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Asynchronous Deep Double
Dueling Q-learning for
trading-signal execution in limit
order book markets
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We employ deep reinforcement learning (RL) to train an agent to successfully

translate a high-frequency trading signal into a trading strategy that places

individual limit orders. Based on the ABIDES limit order book simulator, we build

a reinforcement learning OpenAI gym environment and utilize it to simulate a

realistic trading environment for NASDAQ equities based on historic order book

messages. To train a trading agent that learns to maximize its trading return

in this environment, we use Deep Dueling Double Q-learning with the APEX

(asynchronous prioritized experience replay) architecture. The agent observes the

current limit order book state, its recent history, and a short-term directional

forecast. To investigate the performance of RL for adaptive trading independently

from a concrete forecasting algorithm, we study the performance of our approach

utilizing synthetic alpha signals obtained by perturbing forward-looking returns

with varying levels of noise. Here, we find that the RL agent learns an e�ective

trading strategy for inventory management and order placing that outperforms a

heuristic benchmark trading strategy having access to the same signal.

KEYWORDS

limit order books, quantitative finance, reinforcement learning, LOBSTER, algorithmic

trading

1. Introduction

Successful quantitative trading strategies often work by generating trading signals,
which exhibit a statistically significant correlation with future prices. These signals are then
turned into actions, aiming to assume positions in order to gain from future price changes.
The higher the signal frequency and strategy turnover, the more critical is the execution
component of the strategy, which translates the signal into concrete orders that can be
submitted to a market. Suchmarkets are oftentimes organized as an order ledger represented
by a limit order book (LOB).

Limit order book prices have been shown to be predictable over short time periods,
predicting a few successive ticks into the future with some accuracy. This has been done
by either utilizing the recent history of order book states (Zhang et al., 2019; Zhang and
Zohren, 2021), order-flow data (Kolm et al., 2021), or market-by-order (MBO) data directly
as features (Zhang et al., 2021). However, given the short time horizons over which these
predictions are formed, and correspondingly small price movements, predictability does not
directly translate into trading profits. Transaction costs, strategy implementation details, and
time delays add up to the challenging problem of translating high-frequency forecasts into a
trading strategy that determines when and which orders to send to the exchange. In addition,
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different predictive signals have to be traded differently to achieve
optimal results, depending on the forecast horizon, signal stability,
and predictive power.

In this paper, we use asynchronous off-policy reinforcement
learning (RL), specificallyDeep Dueling Double Q-learning with the
APEX architecture (Horgan et al., 2018), to learn an optimal trading
strategy, given a noisy directional signal of short-term forwardmid-
quote returns. For this purpose, we developed an OpenAI gym
(Brockman et al., 2016) limit order book environment based on the
ABIDES (Byrd et al., 2020a) market simulator, similar to Amrouni
et al. (2021). We use this simulator to replay NASDAQ price-time
priority limit order book markets using message data from the
LOBSTER data set (Huang and Polak, 2011).

If a financial trader wants to transact a number of shares of
a financial security, such as shares of cash equities, for example
Apple stock, they need to send an order to an exchange. Most
stock exchanges today accept orders electronically and in 2022 in
US equity markets approximately 60–73% of orders are submitted
by algorithms, not human traders (Mordor Intelligence, 2022). A
common market mechanism to efficiently transact shares between
buyers and sellers is the limit order book (LOB). The LOB contains
all open limit orders for a given security and is endowed with a set
of rules to clear marketable orders. A more detailed introduction to
LOBs can be found in Section 3.1.

High-frequency trading (HFT) is an industry with high barriers
to entry and a regulatory landscape varying by geographical region.
Generally, trading on both sides of the LOB simultaneously by
submitting both limit buy and limit sell orders is the purview of
market makers. While their principal role is to provide liquidity
to the market, they also frequently take directional bets over short
time periods. Transaction costs for such trading strategies consist
of two main components, explicit costs, such as trading fees, and
implicit costs, such as market impact (Harris, 2003). Trading fees
vary by institution but can be negligible for institutional market
makers, with some fee structures even resulting in zero additional
costs if positions are closed out at the end of the day. The main
consideration of transaction costs should thus be given to market
impact. Our simulation environment models market impact by
injecting new orders into historic order flow, thereby adding to or
consuming liquidity in the market. One limitation of this approach
is that adverse selection and, generally, the reactions of other
market participants are not modeled.

We study the case of an artificial or synthetic signal, taking
the future price as known and adding varying levels of noise,
allowing us to investigate learning performance and to quantify
the benefit of an RL-derived trading policy compared to a baseline
strategy using the same noisy signal. This is not an unrealistic
setup when choosing the correct level of noise. Practitioners often
have dedicated teams researching and deriving alpha signals, often
over many years, while other teams might work on translating
those signals into profitable strategies. Our aim is to focus on the
latter problem, which becomes increasingly more difficult as signals
become faster. It is thus interesting to see how an RL framework
can be used to solve this problem. In particular, we show that the
RL agent learns policies superior to the baselines, both in terms
of strategy return and Sharpe ratio. Machine learning methods,
such as RL, have become increasingly important to automate trade

execution in the financial industry in recent years (Nagy et al.,
2023), underlining the practical use of research in this area.

We make a number of contributions to the existing literature.
By defining a novel action and state space in a LOB trading
environment, we allow for the placement of limit orders at different
prices. This allows the agent to learn a concrete high-frequency
trading strategy for a given signal, trading either aggressively
by crossing the spread, or conservatively, implicitly trading off
execution probability and cost. In addition to the timing and
level placement of limit orders, our RL agent also learns to use
limit orders of single units of stock to manage its inventory as
it holds variably sized long or short positions over time. More
broadly, we demonstrate the practical use case of RL to translate
predictive signals into limit order trading strategies, which is still
usually a hand-crafted component of a trading system. We thus
show that simulating limit order book markets and using RL to
further automate the investment process is a promising direction
for further research. To the best of our knowledge, this is also the
first study applying the APEX (Horgan et al., 2018) algorithm to
limit order book environments.

The remaining paper is structured as follows: Section 2 surveys
related literature, Section 3 explains the mechanics of limit order
book markets and the APEX algorithm, Section 4 details the
construction of the artificial price signal, Section 5 showcases our
empirical results, and Section 6 concludes our findings.

2. Related work

Reinforcement learning has been applied to learn different tasks
in limit order book market environments, such as optimal trade
execution (Nevmyvaka et al., 2006; Dabérius et al., 2019; Karpe
et al., 2020; Ning et al., 2021; Schnaubelt, 2022), market making
(Abernethy and Kale, 2013; Kumar, 2020), portfolio optimization
(Yu et al., 2019), or trading (Kearns and Nevmyvaka, 2013; Wei
et al., 2019; Briola et al., 2021). The objective of optimal trade
execution is to minimize the cost of trading a predetermined
amount of shares over a given time frame. Trading direction
and the number of shares is already pre-defined in the execution
problem. Market makers, on the other hand, place limit orders
on both sides of the order book and set out to maximize profits
from capturing the spread, while minimizing the risk of inventory
accumulation and adverse selection. We summarize using the
term “RL for trading” such tasks which maximize profit from
taking directional bets in the market. This is a hard problem for
RL to solve as the space of potential trading strategies is large,
leading to potentially many local optima in the loss landscape, and
actionable directional market forecasts are notoriously difficult due
to arbitrage in the market.

The work of Kearns and Nevmyvaka (2013) is an early
study of RL for market microstructure tasks, including trade
execution and predicting price movements. While the authors
achieve some predictive power of directional price moves, forecasts
are determined to be too erroneous for profitable trading. The
most similar work to ours is Briola et al. (2021) that provides
the first end-to-end DRL framework for high-frequency trading,
using PPO (Schulman et al., 2017) to trade Intel stock. To model
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price impact, Briola et al. (2021) use an approximation, moving
prices proportionately to the square-root of traded volume. The
action space is essentially limited to market orders, so there is no
decision made on limit prices. The trained policy is capable of
producing a profitable trading strategy on the evaluated 20 test
days. However, this is not compared to baseline strategies and the
resulting performance is not statistically tested for significance.
In contrast, we consider a larger action space, allowing for the
placement of limit orders at different prices, thereby potentially
lowering transaction costs of the learned HFT strategy. For a
broader survey of deep RL (DRL) for trading, including portfolio
optimization, model-based and hierarchical RL approaches the
reader is referred to Kumar (2020).

One strand of the literature formulates trading strategies in
order-driven markets, such as LOBs, as optimal stochastic control
problems, which can often even be solved analytically. A seminal
work in this tradition is Almgren and Chriss (2001), which solves
a simple optimal execution problem. More recently, Cartea et al.
(2018) use order book imbalance, i.e., the relative difference in
volume between buy and sell limit orders, to forecast the direction
of subsequent market orders and price moves. They find that
utilizing this metric can thereby improve the performance of
trading strategies. In addition to market orders, LOB imbalance
has also been found to be predictive of limit order arrivals, and
illegal manipulation of the LOB imbalance by spoofing can be a
profitable strategy (Cartea et al., 2020). Stochasticmodels, assuming
temporary and permanent price impact functions have also found
that using order flow information can reduce trading costs when
trading multiple assets (Cartea and Jaimungal, 2016; Cartea et al.,
2019). In contrast to the stochastic modeling literature, we employ
a purely data-driven approach using simulation. This allows us to
make fewer assumptions about market dynamics, such as specific
functional forms and model parameters. The stochasticity of the
market is captured in large samples of concrete data realizations.

3. Background

3.1. Limit order book data

Limit order books (LOBs) are one of the most popular financial
market mechanisms used by exchanges around the world (Gould
et al., 2013). Market participants submit limit buy or sell orders,
specifying a maximum (minimum) price at which they are wiling to
buy (sell), and the size of the order. The exchange’s LOB then keeps
track of unfilled limit orders on the buy side (bids) and the sell side
(asks). If an incoming order ismarketable, i.e., there are open orders
on the opposing side of the order book at acceptable prices, the
order is matched immediately, thereby removing liquidity from the
book. The most popular matching prioritization scheme is price-
time priority. Here, limit orders are matched first based on price,
starting with the most favorable price for the incoming order, and
then based on arrival time, starting with the oldest resting limit
order in the book, at each price level.

Figure 1 shows an example snapshot of an Apple LOB, traded
at the NASDAQ exchange, on Wednesday 01 February 2012 at
10 am. Shown are the best 5 price levels on the bid and ask side
and the aggregated available volume at each price. In this example,

FIGURE 1

Example Limit Order Book Snapshot of Apple Stock (AAPL) on 01

February 2012 at 10 am. Displayed are the 5 best bid (blue) and ask

levels (red). Ask sizes are shown as negative values to indicate limit

sell orders. AAPL is an example of a small-tick stock since the

minimum tick size of ¢1 is small compared to the stock price. For a

given number of orders, this results in sparser books with more

empty price levels (NASDAQ data from LOBSTER, Huang and Polak,

2011).

the best bid lies at $457.21 for 100 shares, which is the maximum
instantaneous price a potential seller would be able to trade at, for
example using a market order. Conversely, a potential buyer could
receive up to 1,000 shares at a price of $457.29. Trading larger
quantities on either side would use up all volume at the best price
and consume additional liquidity at deeper levels. Submitting a buy
limit order at a price below the best ask would not be marketable
immediately and instead enter the LOB as new volume on the
bid side. For a more comprehensive review of limit order book
dynamics and pertaining models, we refer the reader to Gould et al.
(2013).

In this paper, we consider equity limit order book data from
the NASDAQ exchange (Huang and Polak, 2011), which also uses
a price-time priority prioritization. Our market simulator keeps
track of the state of the LOB by replaying historical message data,
consisting of new incoming limit orders, order cancellations, or
modifications. The RL agent can then inject new messages into the
order flow and thereby, change the LOB state from its observed
historical state.

Our simulator reconstructs LOB dynamics from message data,
so every marketable order takes liquidity from the book and
thus has a direct price impact. Beyond that, we make no further
assumptions on permanent market impact or reactions of other
agents in the market, which we leave to future work.

3.2. Deep reinforcement learning

We model the trader’s problem as a Markov Decision Process
(MDP) (Bellman, 1957; Puterman, 1990), described by the tuple
〈S ,A,T , r, γ 〉. S denotes a state space, A an action space, T a
stochastic transition function, r a reward function, and γ a discount
factor. Observing the current environment state st ∈ S at time
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t, the trader takes action at ∈ A, which causes the environment
to transition state according to the stochastic transition function
T (st+1|st , at). After transitioning from st to st+1, the agent receives
a reward rt+1 = r(st , at , st+1).

Solving the MDP amounts to finding an optimal policy
π∗ :S → A, which maximizes the discounted expected sum
of future rewards

∑T
i=t+1 γ

i−t
Etri between current time t and

terminal time T, given a discount factor γ ∈ (0, 1]. As the transition
kernel T is unknown, we use reinforcement learning (RL) to
learn an optimal policy from observed trajectories of state-action
transitions. RL algorithms fall broadly within two categories: value-
based methods, which learn representations of value functions,
and policy-based methods, which learn explicit representations of
the agent’s policy.1 In this paper, we are using a value-based RL
algorithm, based on Q-learning, which explicitly approximates the
action-value function Q∗ for the optimal policy π∗. The action-
value function for a given policy π is defined recursively as
Qπ (s, a) = Etrt+1 + γ maxa′ Q

π (st+1, a′). One benefit of this class
of algorithms is that they are off-policy learners, which means that
they approximate the optimal value function Q∗ using transitions
sampled from the environment using a, potentially sub-optimal,
exploratory policy π . This allows for computational efficiency due
to asynchronous sampling and learning steps, as described in the
next section. Modern Deep RL algorithms, such as DQN (Mnih
et al., 2013), use neural networks as function approximators, in
this case, of the Q-function. This way algorithms make use of the
generalization abilities provided by deep learning, necessitated by
large or continuous state spaces. Network parameters are updated
using temporal difference learning with gradient-based optimizers,
such as stochastic gradient descent or the popular Adam optimizer
(Kingma and Ba, 2014). For a comprehensive treatment of RL, we
refer the interested reader to Sutton and Barto (2018), and for a
survey of recent progress in RL for financial applications to Hambly
et al. (2023).

3.3. Double DQN with distributed
experience replay

We use Deep Double Q-learning (Van Hasselt et al., 2016)
with a dueling network architecture (Wang et al., 2016) to
approximate the optimal Q-function Q∗(s, a) = E[rt+1 +
γ maxa′ Q

∗(st+1, a′)|at = a, st = s]. To speed up the learning
process we employ the APEX training architecture (Horgan et al.,
2018), which combines asynchronous experience sampling using
parallel environments with off-policy learning from experience
replay buffers. Every episode i results in an experience trajectory
τi = {st , at}Tt=1, many of which are sampled from parallel
environment instances and are then stored in the replay buffer.
The environment sampling is done asynchronously using parallel
processes running on CPUs. Experience data from the buffer is then
sampled randomly and batched to perform a policy improvement
step of the Q-network on the GPU. Prioritized sampling from the
experience buffer has proven to degrade performance in our noisy

1 Actor-critic algorithms fall between the two as they keep explicit

representations of both policy (actor) and value functions (critic).

problem setting, hence we are sampling uniformly from the buffer.2

After a sufficient number of training steps, the new policy is then
copied to every CPU worker to update the behavioral policy.

Double Q-learning (Hasselt, 2010; Van Hasselt et al., 2016)
stabilizes the learning process by keeping separate Q-network
weights for action selection (main network) and action validation
(target network). The target network weights are then updated
gradually in the direction of the main network’s weight every few
iterations. Classical Q-learning without a separate target network
can be unstable due to a positive bias introduced by the max
operator in the definition of the Q-function, leading to exploding
Q-values during training. The dueling network architecture (Wang
et al., 2016) additionally uses two separate network branches (for
both main and target Q-networks). One branch estimates the
value function V(s) = maxa Q(s, a), while the other estimates
the advantage function A(s, a) = Q(s, a) − V(s). The benefit
of this architecture choice lies therein that the advantage of
individual actions in some states might be irrelevant, and the
state value, which can be learnt more easily, suffices for an
action-value approximation. This leads to faster policy convergence
during training.

4. Framework

4.1. Artificial price signal

The artificial directional price signal dt ∈ 12 = {x ∈

R
3
: x1 + x2 + x3 = 1, xi ≥ 0 for i = 1, 2, 3} the agent

receives is modeled as a discrete probability distribution over 3
classes, corresponding to the averaged mid-quote price decreasing,
remaining stable, or increasing over a fixed future time horizon of
h ∈ N+ seconds. To achieve realistic levels of temporal stability
of the signal process, dt is an exponentially weighted average, with
persistence coefficient φ ∈ (0, 1), of Dirichlet random variables
ǫt . The Dirichlet parameters α depend on the realized smoothed
future return rt+h, specifically on whether the return lies within
a neighborhood of size k around zero, or above or below. Thus
we have:

dt = φdt−1 + (1− φ)ǫt

ǫt = Dirichlet
(

α(rt+h)
)

rt+h =
pt+h − pt

pt
where pt+h =

1

h

h
∑

i=1

pt+i

(1)

and prices pt refer to the mid-quote price at time t. The Dirichlet
distribution is parametrized, so that, in expectation, the signal
dt updates in the direction of future returns, where aH and aL

determine the variance of the signal. TheDirichlet parameter vector

2 In many application domains prioritized sampling, whereby we resample

instances more frequently where the model initially performs poorly tends

to aide learning. However, in our low signal-to-noise application domain, we

noted poor performance. Investigating the matter, we found that prioritized

sampling caused more frequent resampling of highly noisy instances where

learning was particularly di�cult, thus degrading performance.
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is thus:

α(rt+h) =















(aH , aL, aL) if rt+h < −k

(aL, aH , aL) if − k ≤ rt+h < k

(aL, aL, aH) if k ≤ rt+h.

(2)

4.2. RL problem specification

At each time step t, the agent receives a new state observation
st . st consists of the time left in the current episode T − t given the
episode’s duration of T, the agent’s cash balance Ct , stock inventory
Xt , the directional signal dt ∈ 12, encoded as probabilities of prices
decreasing, remaining approximately constant, or increasing; and
price and volume quantities for the best bid and ask (level 1),
including the agent’s own volume posted at bid and ask: ob,t and oa,t
respectively. In addition to the most current observable variables
at time t, the agent also observes a history of the previous l

values, which are updated whenever there is an observed change
in the LOB. Putting all this together, we obtain the following
state observation:

st =















T − u

Cu

Xu

(d1u, d
2
u, d

3
u)
′

(pa,u, va,u, oa,u, pb,u, vb,u, ob,u)
′















u={t−l,...,t}

.

After receiving the state observation, the agent then chooses an
action at . It can place a buy or sell limit order of a single share at bid,
mid-quote, or ask price; or do nothing and advance to the next time
step. Actions, which would immediately result in positions outside
the allowed inventory constraints [posmin, posmax] are disallowed
and do not trigger an order. Whenever the execution of a resting
limit order takes the inventory outside the allowed constraints,
a market order in the opposing direction is triggered to reduce
the position back to posmin for short positions or posmax for long
positions. Hence, we define

at ∈ A = ({−1, 1} × {−1, 0, 1}) ∪ {skip}

so that in total there are 7 discrete actions available, three levels
for both buy and sell orders, and a skip action. For the six actions
besides the “skip” action, the first dimension encodes the trading
direction (sell or buy) and the second dimension the price level (bid,
mid-price, or ask). For example, a = (1, 0) describes the action to
place a buy order at the mid price, and a = (−1, 1) a sell order at
best ask. Rewards Rt+1 consist of a convex combination of a profit-

and-loss-based reward R
pnl
t+1 and a directional reward Rdirt+1. R

pnl
t+1

is the log return of the agent’s mark-to-market portfolio value Mt ,
encompassing cash and the current inventory value, marked at the
mid-price. The benefit of log-returns is that they are additive over
time, rather than multiplicative like gross returns, so that, without

discounting (γ = 1) the total profit-and-loss return
∑T

s=t+1 R
pnl
s =

MT −Mt . The directional reward term Rdirt+1 incentivizes the agent
to hold inventory in the direction of the signal and penalizes the
agent for inventory positions opposing the signal direction. The size

of the directional reward can be scaled by the parameter κ > 0.
Rdirt+1 is positive if the positive prediction has a higher score than
the negative (dt,3 > dt,1) and the current inventory is positive; or
if dt,3 < dt,1 and Xt < 0. Further, if the signal [−1, 0, 1] · dt has
an opposite sign than inventory Xt , Rdirt+1 is negative. This can be
summarized as follows:

Mark-to-Market Value Mt = Ct + Xtp
m
t

1Mt = 1Ct + Xt−11pmt +1xtp
m
t

PnL Reward R
pnl
t+1 = ln(Mt)− ln(Mt−1)

Directional Reward Rdirt+1 = κ[−1, 0, 1] · dtXt

Total Reward rt+1 = wdirRdirt+1 + (1− wdir)R
pnl
t+1

(3)

The weight on the directional reward wdir ∈ [0, 1) is reduced
every learning step by a factor ψ ∈ (0, 1),

wdir ← ψwdir

so that initially the agent quickly learns to trade in the signal

direction. Over the course of the learning process, R
pnl
t becomes

dominant and the agent maximizes its mark-to-market profits.

5. Experimental results

We train all RL policies using the problem setup discussed
in Section 4.2 on 4.5 months of Apple (AAPL) limit order book
data (2012-01-01 to 2012-05-16) and evaluate performance on
1.5 months of out-of-sample data (2012-05-17 to 2012-06-31).
We only use the first hour of every trading day (09:30 to 10:30)
as the opening hour exhibits higher-than-average trading volume
and price moves. Each hour of the data corresponds to a single
RL episode. After analyzing the results, we also performed a
robustness check by repeating the training and analysis pipeline
on more recent AAPL data from 2022. Results are reported
in Section 5.2 and confirm the main conclusions based on
earlier data.

Our neural network architecture consists of 3 feed-forward
layers, followed by an LSTM layer, for both the value- and
advantage stream of the dueling architecture. The LSTM layer
allows the agent to efficiently learn a memory-based policy with
observations including 100 LOB states.

We compare the resulting learned RL policies to a baseline
trading algorithm, which receives the same artificially perturbed
high-frequency signal of future mid-prices. The baseline policy
trades aggressively by crossing the spread whenever the signal
indicates a directional price move up or down until the
inventory constraint is reached. The signal direction in the
baseline algorithm is determined as the prediction class with the
highest score (down, neutral, or up). When the signal changes
from up or down to neutral, indicating no immediate expected
price move, the baseline strategy places a passive order to
slowly reduce position size until the inventory is cleared. This
heuristic utilizes the same action space as the RL agent and
yielded better performance than trading using only passive orders

Frontiers in Artificial Intelligence 05 frontiersin.org



Nagy et al. 10.3389/frai.2023.1151003

FIGURE 2

A short snapshot of simulation results (AAPL on 2012-06-14), comparing the RL policy (second panel) with the baseline (first panel). The first two

panels plot the best bid, ask, and mid-price, overlaying trading events of buy orders (green) and sell orders (red). Circles mark new unmarketable limit

orders entering the book. Crosses mark order executions (trades) and triangles order cancellations. Open orders are connected by lines to either

cancellations or trades. Since we are simulating the entire LOB, trading activity can be seen to a�ect bid and ask prices. The third panel plots the

evolution of the inventory position of both strategies, and the last panel the trading profits over the period in USD.

(placed at the near touch), or only aggressive orders (at the
far touch).

Figure 2 plots a 17 second simulation window from the test
period, comparing the simulated baseline strategy with the RL
strategy. It can be seen that prices in the LOB are affected by the
trading activity as both strategies inject new order flow into the
market, in addition to the historical orders, thereby consuming or
adding liquidity at the best bid and ask. During the plotted period,
the baseline strategy incurs small losses due to the signal switching
between predicting decreasing and increasing future prices. This
causes the baseline strategy to trade aggressively, paying the spread
with every trade. The RL strategy, on the other hand, navigates
this difficult period better by trading more passively out of its long
position, and again when building up a new position. Especially in
the second half of the depicted time period, the RL strategy adds
a large number of passive buy orders (green circles in the second
panel of Figure 2). This is shown by the green straight lines, which
connect the orders to their execution or cancellation, some of which
occur after the depicted period.

5.1. Oracle signal

The RL agent receives a noisy oracle signal of the mean return
h = 10 seconds into the future (see Equation 1). It chooses an
action every 0.1s, allowing a sufficiently quick build-up of long

or short positions using repeated limit orders of single stocks.
The algorithm is constrained to keep the stock inventory within
bounds of [posmin, posmax] = [−10, 10]. To change the amount
of noise in the signal, we vary the aH parameter of the Dirichlet
distribution, keeping aL = 1 constant in all cases. To keep the
notation simple, we hence drop the H superscript and refer to the
variable Dirichlet parameter aH simply as a. We consider three
different noise levels, parametrising the Dirichlet distribution with
a = 1.6 (low noise), a = 1.3 (mid noise), and a = 1.1 (high noise).
A fixed return classification threshold k = 4 · 10−5 was chosen
to achieve good performance of the baseline algorithm, placing
around 85% of observations in the up or down category. The signal
process persistence parameter is set to φ = 0.9.

Out-of-sample trading performance is visualized by the
account curves in Figure 3. The curves show the evolution of the
portfolio value for a chronological evaluation of all test episodes.
Every account curve shows the mean episodic log-return µ and
corresponding Sharpe ratio S next to it. We show that all RL-
derived policies are able to outperform their respective baseline
strategies for the three noise levels investigated. Over the 31 test
episodes, the cumulative RL algorithm out-performance over the
baseline strategy ranges between 14.8 (a = 1.3) and 32.2 (a =
1.1) percentage points (and 20.7 for a = 1.6). In the case of the
signal with the lowest signal-to-noise ratio (a = 1.1), for which the
baseline strategy incurs a loss for the test period, the RL agent has
learned a trading strategy with an approximately zero mean return.
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FIGURE 3

Account curves, trading the noisy oracle signal in the test set, comparing the learned RL policies (solid lines) with the baseline trading strategy

(dashed). The black line shows the performance of the buy & hold strategy over the same period. Di�erent colors correspond to di�erent signal noise

levels. The RL policy is able to improve the trading performance across all signal noise levels.

Temporarily, the strategy even produces positive gains. Overall, it
produces a sufficiently strong performance to not lose money while
still trading actively and incurring transaction costs. Compared to
a buy-and-hold strategy over the same time period, the noisy RL
strategy similarly produces temporary out-performance, with both
account curves ending up flat with a return around zero. Inspecting
Sharpe ratios, we find that using RL to optimize the trading strategy
is able to increase Sharpe ratios significantly. The increase in returns
of the RL strategies is hence not simply explained by taking onmore
market risk.

Figure 4A compares the mean return between the buy & hold,
baseline, and RL policies for all out-of-sample episodes across the
three noise levels. A single dashed gray line connects the return
for a single test episode across the three trading strategies: buy &
hold, baseline, and the RL policy. The solid blue lines representing
the mean return across all episodes. Error bars represent the 95%
bootstrapped confidence intervals for the means. Testing for the
significance of the differences between RL and baseline returns
across all episodes (t-test) is statistically significant (p≪ 0.1) for all
noise levels. Differences in Sharpe ratios are similarly significant.
We can thus conclude that the high frequency trading strategies
learned by RL outperform our baseline strategy for all levels of noise
we have considered.

It is also informative to compare the amount of trading activity
between the baseline and RL strategies (see Figure 4B). The baseline
turnover decreases with an increasing signal-to-noise ratio (higher
a), as the signal remains more stable over time, resulting in fewer
trades. In contrast, the turnover of the RL trading agent increases
with a higher signal-to-noise ratio, suggesting that the agent learns
to trust the signal more and reflecting that higher transaction costs,
resulting from the higher trading activity, can be sustained, given a
higher quality signal. In the high noise case (a = 1.1), the RL agent
learns to reduce trading activity relative to the other RL strategies,
thereby essentially filtering the signal. The turnover is high in all
cases due to the high frequency of the signal and the fact that we
are only trading a small inventory. Nonetheless, performance is

calculated net of spread-based transaction costs as our simulator
adequately accounts for the execution of individual orders.

Table 1 lists action statistics for all RL policies, including how
often actions are skipped, and the price levels at which limit
orders are placed, grouped by buy and sell orders. With the least
informative signal, the strategy almost exclusively uses marketable
limit orders, with buy orders being placed at the bid and sell orders
at the ask price. With better signals being available (a = 1.3 and
a = 1.6), buy orders are more often placed at the mid-quote
price, thereby trading less aggressively and saving on transaction
costs. Overall, the strategies trained on different signals all place
the majority of sell orders at the best bid price, with the amount
of skipped actions varying considerably across the signals.

5.2. Robustness evaluation on recent data

To evaluate our results on more recent LOB data, we also
trained RL policies using 4.5 months of AAPL LOB data from
the second half of 2022 (2022-07-01 to 2022-11-13) and evaluated
on 1.5 months of held-out test data (2022-11-14 to 2022-12-
31). Figure 5 shows account curves over the evaluation period
for all 3 noise levels. For low (a = 1.6) and medium (a =
1.3) noise levels, the RL policies, again, beat the baselines by a
significant margin and increase profits significantly. For a low-
quality signal with high noise levels (a = 1.1), the RL policy
performs similarly to the losing baseline strategy and also doesn’t
make a profit. Interestingly, the strategy also does not learn to
stop trading altogether, which would represent a superior policy
in this case. This could be due to a common problem with RL:
effective exploration. The local optimum of not trading could
not be found using an epsilon-greedy exploration policy in this
case. Overall, even though macroeconomic and financial market
conditions in 2022 differedmarkedly from 2012, our results support
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FIGURE 4

Mean return and turnover of the baseline and RL trading strategies. (A) Episodic mean strategy return of buy & hold, baseline, and RL strategies for

high (a = 1.1), mid (a = 1.3), and low noise (a = 1.6) in 31 evaluation episodes. The gray dashed lines connect mean log returns across strategies for

all individual episodes. The blue line connects the mean of all episodes with 95% bootstrapped confidence intervals. (B) Turnover per episode:

comparison between baseline and RL strategy. Lower noise results in a more persistent signal, decreasing baseline turnover, but a higher quality

signal, resulting in the RL policy to increase trading activity and turnover.

TABLE 1 Actions taken by RL policy for the three di�erent noise levels:

the first row shows how often the policy chooses the “skip” action.

a = 1.1 a = 1.3 a = 1.6

Action skipped [%] 24.5 43.8 7.8

Sell levels (bid, mid,
ask) [%]

(95.4, 3.1, 1.5) (94.6, 2.8, 2.65) (97.2, 1.9, 0.9)

Buy levels (bid,
mid, ask) [%]

(1.1, 1.3, 97.5) (1.6, 52.9, 45.5) (1.7, 13.0, 85.3)

Not choosing this action does however not necessarily result in an order being placed, e.g.,

if inventory constraints are binding. The last two rows show the relative proportion of limit

order placement levels for sell orders, and buy orders, respectively.

the conclusion that the RL policies can utilize similar market micro-
structure effects in both periods to improve the execution of a
trading strategy based on a price forecast signal.

6. Conclusions

Using Deep Double Dueling Q-learning with asynchronous
experience replay, a state-of-the-art off-policy reinforcement
learning algorithm, we train a limit order trading strategy in
an environment using historic market-by-order (MBO) exchange
message data. For this purpose we develop an RL environment
based on the ABIDES (Byrd et al., 2020a) market simulator,
which reconstructs order book states dynamically from MBO data.
Observing an artificial high-frequency signal of the mean return
over the following 10 seconds, the RL policy successfully transforms
a directional signal into a limit order trading strategy. The policies
acquired by RL outperform our baseline trading algorithm, which
places marketable limit orders to trade into positions and passive
limit orders to exit positions, both in terms of mean return and
Sharpe ratio. We investigate the effect of different levels of noise
in the alpha signal on the RL performance. Unsurprisingly, more
accurate signals lead to higher trading returns but we also find that

FIGURE 5

Robustness check: account curves for second evaluation period

2022-11-14 to 2022-12-31, comparing RL performance to

baselines for three noise levels. Across all noise levels, the RL

strategies produce a similar level of out-performance during this

period than during the original period in 2012. For a high noise signal

(a = 1.1), neither the baseline nor the RL policies are profitable. In

this case, our RL strategy performs similarly to the baseline and does

not learn to stop trading completely. This supports the hypothesis

that similar micro-structure e�ects can be utilized in more recent

periods, during a di�erent macroeconomic landscape.

RL provides a similar added benefit to trading performance across
all noise levels investigated.

The task of converting high-frequency forecasts into tradeable
and profitable strategies is difficult to solve as transaction costs,
due to high portfolio turnover, can have a prohibitively large
impact on the bottom line profits. We suggest that RL can be a
useful tool to perform this translational role and learn optimal
strategies for a specific signal and market combination. We have
shown that tailoring strategies in this way can significantly improve
performance, and eliminates the need for manually fine-tuning
execution strategies for different markets and signals. For practical
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applications, multiple different signals could even be combined into
a single observation space. That way the problem of integrating
different forecasts into a single coherent trading strategy could be
directly integrated into the RL problem.

A difficulty for all data-driven simulations of trading strategies
relying on market micro-structure is accurately estimating market
impact. We address this partially by injecting new orders into
historical order streams, thereby removing liquidity from the
LOB. If liquidity at the best price is used up, this would
automatically increase transaction costs by consuming deeper
levels of the book. This mechanism accurately models temporary
direct market impact, but cannot take account of the indirect

or permanent component due to other market participants’
reactions to our orders. By only allowing trading a single stock
each time step, we posed the problem in a way to minimize
the potential effect indirect market impact would have on
the performance of the RL strategy. The strategy trades small
quantities on both sides of the book without accumulating large
inventories. Such trading strategies are capacity constrained by
the volume available in the book at any time and belong to a
different class than impact constrained strategies, which build up
large inventories by successively submitting orders in only one
direction. Furthermore, we measure trading performance relative
to a baseline strategy, which makes the same assumptions on
market impact. However, accurately modeling the full market
impact of high-frequency trading in LOB markets in a data-
driven approach is an interesting direction for future research
and would allow evaluating strategies with larger order sizes.
Recent attempts in this vein have used agent-based models (Byrd
et al., 2020b) or generative models (Coletta et al., 2021, 2022,
2023).

We chose to focus our investigations in this paper on AAPL
stock as a challenging test case of a small-tick stock, i.e., one where
the minimum tick size is small relative to the stock price, with
a high trading volume. Showing that we can train an RL agent
to improve the profitability of an alpha signal in this example,
indicates that similar performance improvements could be possible
in larger-tick stocks with less trading activity. Although results
are limited to a single company due to computational constraints,
functional relationships in the micro-structure of the market have
been found to be stable over time and across companies in prior
work. In a large-scale study of order flow in US equity LOBs
(Sirignano and Cont, 2019) found a universal and stationary

relationship between order flow and price changes, driven by robust
underlying supply and demand dynamics. Similarly, supervized
training of deep neural networks to predict the mid-price direction
a few ticks into the future has been shown to work for a
wide range of stocks (Zhang et al., 2019). In contrast to lower-
frequency trading strategies, whose performance often varies
with market conditions, such as the presence of price trends
or macroeconomic conditions, high-frequency strategies don’t
suffer the same degree of variability. Nonetheless, a systematic
investigation of potential changes in LOB dynamics due to
crisis periods or rare events could be an interesting avenue for
future research.

While we here show an interesting use case of RL in limit
order book markets, we also want to motivate the need for

further research in this area. There are many years of high-
frequency market data available, which ought to be utilized
to make further progress in LOB-based tasks and improve RL
in noisy environments. This, together with the newest type of
neural network architectures, such as attention-based transformers
(Vaswani et al., 2017; Child et al., 2019), enables learning tasks
in LOB environments directly from raw data with even better
performance. For the task we have considered in this paper,
future research could enlarge the action space, allowing for
the placement of limit orders deeper into the book and larger
order sizes. Allowing for larger sizes however would require a
realistic model of market impact, considering the reaction of other
market participants.
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