realistic

synthetic datasets enabled modeling diverse scenarios without

compromising the confidentiality of real customer data. And

finally, last but not least role was played by accelerated innovation

in financial products. With the rise of various FinTechs, an urgent

need emerged to iterate and experiment rapidly, and synthetic data

allowed firms to test new algorithms and financial products without

waiting for real-world data to be produced and accumulated

(Fienberg, 1994; Burgard et al., 2017).

1.1 Growing significance of synthetic data
in sustainable finance

Sustainable finance in its broadest terms refers to the inclusion

of environmental, social, and governance (ESG) considerations in

investment decisions, aiming to achieve long-term returns while

also addressing societal challenges (Migliorelli, 2021; Papenbrock

et al., 2021). Whilst data scarcity is arguably the most recognized

problem in green finance research, predominantly due to a lack

of tradition of externalities’ accounting, synthetic data is hardly

mentioned in this context at all. Moreover, since data scarcity is

often associated with lack of expertise in data formatting, the main

effort to tackle it was directed toward collecting high resolution

real data entries, rather than exploring the potential and usability

of synthetic variables and their proxies.

Nevertheless, increasing demand from regulators and

civil societies for higher quality of models of environmental

uncertainties highlighted another aspect of the ‘scarce data

problem’ in sustainable finance - notably, absolute lack of it (Dye

et al., 2021; Irvine-Broque and Dempsey, 2023). Thus, growing

climate change concerns revealed that there is an absence of

historical data for some regions or time periods that can capture

potential future realities and provide reliable representative

projections into the future. And at the same time, wealth of

methodological traditions in synthetic data, accumulated for and

by other disciplines, suddenly opened up opportunities not only

for modeling potential climate crises (Koh et al., 2020; Van Horn

et al., 2021), but also turned out to become quite instrumental

in helping sustainable finance professionals understand potential

environmental risks (and opportunities) in their portfolios.

Timely and accurate assessment of social and governance

scenarios appeared as another challenge for sustainable financial

institutions. Just as with environmental challenges, the social and

governance landscapes are extremely dynamic, and synthetic data,

derived from various unstructured social web data sources, became

a quick an easy solution for simulations of various possible futures,

such as political upheavals, labor strikes, or governance failures,

providing insights into how they might impact financial returns

(Keen, 2021; Barnes, 2022).

Data availability provisioning and enhancement for many

ESG factors, especially in emerging markets, where there is a

dearth of comprehensive and reliable data, synthetic data opened

up opportunities to fill these gaps, allowing for a more holistic

assessment of sustainable investment opportunities. This also

allowed to address additional constraints, specifically growing

data ethics standards. Protection of confidentiality and privacy

is a well known ‘old data tradition’, and as ESG investing often

considers sensitive information (including company’s internal

governance practices or activities near environmentally sensitive

areas), synthetic data can become instrumental in information

sharing protocols without revealing proprietary or confidential

details (LaBella et al., 2019; Triantafyllou et al., 2020).

It has been recognized that now is the high time for new

models of collaboration between science and finance to enhance

climate and nature scenarios (Dietz et al., 2021; Kahn et al.,

2021; Warren et al., 2021). Much attention is drawn to the

challenges of the current generation of climate scenarios used by

banks (Kemp et al., 2022), insurers and pension funds to manage

climate risks, specifically on how these scenarios underestimate

risks (Zscheischler et al., 2018; Ranger et al., 2021; Pitman et al.,

2022).Whilst recent research shows thatmany financial institutions

recognize the issues and are working to rectify this (the two-

thirds agreeing there are material sources of risk not captured in

current scenarios), the role of missing/inadequate data is poorly

acknowledged and there is a little appreciation in the scientific

community of how synthetic data could address many of those

issues. In the scope of this paper we make an argument that not

only it can help facilitating better risk assessment and product

innovation but also can ensure that the finance industry navigates

future uncertainties and complexities with a lot more confidence.

1.2 How regulators support use of
synthetic data in finance and sustainable
investing

Many regulatory bodies around the world have shown interest

in FinTech and data innovations, however, explicit endorsements

or guidelines on synthetic data are still developing. Regular

consultations with these bodies or checking their latest publications

provide the most up-to-date stance on the topic.

• Thus, in the US, Securities and Exchange Commission (SEC)1

for securities and Commodity Futures Trading Commission

(CFTC)2 have not yet explicitly endorsed the widespread

promotion of synthetic data, they nevertheless pay a very

close attention to this proliferating method since the U.S. has

numerous FinTech and tech firms exploring the potential of

synthetic data in finance.

• Canadian regulatory bodies (FCAC)3 are increasingly

interested in FinTech innovations, though widespread use or

endorsement of synthetic data is still in nascent stages.

• Australian Securities and Investments Commission (ASIC)4 is

known for its progressive stance on FinTech, and they have

1 https://www.sec.gov/

2 https://www.cftc.gov/

3 https://www.canada.ca/en/financial-consumer-agency.html

4 https://asic.gov.au/
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shown interest in various technologies, including the potential

use of synthetic data.

• European Securities and Markets Authority (ESMA)5

currently focuses on the development of a common rulebook

for European Union (EU) financial markets. And whilst

synthetic data is not a prominent agenda yet, various EU

member states have individual FinTech initiatives that might

delve into it in the near future.

• Monetary Authority of Singapore (MAS)6 has been at the

forefront of FinTech innovation for a few years now, and

they have already explored various data solutions in this

space, including the potential of synthetic data for the

financial industry.

• Securities and Exchange Board of India (SEBI)7 has shown

increasing interest in FinTech innovations, though the

widespread discussion of synthetic data is still emerging.

• China Securities Regulatory Commission (CSRC),8 with the

rapidly growing FinTech landscape in the country, is exploring

various data-driven solutions, however, the explicit stance of

CSRC on synthetic data is not widely documented yet.

• Financial Services Agency (FSA) of Japan9 has been proactive

in embracing FinTech innovations; And although not

explicitly focused on synthetic data, the FSA is demonstrably

keen on technologies enhancing financial services.

• In South Africa, Financial Sector Conduct Authority (FSCA)10

is paying significant attention to the customer protection

and ensuring a stable financial market technologies, and are

expected to look into synthetic data as FinTech grows in

the region.

• In Brazil Comissão de Valores Mobiliários (CVM),11 who are

primarily concerned with securities market regulations, are

also increasingly engaging with FinTech, with the growing

prospects of potentially including synthetic data discussions

in the future.

• In the UK, the Financial Conduct Authority (FCA) introduced

the first ever Expert Group on Synthetic Data, which functions

as part of the broader Innovation Advisory (IAG).12 It has

both fixed and rotating members, and it is covering a

broad set of topics, including the use of synthetic data

in financial services, alternative approaches to future

TechSprints and future-proofing of innovation services. The

IAG primarily supports the FCA’s innovation work, and

the group can discuss wider topics which contribute to the

FCA’s strategic commitment to promote competition and

positive change. Under their guidance, the priority cases

have been identified as ethical-by-principle financial use

cases (heavily reliant on tokenisation/pseudonymisation),

which should be further extended within Permanent

5 https://www.esma.europa.eu/

6 https://www.mas.gov.sg/

7 https://www.sebi.gov.in/

8 http://www.csrc.gov.cn/csrc_en/index.shtml

9 https://www.fsa.go.jp/en/

10 https://www.fsca.co.za/Pages/Default.aspx

11 https://www.gov.br/cvm/en

12 https://www.fca.org.uk/firms/innovation/engagement/iag

Sandbox environment.13 Synthetic data generation methods

should be fully documented to maintain transparency and

reproducibility, and FCA currently considers how use of

synthetic data can help to meet and comply with AI ethics

principles and requirements, specifically model fairness,

preparation of the data needs to meet representativeness

and lack of bias, and GDPR compliance via tokenisation

(privacy and security). Since the exact use cases have not

been published yet, it is therefore difficult to estimate to what

extent synthetic data work will extend toward regulatory

requirements of sustainable reporting frameworks, and how

these two agendas will be co-evolving within FCA’s future

scopes of activities.

2 Detailed data requirements for
green finance (and how synthetic data
can help to meet them)

2.1 Synthetic data definitions and
applications

Despite its relatively low profile, which arguably became more

prominent recently, alongside the proliferation of generative AI

models and their ever-growing input data requirements, synthetic

data has always been a crucial topic in contemporary financial

analytics and research. Conceptually, synthetic data deviates from

real data as its byproduct, inheriting its major statistical properties.

This imitation of real data enables synthetic data to serve as an

efficient proxy, the efficacy of which is determined by its utility.

One of the foundational strengths of synthetic data lies in

its ability to bridge gaps in the financial sector where real data

accessibility is either hindered by confidentiality or economic

constraints. Acquiring vast quantities of historical market data

within the financial industry often comes with substantial

costs. Furthermore, leveraging customer financial transactions is

fraught with challenges, primarily due to the sensitive nature of

personal financial information. This sensitivity amplifies when

data sharing extends beyond organizational boundaries to include

external analysts.

To alleviate these challenges, synthetic data emerged as

a pivotal solution in two significant ways: by provisioning

efficient data access and by enhancing analytical competence. By

circumventing the need for real data, especially when the latter is

sensitive or confidential, synthetic proxies can not only safeguards

personal financial information but also ensure that data-driven

analytics aren’t hampered by accessibility issues. When increased

competence required, synthetic data can also facilitate the creation

of standardized data benchmarks, a tool that proves invaluable

when assessing the quality and reliability of data or models

procured from third-party vendors.

In sustainable finance, where analysts often grapple with

scenarios where real data is either non-existent or not standardized

for specific financial applications, synthetic data can address this

13 https://www.fca.org.uk/news/news-stories/launch-permanent-

digital-sandbox

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2023.1168749
https://www.esma.europa.eu/
https://www.mas.gov.sg/
https://www.sebi.gov.in/
http://www.csrc.gov.cn/csrc_en/index.shtml
https://www.fsa.go.jp/en/
https://www.fsca.co.za/Pages/Default.aspx
https://www.gov.br/cvm/en
https://www.fca.org.uk/firms/innovation/engagement/iag
https://www.fca.org.uk/news/news-stories/launch-permanent-digital-sandbox
https://www.fca.org.uk/news/news-stories/launch-permanent-digital-sandbox
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Tkachenko 10.3389/frai.2023.1168749

issue by enabling analysts to simulate data in scenarios where real-

world data collection is either exorbitantly costly or logistically

unfeasible. Beyond its cost and logistical advantages, synthetic data

also shines in its capacity to represent edge or rare cases, scenarios

where real-world data collection may border on the unethical or is

simply too challenging. Another prevalent issue in data analytics

is the presence of unlabeled real data; Thus, manually labeling

such data is not only tedious but also susceptible to errors, hence

synthetic data can bypass this issue by offering pre-labelled datasets

for downstream applications. Given the increasingly diverse and

complex analytical landscapes, such as modeling the macro-

economic implications of various climate change scenarios or

nature risks and dependencies, synthetic data has a string potential

to aid analysts in validating their models and assumptions. This

validation is crucial, ensuring that derived results closely mirror

potential real-world outcomes.

Broadly classifying, synthetic data can be categorized into three

types: [1] Derived from real datasets (this type capitalizes on

actual data, deriving its statistical properties to generate a synthetic

counterpart); [2] Independent of real data (this variant is generated

without leveraging any real datasets, often used when real data is

either unavailable or irrelevant); [3] Hybrid (a fusion of the above

two types, this category often seeks to combine the strengths of

both, offering a more holistic dataset). Each type finds its niche

application across diverse financial use cases, and the choice among

them hinges on the specific requirements of the task at hand, and

the method of data synthesis best suited to achieve optimal results

(which will be discussed in the following chapters of this paper).

2.2 Major regulatory frameworks driving
data requirements in sustainable finance

Whilst significant body of research literature exists Migliorelli

(2021); Papenbrock et al. (2021), covering regulatory, statutory

and supervisory green transition frameworks, their origins and

inter-dependencies, there is currently very little information about

metrics requirements described in simple and accessible data flows

format. Five major international reporting frameworks are SASB,

GRI, UN SDGs, TCFD14 and emerging TNFD, and since first three

have been extensively covered in research literature across their

data requirements, case studies and ethical implications, hence

we will focus here predominantly on the information deficiencies

for TCFD/TNFD frameworks (Amel-Zadeh and Serafeim, 2018;

Grewal et al., 2019; Kotsantonis and Serafeim, 2019; Porter et al.,

2019; Karageorgiou and Serafeim, 2021; Christensen et al., 2022;

Pollard and Bebbington, 2022; Serafeim and Yoon, 2022a,b). And

in attempt to make sense of their data typologies, we propose the

following structure below (Figure 1).

[1] ESG is often mentioned interchangeably along sustainable

finance; The term itself stands for Environmental, Social, and

Governance indicators and it is a broad framework used by

14 Concurrent with the release of its 2023 status report on October 12,

2023, the TCFD has fulfilled its remit and disbanded. The FSB has asked the

IFRS Foundation to take over the monitoring of the progress of companies’

climate-related disclosures.

investors and other stakeholders to assess a company’s performance

and risk exposure in these three areas. ESG is becoming

increasingly important in the financial world, as there’s a growing

recognition that ESG factors can have a significant impact on a

company’s long-term value. [2] TCFD (Task Force on Climate-

related Financial Disclosures) and [3] TNFD (Task Force on

Nature-related Financial Disclosures) are both initiatives aimed

at providing guidance and standards for companies to report on

specific environmental risks (Dye et al., 2021; HOEKSTRA, 2022;

Rudman et al., 2022; Chiu et al., 2023; Irvine-Broque and Dempsey,

2023; Lee et al., 2023; Adams et al., 2024).

The Task Force on Climate-related Financial Disclosures

(TCFD) was established by the Financial Stability Board (FSB)

to develop consistent climate-related financial risk disclosures for

use by companies, banks, and investors. The recommendations

are organized around four thematic areas: (i) Governance

(company’s governance structures around climate-related risks

and opportunities); (ii) Strategy (actual and potential impacts

of climate-related risks and opportunities on the organization’s

businesses, strategy, and financial planning); (iii)RiskManagement

(processes used by the organization to identify, assess, and manage

climate-related risks); (iv) Metrics & Targets (metrics and targets

used by the organization to assess and manage relevant climate-

related risks and opportunities).

The TCFD lists three recommended disclosures under Metrics

& Targets, of which the second is focused on the disclosure of

greenhouse gas emissions (Scope 1, Scope 2, and, if appropriate,

Scope 3 greenhouse gas (GHG) emissions), and guidance on

physical risk disclosures focuses on the first and third disclosures.

Metrics & Targets are at the core of a climate-related risk

disclosure as they provide the institution, investors, and others

with the information necessary to understand the risks faced by

that institution and, over time, how successfully the institution

is addressing those risks. While target-setting has become

increasingly important for financial institutions committed to

realigning their business with a net-zero emissions pathway, there

is currently no such pathway for target-setting against mitigating

physical climate risks or alignment with adaptation goals.

[3] TNFD (Task Force on Nature-related Financial Disclosures)

recommends that companies disclose on the full set of nature-

related dependencies, impacts, risks and opportunities (including

climate) of their operations and across their value chain. This

includes a consideration of the upstream (supply) and downstream

(distribution and sale) value chains. For financial institutions, this

includes lending, investment and/or insurance, as well as fee-based

advisory activities. The TNFD also suggests assessing nature-related

risks and opportunities over medium- to long-term time frames

and requires a consideration of a broader set of dependencies and

impacts, as these may lead to additional risks and opportunities that

are material for enterprise value over time.

TNFD understands that nature-related risk management and

disclosure will be new to many companies. Thus, firms may wish

to start by prioritizing their disclosures and focus on specific

activities or business lines where such information is material.

This might, for example, include focusing on specific geographic

areas, aspects of their value chain as well as specific impact drivers,

nature impacts and nature-related dependencies. For financial

firms they may wish to focus on certain asset classes or portions
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FIGURE 1

Emerging information and metrics needs in the field of sustainable finance, driven by both regulatory and innovation requirements.

of their financing and advisory activities. In the TNFD beta

framework, it is specified that users should be clear what was

considered in scope for their disclosure and what has not been

considered for the scope of their disclosure. Recognizing that

this will be a journey for most organizations as their awareness

of, and capabilities for managing nature-related risks increases,

disclosure coverage should expand over time so that after no

more than five years firms are considering their full set of

material dependencies, impacts, risks and opportunities across

their upstream and downstream operations.

Aligned with the TCFD approach, TNFD believe scenario

analysis can play an important role in informing the strategy,

governance, risk management and capital allocation decisions of

companies and financial institutions. Recognizing the complex

interplay of nature-related dependencies and impacts an

organization has over the short, medium, and long term, the

TNFD’s draft disclosure recommendations specify that risks should

be assessed taking into consideration different scenarios (plausible

futures) and the implications for nature-related physical, transition

and systemic risks and opportunities.

The complexity of data required for ESG, TCFD, TNFD

and pro-innovation sustainable investments’ is structured and

presented in Figure 1.

2.3 Comparing synthetic data options for
generic and sustainable finance

Synthetic data in finance refers to artificially generated data that

is not sourced from real-world financial events but shares the same

statistical properties. There is a number of diverse applications for

synthetic data in finance, and while some applications of synthetic

data in sustainable finance overlap with generic finance, there are

nuances and specificities related to ESG factors (Table 1) (Zhang

and Chen, 2017; Papacharalampopoulos et al., 2020; Ljung, 2021;

Popescu et al., 2021; Horvath, 2022; Valle-Cruz et al., 2022; Kelly

et al., 2023; Sauer et al., 2023).

Addressing these data gaps is crucial for investors, regulators,

and other stakeholders to make informed decisions in the realm of

sustainable finance (Santos et al., 2021; Behera et al., 2022; Rojas-

Hernández, 2023). As the sector evolves, there’s a growing push

for standardizing ESG reporting and improving data transparency.

Generating synthetic data for the missing data types in sustainable

finance requires specialized techniques tailored to the nature of

each data category (Moro-Visconti et al., 2020; Chatterjee and

Byun, 2023; Pawlik and Dziekański, 2023).

Thus, in generic finance traders and investment managers start

utilizing synthetic data to test new trading algorithms, ensuring
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TABLE 1 Identified cases of synthetic data in generic finance, their interpretation within sustainable finance and presentation of select methodologies

for corresponding use domains.

Applications in
finance

Relevance for sustainable finance Methods in the literature

Asset management For investments in agriculture, forestry, or real estate,

synthetic data can model future land use scenarios, crop

yields, or urban development trajectories, aiding in

investment decision-making. For green infrastructure

projects like wind farms or solar parks, synthetic remote

sensing data can help visualize future scenarios, like the

impact of vegetation growth on a solar park’s efficiency.

Time Series Analysis (ARIMA, GARCH, and cointegration), Machine

Learning Models (Random Forests, Support Vector Machines, and

Gradient Boosting Machines), Optimization Algorithms (Markowitz

model or Black-Litterman model), Reinforcement Learning

(Q-Learning and Deep Reinforcement Learning), VaR Models (Monte

Carlo simulations, Historical Simulation, or parametric methods),

Natural Language Processing [Sentiment scores, Topic modeling

(LDA)], High-Frequency Trading Algorithms, Deep Learning

[recurrent neural networks (RNNs) and long short-term memory

networks (LSTMs)], Clustering Algorithms (K-means or hierarchical

clustering), Isolation Forests (specialized tree-based method designed

for anomaly detection in higher dimensions), Principal Component

Analysis, SHAP (SHapley Additive exPlanations).

Algorithm testing Algorithms may be developed to evaluate and predict ESG

performance or to automatically sort investments based on

ESG criteria. Synthetic data helps in testing these algorithms

in diverse scenarios. In the absence of historical remote

sensing data, synthetic data can serve as a benchmark,

helping validate models or algorithms designed to interpret

recent remote sensing data.

Generative Adversarial Networks (GANs), Monte Carlo Simulations.

Risk management Use synthetic data to model potential future risks associated

with climate change, political shifts toward sustainability, or

social unrest. By simulating potential environmental

disasters like flooding, droughts, or wildfires using synthetic

data, financial institutions can assess the risks associated

with investments in vulnerable regions.

Monte Carlo Simulations, Copula-based methods (generate

multivariate synthetic datasets preserving the dependencies among

variables).

Data privacy and

security

Sustainable finance may require specific ESG-related data

sets that are less commonly available, making their

protection crucial. In regions where there are restrictions on

capturing or sharing real remote sensing data due to security

concerns, synthetic data can provide a viable alternative for

analysis without compromising security.

Differential Privacy (adds noise to data in a way that protects

individual data points), Data Masking (replaces sensitive information

with modified content (characters or values) but structurally similar to

the original data).

Data augmentation ESG data is often sparse, especially from companies in

emerging markets or newer industries, and synthetic data

can fill these gaps. When real remote sensing datasets are

limited, synthetic datasets can augment the training data,

improving the performance of machine learning models

used for analyzing and interpreting satellite images.

Bootstrap Resampling, SMOTE (Synthetic Minority Over-sampling

Technique)

Market monitoring Synthetic remote sensing data can simulate potential

environmental changes, helping investors understand how

specific areas might be affected by climate change,

deforestation, or other environmental factors.

ARIMA, GARCH, Random Forests, SVMs, Neural Networks &

Reinforcement Learning, NLP (sentiment analysis, topic modeling,

event extraction), Clustering Algorithms (K-means, DBSCAN),

Isolation Forests & Decision Trees, Regression Analysis, VaR (Value

at Risk), TF-IDF (Term Frequency-Inverse Document Frequency,

for information retrieval in documents like SEC filings), Graph

Algorithms, Bayesian Networks, Bootstrap Aggregating (Bagging) &

Boosting, Mean-Variance Optimization & Black-Litterman Model.

Regulatory compliance Regulations might involve meeting specific ESG targets or

reporting standards. Synthetic data can help test compliance

under hypothetical scenarios. Companies and investors can

use synthetic data to visualize and communicate potential

future environmental impacts or benefits of their

investments, enhancing transparency and stakeholder trust.

Agent-based modeling, Scenario generators.

Credit scoring Credit models may incorporate ESG factors, predicting a

company’s future performance based on its sustainability

initiatives. Synthetic data can help with training these

models.

GANs, Decision Trees and Random Forests.

Cost efficiency Generating synthetic remote sensing data can be more

cost-effective than launching new satellite missions or

frequently flying drones, especially when testing hypotheses

or models.

Regression Analysis, Classification Algorithms, Random Forests,

Support Vector Machines, Neural Networks, ARIMA (AutoRegressive

Integrated Moving Average), GARCH (Generalized Autoregressive

Conditional Heteroskedasticity), NLP (Sentiment Analysis & Topic

Modeling), Q-learning and Deep Q Networks, Policy Gradients,

K-means, Hierarchical Clustering, GANs (Generative Adversarial

Networks), Autoencoders, Linear Programming, Genetic Algorithms,

Monte Carlo Simulations, Bagging/Boosting/Stacking, Decision Trees

like CART (Classification and Regression Trees), Bayesian Networks.

(Continued)
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TABLE 1 (Continued)

Applications in
finance

Relevance for sustainable finance Methods in the literature

AML/Fraud detection Focus on detecting ‘greenwashing’ (where companies falsely

claim sustainable practices). Synthetic data can simulate

such activities for better detection.

SMOTE [generates synthetic examples of underrepresented classes

(like fraud instances)], Bayesian Networks.

Product development Develop financial products targeting green investments or

ESG compliant portfolios. Synthetic data can simulate

market responses to such products.

Agent-based modeling, Variational Autoencoders (can generate new

customer profiles and behaviors).

Financial education and

training

Training focuses on understanding ESG risks and

opportunities. Synthetic data can simulate potential future

ESG scenarios.

Time-series simulations (generate synthetic data streams resembling

market data), Rule-based systems (create scenarios based on

predefined rules and principles).

Scenario analysis Emphasis on predicting future scenarios related to climate

change, societal shifts, and governance changes. Synthetic

remote sensing data can help simulate how different ESG

factors might impact landscapes, such as how sustainable

agricultural practices influence soil health and vegetation

over time.

Monte Carlo Simulations & Stochastic models.

they are robust across a variety of market conditions, including

those that have not been yet experienced, and in cases where

real data is sparse, synthetic data can supplement the dataset to

improve the performance and training of machine learningmodels.

Financial institutions can create synthetic versions of sensitive

data sets, allowing external researchers or developers to work on

projects without risking the exposure of confidential information,

whilst regulators can test the impact of new policies or regulations

using synthetic data to avoid unintended consequences in the

real market. From the risk management perspective, synthetic

data can be helpful in simulating extreme market conditions,

enabling institutions to assess their resilience to shocks and stress-

test their portfolios. Finally, by generating synthetic profiles of

borrowers, financial institutions can also improve the models

they use to assess credit risk, especially for underrepresented or

new-to-credit populations. Missing data in sustainable finance

can pose challenges (Bonnéry et al., 2019; Campbell, 2019;

Hosaka, 2019; Beery et al., 2020, 2021; Koh et al., 2020; Kuchin

et al., 2020; Beery, 2021; Dietz et al., 2021; Kahn et al., 2021;

Norouzzadeh et al., 2021; Van Horn et al., 2021; Warren et al.,

2021; Ziolo et al., 2021; Azamuke et al., 2022; Barnes, 2022;

Walsh et al., 2022; Kannan and Nandwana, 2023), especially given

the sector’s emphasis on comprehensive analysis and decision-

making based on Environmental, Social, and Governance (ESG)

criteria. However, ESG and associated regulatory data requirements

within sustainable finance sub-domain are also seen to extend

toward more ‘pro-innovation’ use-cases, as green and transition

investments are developing and maturing from incubator phases

toward mainstream products. The types of missing data in

sustainable finance can be therefore matched against the relevant

mainstream finance categories (examples are presented in Table 1).

3 Ethical considerations for synthetic
data deployments

The advent of generative artificial intelligence (AI) technologies

has ushered in groundbreaking capabilities for synthetic data

generation. While these capabilities offer promising advantages in

various sectors, they simultaneously give rise to complex ethical

and societal dilemmas. A particularly concerning attribute of

generative AI is its ‘self-replicating’ nature, which often relies on

unstructured, multi-modal datasets to generate further synthetic

data. As these datasets rapidly deplete, the ethical quandaries

surrounding synthetic data come to the fore (Alemohammad et al.,

2023).

In this context two major applications of synthetic data include

its role as an output of generative AI models and as an input.

In the first scenario, synthetic data serves crucial functions in

sectors like banking where privacy and ethical considerations

hinder data availability for tasks such as training environments and

scenario testing. In the second instance, synthetic data compensates

for minority classes in datasets needed for critical applications,

such as fraudulent transactions or ‘greenwashing’, thereby usefully

augmenting training data for machine learning models.

However, the ethical challenge still remain in validating the

utility, fidelity, and privacy of synthetic data. Validation remained

a significant barrier to its broader adoption (Battese et al., 1988;

Fienberg, 1994; Drechsler, 2011; Warmenhoven et al., 2020; James

et al., 2021; Keen, 2021; Peachey et al., 2021; White, 2021; Heim,

2022; Krenchel and Cury, 2022). Assessing specific requirements

of a use case is pivotal in evaluating both the utility and privacy

concerns surrounding synthetic data. While model generalizability

might increase the utility of synthetic data across multiple use cases,

it poses ethical risks related to model drift and re-identification of

individuals in the dataset.

For a more ethical deployment of synthetic data, mathematical

validation methods for the generative model need to be augmented

by post-generation validation techniques. Industry adoption

may benefit from a shift toward a risk-based model for

privacy validation that acknowledges some level of inherent

risk in the synthetic data generation and sharing process.

Moreover, the ethical adoption of synthetic data can be

facilitated through comprehensive use-case documentation,

development of standardized frameworks, and regulatory

guidance.

Thus, while synthetic data presents an invaluable resource for

modern AI applications, a multidisciplinary approach involving
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ethical considerations, mathematical validation, and industry

standardization is essential for its responsible adoption.

4 Conclusions and discussion

After the thorough analysis of research literature, it can be

concluded that synthetic data has the potential to revolutionize

ethical applications in finance by providing a means to conduct

robust analyses without compromising values of the highly (or

not highly) confidential datasets. By generating artificial data that

mimic real financial patterns, synthetic data enables institutions

to sidestep the ethical pitfalls associated with using sensitive

customer, business or other corporate value information, thereby

ensuring compliance with current regulations and thus enhancing

the integrity of financial models.

In the burgeoning field of sustainable finance, synthetic data

opens up a wealth of opportunities, addressing the sector’s

voracious appetite for data to support compliance, screening,

and proactive investment decisions. With an increasing emphasis

on ESG (Environmental, Social, Governance) criteria, financial

institutions require extensive datasets to evaluate the sustainability

of investments and to monitor the social and environmental

impact of their portfolios. Synthetic data can provide high-

quality, scalable information, facilitating the development of

innovative financial products and strategies. As a tool, it

enhances risk assessment models by incorporating potential

ESG scenarios, allowing for stress testing against a range of

sustainability factors.

However, deploying synthetic data in sustainable finance is

not without challenges. Concerns over the representativeness of

synthetic datasets can lead to questions about the reliability of

insights derived from them. Moreover, the complexity of ESG

variables demands synthetic data that is sophisticated enough

to accurately reflect the nuanced interplay of these factors.

Overcoming these obstacles requires advances in algorithmic

techniques to ensure that synthetic data retains the intricate

correlations present in genuine data. It also necessitates rigorous

validation processes to establish the credibility of the synthesized

datasets, thus paving the way for their effective application in

driving sustainable finance forward.
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