
TYPE Hypothesis and Theory

PUBLISHED 08 January 2024

DOI 10.3389/frai.2023.1144569

OPEN ACCESS

EDITED BY

Loizos Michael,

Open University of Cyprus, Cyprus

REVIEWED BY

Ute Schmid,

University of Bamberg, Germany

Tarek R. Besold,

Eindhoven University of Technology,

Netherlands

*CORRESPONDENCE

Selmer Bringsjord

selmerbringsjord@gmail.com

RECEIVED 14 January 2023

ACCEPTED 04 October 2023

PUBLISHED 08 January 2024

CITATION

Bringsjord S, Giancola M, Govindarajulu NS,

Slowik J, Oswald J, Bello P and Clark M (2024)

Argument-based inductive logics, with

coverage of compromised perception.

Front. Artif. Intell. 6:1144569.

doi: 10.3389/frai.2023.1144569

COPYRIGHT

© 2024 Bringsjord, Giancola, Govindarajulu,

Slowik, Oswald, Bello and Clark. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Argument-based inductive logics,
with coverage of compromised
perception

Selmer Bringsjord1*, Michael Giancola1,

Naveen Sundar Govindarajulu1, John Slowik1, James Oswald1,

Paul Bello2 and Micah Clark3

1Rensselaer AI & Reasoning (RAIR) Lab, Department of Computer Science, Department of Cognitive

Science, Rensselaer Polytechnic Institute, Troy, NY, United States, 2Naval Research Laboratory,

Washington, DC, United States, 3College of Information Sciences and Technology, Pennsylvania State

University, State College, PA, United States

Formal deductive logic, used to express and reason over declarative, axiomatizable

content, captures, we now know, essentially all of what is known in mathematics

and physics, and captures as well the details of the proofs by which such

knowledge has been secured. This is certainly impressive, but deductive logic

alone cannot enable rational adjudication of arguments that are at variance

(however much additional information is added). After a�rming a fundamental

directive, according to which argumentation should be the basis for human-

centric AI, we introduce and employ both a deductive and—crucially—an inductive

cognitive calculus. The former cognitive calculus, DCEC, is the deductive one and

is used with our automated deductive reasoner ShadowProver; the latter, IDCEC,

is inductive, is used with the automated inductive reasoner ShadowAdjudicator,

and is based on human-used concepts of likelihood (and in some dialects of

IDCEC, probability). We explain that ShadowAdjudicator centers around the

concept of competing and nuanced arguments adjudicated non-monotonically

through time. We make things clearer and more concrete by way of three case

studies, in which our two automated reasoners are employed. Case Study 1

involves the famous Monty Hall Problem. Case Study 2 makes vivid the e�cacy

of our calculi and automated reasoners in simulations that involve a cognitive

robot (PERI.2). In Case Study 3, as we explain, the simulation employs the cognitive

architecture ARCADIA, which is designed to computationally model human-level

cognition in ways that take perception and attention seriously. We also discuss

a type of argument rarely analyzed in logic-based AI; arguments intended to

persuade by leveraging human deficiencies. We end by sharing thoughts about the

future of research and associated engineering of the type that we have displayed.

KEYWORDS

inductive logic, compromised perception, argument and automated reasoning, Monty

Hall dilemma, cognitive robotics, AI

1 Introduction

Formal deductive logic, used to express and reason over declarative, axiomatizable

content, captures, we now know, essentially all of what is known inmathematics and physics,

and captures as well the details of the proofs by which such knowledge has been secured.

This is impressive certainly, but even simple scenarios explain a very different story: for

example, if (human) Alice perceives a blue cube on a table, then accordingly declares that she

believes that there is a blue cube thereon, while Bob, beside her and looking also at the table

through his pair of glasses, asserts “No, actually that’s an orange sphere,” deductive logic alone
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cannot enable rational adjudication of the disagreements between

them. The great pioneer of modern inductive logic, Rudolph

Carnap, fully understood this in the mid-20th century during the

heyday period of deductive logic brought about principally by

Gödel. Carnap would say, and the logicians and mathematicians

today who continue his vibrant legacy in the form of what is known

as pure inductive logic (PIL) (Paris and Vencovská, 2015) would

still say, that “There is a blue cube on the table” and “There is an

orange sphere on the table” should each be assigned a probability

value (a real number between 0 and 1, inclusive), and this content,

combined with additional probabilitized propositions, can be used

in a process that dictates what should be rationally believed.

Unfortunately, Carnap and his followers pay little attention to the

“coin of the realm” in human reasoning and decision-making:

arguments and argumentation.1 This tradition (which began before

Carnap and includes e.g., Keynes, 1921) also runs afoul of the brute

fact that humans very rarely use probabilities and the probability

calculus (and when they are “boxed in” to using probabilities,

very rarely use them correctly, as shown by the infamous “Linda

Problem”, nicely discussed in this connection by Kahneman, 2013).

In addition, this tradition in inductive logic avoids the brute fact

that Alice and Bob, humans in general, and also today’s cognitive

robots, inevitably perceive in messy environments that render

percepts highly uncertain (e.g., what are the ambient lighting

conditions in the room Alice and Bob are in?). We introduce below

a family of novel inductive logics, based centrally on human-used

concepts of likelihood, that center around the concept of competing,

nuanced arguments adjudicated through time. We present three

case studies in which likelihood is key: Case Study 1 involves the

famousMonty Hall Problem.2 Case Study 2makes vivid the efficacy

of our calculi and automated reasoners in simulations that involve

the robot (PERI.2). In Case Study 3, as we explain, the simulation

employs automated reasoners joinedwith the cognitive architecture

ARCADIA, which is designed to computationally model cognition

in ways that take perception and attention seriously. Penultimately,

we discuss a class of arguments hitherto largely ignored in logicist

AI, such as arguments designed to persuade despite the fact that

they are unsound. We end by sharing thoughts about the future

of research and associated engineering of the type that we have

displayed herein.

The remainder of the present study unfolds as follows. In

the next Section 2, we explain, affirm, and (albeit briefly) defend

1 As well as proofs, which we take to be just a special case of arguments.

Abstractly put, an argument for us is a sequence of formulae in some formal

language of some logic or logics, where the sequence links these formulae

by instances of inference schemata. A proof is an argument in which (i) the

inference schemata in play are restricted to deductive ones, and (ii) some

premises given in the sequence in question enjoy special status because they

are members of a pre-identified axiom system (e.g., axioms for Euclidean

geometry, or for arithmetic, or topology).

2 MHP, as a matter of fact, in our formalization and solution, involves both

likelihood and probability. Since the emphasis, herein, is very much on the

former, we do not bring to bear our full formalization and implementation

of the probability calculus of Kolmogorov (1933) within a richer version of

IDCEC. Doing so would be overkill in the present study, since the key

manner of handling uncertainty is here cognitive likelihood not probability.

our “prime directive,” in a word that argumentation must be the

basis of human-level, and human-centric, AI. Next, we (Section

3) briefly point out that, putting it mildly, perception has not

exactly been treated in a deep way in the history of logicist AI—

despite the fact that immediately instructive parables such as the

Alice-Bob sketched above have been obvious sinceMcKeon (1941)3

presented to humanity, in his Organon, the first formal logic, with

algorithms for determining whether arguments expressed therein

are formally valid.4 What follows is a section devoted to giving an

historical perspective on our research (Section 4) and coverage of

a considerable amount of related prior study. The next section lists

the specific desiderata for argument-centric automated defeasible

(= non-monotonic) reasoning that we seek and abide by and

which are satisfied by the logico-mathematics, systems, and case-

study demonstration we present herein. We then (Section 6) orient

the reader to our brand of logicist AI by briefly explaining our

background logico-mathematics; this section ends with a sub-

section in which the specifications for the two pivotal cognitive

calculi alluded to above (DCEC & IDCEC) are given. Section 7

presents, in turn, the three case studies we have promised above.

The penultimate section of the study is devoted to explaining a

category of arguments premeditatedly designed to be unsound but

(in fact in some cases more) persuasive. In our final Section 9,

we touch upon the need to solve paradoxes in the intersection of

reasoning and perception, point out that future study is needed

to address pictorial arguments (which are common in the human

case), and offer a few final remarks.

2 Argumentation must ground
human-centric AI

We believe that the basis for rational human use of

AI technology is, or at least ought to be, argumentation,

computationally treated, and managed. In this regard, we wholly

concur with Dietz et al. (2022). For us, this is a firm and

fundamental directive that guides our research. For convenient

reference to this directive in the remainder of the present study, we

refer to it as simply ‘Dir’. Notably, we stipulate that Dir specifies for

us rational human use of AI. Obviously, there are irrational uses of

AI that, by definition,make argumentation decidedly unwanted, for

at least some of the humans involved. For instance, Jones may wish

to simply make, activate, and then violently destroy AI technology

(because he is in the grip of an pathological level of hatred of all

things both artificial and human-like), and it is exceedingly hard

to observe how this non-cerebral use of AI should be mediated by

argumentation.5 Of course, we anticipate that most human use of

AI technology will indeed be rational.

3 A modern translation into English of Aristotle’s writings.

4 A nice, modern overview of this fragment of first-order logic= L is given

in the study mentioned in Smith (2017).

5 The Spielberg–Kubrick film A.I includes a rather depressing depiction of

a number of humans who are, in fact, like Jones. We refer to the (disturbing)

stretch of the film in which humans destroy robot after robot in violent,

sadistic fashion.
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So far, we have referred to “AI technology.” Let us be a bit

more accurate, by speaking of artificial agents, in accordance with

the comprehensive, respected textbooks for the field of AI (see

Luger, 2008; Russell and Norvig, 2020). In these studies, in broad

strokes, which suffice for the present study, artificial agents, located

in a given environment, take in percepts of that environment as

input and compute in some fashion over this input (along with

various information from other sources and of other types), and

this computation leads them to perform actions as output. In our

approach, that of logic-based/logicist AI, the computation that

maps percepts to actions is specifically that of automated reasoning,

and the performance of all actions is the result of a conclusion

reached by inferences which are, in each and every case, formally

verified (which means that in the case of actions carried out by

our logicist artificial agents in the coming trio of case studies,

correctness is invariably proved).6

Next, and importantly, we point out that Dir is not just

randomly pulled from thin air: we follow it because not doing so

at best makes rational human use of artificial agents less productive

and at worst makes such use in some cases outright dangerous. This

holds true not only when the artificial agents in question operate

in a manner divorced from the type of AI that intimately connects

to argumentation (i.e., logic-based AI, to which we are adherents

and which grounds the new research we present below) but also

when these agents are in fact logic-based (or logicist). We explain

this now with an example of each of these two types of cases.

2.1 The need for argumentation in non-
logicist systems for rational human use

To observe the desirable role of argumentation in an example

of dangerous human use of artificial agents engineered in the

absence of logicist formalisms and techniques, we can consider

the logic-less “large language model” Galactica, engineered and

released by its creators in order to provide human beings with “a

new interface for science” (Taylor et al., 2021), at least seemingly

a rather laudable goal for human-centric AI.7 As a matter of fact,

Galactica, with minimal prompts from a human, can quickly write

entire scientific papers, replete with references. It does this by

way of deep learning only. Unfortunately, when used by some

human scientists, Galactica simply concocted many things having

no relation to relevant reality. For instance, some of the references

in scientific papers it “wrote” were completely fictional but of course

sounded quite legitimate. The debacle, efficiently chronicled in the

study mentioned in Heaven (2022), shows that Galactica poses

the danger of unethical submission of scientific papers that appear

sound yet are anything but. In short, a Galactic-written paper is—

to use the adjective we flesh out in the study mentioned in Section

8—sophistic.

6 This not being a study on formal verification, we omit formal verification.

7 Exactly parallel points as we make in the present section could be made

about GPT-4, discussed (and greatly lauded) in the study mentioned in

Bubeck et al. (2023). The details behind GPT-4 are unfortunately proprietary;

Meta has made available to all its transformer infrastructure.

What is the solution? The solution is that the actions taken

by artificial agents, in this case the assembling of scientific papers

on the basis of purely statistical processing of historical data,

be intimately tied to checkable arguments in support of what is

expressed in said papers. As we explain below, in our argument-

based AI, all outputs are the result of automatically found proofs

and/or formal arguments; and these proofs and arguments can not

only be inspected by humans but can be certified by artificial agents

that automatically check these proofs/arguments.

2.2 The need for argumentation in logicist
systems for rational human use

What about artificial agents in the second kind of case? That

is, what about artificial agents that are in fact logic-based, but

argumentation does not meditate between the humans using such

agents and the agents’ actions? An illuminating example to consider

here is the famous “Monty Hall Problem” (MHP), which is going to

be a bit of a theme in the present study, and which, following the

study mentioned in Bringsjord et al. (2022b), we sum up as follows:

The (3-door) Monty Hall Problem (MHP3)

Jones has come to a game show and finds himself thereon

selected to play a game on national TV with the show’s suave

host, Monty Hall. Jones is told correctly by Monty that hidden

behind one of three closed, opaque doors facing the two of them

is $1,000,000 USD, while behind each of the other two is a not-

exactly-clean, obstreperous donkey whose value on the open

market is charitably pegged at $1. Monty reminds Jones that

this is a game and a fair one, and that if Jones ends up selecting

the door with $1M behind it, all that money will indeed be his.

(We can assume without loss of generality that Jones’ net worth

has nearly been exhausted by his expenditures in traveling to

the show.) Monty also reminds Jones that he (=Monty) knows

what is behind each door, fixed in place until the game ends.

Monty asks Jones to select which door he wants the

contents of. Jones says, “Door 1.” Monty then says: “Hm. Okay.

Part of this game is my revealing at this point what’s behind

one of the doors you didn’t choose. So . . . let me show you

what’s behind Door 3.” Door 3 opens to reveal a cute but very

— economically speaking — unsavory donkey. Monty now to

Jones: “Do you want to switch to Door 2, or stay with Door 1?

You’ll get what’s behind the door of your choice, and our game

will end.” Monty looks briefly into the camera, directly.

What should Jones do if he is logical?

Unfortunately, as nicely explained in the study mentioned in

Friedman (1998) and many other papers and books, including the

recently published Rationality from Pinker (2021), the vast majority

of humans respond by saying that Jones should not switch. In

fact, as the history of MHP3 has shown, many mathematicians

aggressively insisted that the rational policy is STAY, not SWITCH.8

8 See Tierney (1991), and for a shorter historical account, Chap. 1 of Pinker

(2021). For fuller discussion of the mathematicians to whom we have just

referred, see Granberg (2014).
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However, the provably correct response to the question is that Jones

should follow a SWITCH policy.

Now, suppose that some artificial agents have perceived the

MHP3 problem, automatically discovered the correct answer, and

now share that answer with a typical human who fails to grasp

the problem and thought that the correct policy was STAY. How

helpful is this artificial agent going to be to this human? Not very.

After all, the human does not know why the correct answer is

SWITCH. The obvious solution, given the need for genuinely helpful

human-centric AI, is a class of artificial agents that can not only find

solutions but also provide cogent, compelling, verified arguments

certifying those solutions. If such a thing is provided in the present

case, the human will be enlightened. As will be observed later in the

study, this is what our artificial agents can do, even in cases where

the percepts to these agents are “clouded.”

3 The perception lacuna/challenge

The lead author has been carrying out logicist AI R&D for

three decades and can count, on one hand, systems that genuinely

integrate automated reasoning with the full gamut of the main

human-level cognitive operators, andwith attention and perception

understood in keeping with state-of-the-art cognitive science.

It is even harder to find such systems that are rigorous and

computationally implemented. This missing type of research is

what the present section’s heading refers to as a lacuna.

Addressing this inadequacy is observed as important by others.

For example, Dietz et al. (2022), when setting out desiderata for

HCAI systems, include that such systems must exhibit a “body-

mind like model of operation to sense, recognize, think, and act”

(Dietz et al., 2022). For us, broadly speaking, here, “think” is

constituted by reasoning,9 and we associate “sense, recognize” with

attention and perception. Later, in the same study, when discussing

what is needed for true success in HCAI and indeed for any brand

of AI overall that aspires to cover the human-level case, Dietz et al.

(2022) point to the following challenge:

[Such success must include showing] how the internal

integrated operation of cognition, from low-level perception

to increasingly higher levels of cognition, is supported by an

appropriate architecture, and how an individual’s cognition is

integrated with the external physical and social environment

(Dietz et al., 2022; emphasis ours).

In keeping with such demands, we are actively working on

the integration of attention and perception with (esp. rational)

human-level reasoning, in a manner that takes account of a given

artificial agent’s external and physical environment.10 Another way

9 A view a�rmed and used in the Prolog-centric (and hence only

extensional) and pedagogically oriented tour through thinking as reasoning

in the study mentioned in Levesque (2012).

10 The lead author, along with author P. Bello, is, in addition, convinced

not only that an agent’s perception of its internal, mental environment is

equally important, but also working on formalizing and implementing the

relationship between internal perception (which calls for its own intensional

operator in cognitive calculi) and reasoning. For an exploration of internal

to put our goal of integration is to say that it is aimed at unifying

“bands of cognition.” This aim is characterized by the following

instructive quote:

Interestingly, [the] missing convergence toward unified

theories of cognition persists across and within the bands of

cognition Newell (1990). Bridging the gap between Newell’s

bands of cognition still exists as a problem and the main

challenge remains. How do we organize the internal processes

of a system at different levels such that they can operate

internally linking perception and high-level cognition, by

facilitating their meaningful integration with other systems and

the external human participating environment? (Dietz et al.,

2022).

The question in the last sentence of this quote is fundamentally

what drives our integration of our automated-reasoning systems

with perception; and below, Case Studies 2 (Section 7.2) and 3

(Section 7.3) demonstrate some of this study.

We now turn specifically to the latest version11 of our desiderata

for human-level argumentation (and proof) systems, specified and

implemented within the constraints of our particular approach to

human-level logicist-AI.

4 Historical context and related work

In the present section, we first provide some historical contexts

(Section 4.1) and then (Section 4.2) summarize related studies to

set the stage for giving our own specific desiderata, which drive

our work.

4.1 Historical context

Sensible presentation of our desiderata for an argument-centric

automated reasonermust, at least to some degree, be contextualized

historically. We, thus, now issue some remarks along this line.

Needless to say, these remarks will not constitute a full history

of systematic, precise work in argumentation-based formal and/or

computational logic.12

perception in self-conscious robots that is integrated with robust reasoning

in a cognitive calculus, see Bringsjord et al. (2015).

11 Ancestors and less-developed lists of the desiderata in question have

been given in some previous studies, including e.g., Bringsjord et al. (2020a).

12 A comprehensive history, in our opinion, needs to be composed by

someone at some point. Part of the challenge is the need for the brave

author who takes this project to be fluent in at least both ancient Greek and

German. The former language is key because Aristotle can be viewed as the

primogenitor (e.g., see Topica and De Sophisticis Elenchis in his Organon,

available in McKeon, 1941). German is crucial because, even to this day,

the remarkable work of Lorenzen, momentarily discussed, has not been

fully translated from the German. In addition, the lead author is personally

of the view that the work of Leibniz in formal logic (which includes the

long-before-Frege invention of both first-order logic and modal logic; see

Lenzen, 2004), and in particular work toward his dream of a “universal logic”

(which is expressly intended to cover the dynamic argumentation of multiple,
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From an historical perspective, our approach, formalisms, and

AI technology for argumentation can be viewed as having roots in

dialogue logic, the seminal 1958 introduction of which, in formal

terms, is due to Lorenzen (1960). As Walton and Krabbe (1995)

have pointed out, Lorenzen’s work can be traced to treatment

of dialogue in Aristotle (and in this connection see note 12).

Since an excellent and remarkably efficient summary of dialogue

logic/games is provided by Bench-Capon and Dunne (2007), a

paper to which we shall return to, and rely upon, later, there is

really little it makes sense for us to recapitulate from the dialogue

tradition. We make only three quick points, as follows:

1. When one considers a two-person dialogue game in which

Proponent and Opponent struggle over some proposition, our

ShadowAdjudicator can be viewed as the judge charged with

rendering rulings as to the winner.

2. We allow any number of agents to articulate and propose

arguments on the proposition at hand (a fact that becomes

concretized in our case studies).

3. Our third point is by far the most important of the present

trio and consists of our explicitly affirming an insight into

Bench-Capon and Dunne (2007), which in a word is that the

specification of the internal structure of arguments, vis-à-vis

conformity to inference schemata,13 is crucial. This insight is,

in fact, explicitly included as a desideratum in Des, as shall be

soon observed. In our case, inference schemata, as will be clearly

and concretely observed in the cognitive calculi we bring to bear

in our case studies, are not only formal (as is the case even

with something is straightforward as modus ponens) but also

are intensional in nature and parameter-rich (e.g., the inference

schemata specified for bothDCEC and IDCEC given in Section

6.2.1).14

interacting agents), is quite relevant to any full history of the sort we are

imagining, which means that command of Latin and French also becomes a

requirement for the relevant scholarship [we return to the Leibnizian nature

of our paradigm below (Section 4.2)].

13 We read as follows:

It has been seen that Dung’s fundamental model, as described in

[73], abstracts away such internal structure from individual argument

in order to focus on the manner in which arguments interact via

the defined attack relationship. In unfolding the exact nature of “the

argument x attacks the argument y,” however, the reason why such an

attack is present needs to be considered in terms of those structural

schema underlying the arguments x and y from which the attack arises.

Such an interpretation, therefore, raises issues that concern the form

an argument might take, i.e. issues regarding the components and

representation of arguments rather than the process and outcome of

the argumentation involved (Bench-Capon and Dunne, 2007, p. 625).

14 It is worth pointing out that Dung’s (1995) abstract scheme for

arguments is (unbeknown in our experience to most researchers working

in AI and computational argumentation systems and formalisms) related to,

indeed in some non-trivial respects anticipated by, a longstanding sub-area

of formal logic that spans both extensional and intensional logic; we refer

to justification logic. A nice starting point is Artemov (2008). The core idea

in justification logic (to simplify rather harshly for economy) is that formulae

Turning now to more “classical” logicist work in 20th-century

AI, we begin by rehearsing that, as the reader will likely recall,

standard first-order logic L! (and all its fragments, such as the

propositional calculus and zero-order logic L0
15) ismonotonic: the

arrival of new information cannot change the result of previous

inferences. That is,

If8 ⊢ φ then8 ∪9 ⊢ φ,

where 8,9 are sets of formulae in the formal language of L1, and

φ is an individual formulae in this logic; we implicitly universally

quantify over these three elements. In stark contrast, defeasible

reasoning is non-monotonic. It has long been known in AI that

such reasoning is desirable when formalizing much real-world

reasoning. For instance, there are the early, classic default logics

of Reiter (1980), in which epistemic possibilities hold in default of

information to the contrary. In general, it is desirable to be able to

reason based on beliefs which could potentially be false, and to be

able to retract such beliefs when new, countervailing information

arrives. Our coming desiderata Des call for more than this. Default

logic, despite having many virtues, does not satisfyDes; the reason,

in short, is that it has no provision for intensional/modal operators

corresponding to cognitive verbs known to stand at the heart

of human-level cognition (such as believes, knows, perceives, and

communicates), as cognitive psychologists have shown (for an

overview, see Ashcraft and Radvansky, 2013). These verbs are also

known as propositional attitudes by logicians and philosophers, and

their inclusion in a given logic makes that logic an intensional one,

not just an extensional one (Fitting, 2015; Nelson, 2015).

A diagnosis parallel to that issued for default logic holds

with respect to circumscription, an impressive non-monotonic

form of reasoning introduced long ago by McCarthy (1980).

Circumscription makes no provision for modal operators to

that express some proposition, say φ, are accompanied by justifications, and

we thus have for instance t :φ, where t is the justification. Justifications, here,

have long been conceived as proofs and/or arguments. This tradition, and

the logico-mathematical results that have been obtained, run back to a time

(circa 1930 in the case of extensional logic, within mathematical logic) quite

before the study by Dung and others on abstract schemes for the systematic

study of argumentation. For a detailed overview, see Artemov and Fitting

(2020) (while this overview credits some early mathematical logicians, e.g.,

Kolmogorov, 1932, with laying the foundations of justification logic because

of their identifying “truth” with “provability,” it does not credit, as the first

author of the present study feels it should, those who established proof-

theoretic semantics, as also laying part of these foundations. As observed

below when we present the technical basis of our approach to and work

on computational inductive logic, proof-theoretic semantics has greatly

influenced this approach/work). Regarding our own approach, the lack of

internal structure in justifications in justification logic, which parallels the

situation with respect to Dung’s approach, means that our computational

logics and AI systems for argumentation-centric AI are very di�erent. This is

expressed explicitly in desiderata d4 and d5 in our set Des of desiderata, given

in Section 5.

15 No quantifiers, but constants to denote individuals, unrestricted use of

n-ary relation and function symbols, the identity = relation, and inference

schemata for deduction using identity, e.g., that if a=b and φ(a) (a formula in

which constant a occurs), then inference to φ(b) is permitted.
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capture cognitive attitudes and does not include the type of human-

digestible arguments we require. There have been defeasible-

reasoning models and systems that do include arguments that

compete against each other in a manner at least somewhat similar

to our concept of adjudication. The closest case in point is the work

of Pollock (1995). For an excellent survey of defeasible reasoning

systems that are, at least to some degree, argument-based (see

Prakken and Vreeswijk, 2001).16

4.2 Related work

Argumentation in AI, as our foregoing coverage in the present

section clearly indicates, is long established. To now further set

the stage for enumeration of the desiderata that govern our own

work, we turn to the 21st century. A truly excellent overview of

this more recent work is provided by Bench-Capon and Dunne

(2007), a study we have already relied upon, and which at its

outset attempts to distinguish between mathematical reasoning

and proofs vs. reasoning observed in arguments. The distinction

is given, in part, to provide a basis for a number of studies in a

special issue of Artificial Intelligence that follow this study, and

as far as we can determine from reading these other studies,

the distinction is affirmed by all the authors. However, while we

certainly acknowledge that this foundational distinction is widely

affirmed, it is not one that applies to our approach. In a word,

the reason is that inductive logic, computationally treated, as has

been explained by the lead author elsewhere (see Bringsjord et al.,

2021, 2023b), must conform to the Leibnizian dream of a “universal

logic” that would serve to place rigorous argumentation (in

e.g., even jurisprudence) in the same machine-verifiable category

as mathematical reasoning. This means that the fundamental

distinction made in the study mentioned in Bench-Capon and

Dunne (2007), while nearly universally accepted, does not apply

to the approach taken herein. In particular, our desideratum d5
given in the next section treats proof and argument the same in this

regard: both are formally, mechanically verifiable. We now take a

closer look at these matters.17

16 For an e�cient overview of defeasible reasoning, in general, the

interested reader for whom defeasible/non-monotonic reasoning is new is

directed first to the study mentioned in Koons (2017).

17 There are at least two other important, substantive matters that must

for economy be left aside, which are quite important. The first is that

as a matter of fact, the arguments and proofs that are key to our study

are often expressed in what is as far as we know a novel graphical form

of so-called “natural reasoning”: hypergraphical natural reasoning because

arguments, proofs, and semantic structures [e.g., a hypergraphical version

of so-called “truth trees” (as nicely introduced in Bergmann et al., 2013)]

are all expressed as hypergraphs (Berge, 1989; Bretto, 2013), including 3-

dimensional hypergraphs; see Bringsjord et al. (2023a). We observed our

hypergraphical approach as being within the general fold of graphical

schemes for argumentation, a nice example of which is given in the study

mentioned in Bench-Capon et al. (1992), which is, in turn, within the general

approach of Toulmin (2003). A look at a robust hypergraphical proof within a

logicized theory of special relativity that faster-than-light travel is impossible

(see Govindarajalulu et al., 2015).

Bench-Capon and Dunne (2007) present four properties that

mathematical reasoning is said to have, but which argumentation

is said to lack. We do not think that any of these properties hold

of mathematical reasoning but not of argumentation; however,

unsurprisingly, full analysis is beyond the present scope. We thus

comment on only their fourth property, which relates directly to

the issue we have already raised. This fourth property is expressed

verbatim by these two authors as follows:

[I]n mathematical reasoning . . . [r]easoning and

conclusions are entirely objective, not susceptible to rational

dispute on the basis of subjective views and prejudices. Proof is

demonstration whereas argument is persuasion (Bench-Capon

and Dunne, 2007, p. 620).

Our reaction is rooted in Leibniz, whose objective was explicitly

to do away with mere persuasion (on weighty matters), and

rational disputes were to be crisply adjudicated by computation

over arguments—computation we formalize and implement as

automated adjudication in our sense, displayed in the present

study.18 To meet this objective, two things were needed, a

universal formal/logical language, the characteristic universalis,

and automated-reasoning technology, the calculus rationcinator

(Paleo, 2016). The idea is that when these are obtained,

rigorous argumentation (arising from disagreements that drive

the production of competing arguments) can be computationaly

adjudicated, and arguments can also be discovered by computation.

It is not important here at all as to whether Bringsjord and

Govindarajulu have in fact found, as they claim, these two

things (e.g., claimed and justified by an argument, in Bringsjord

et al., 2023b); the important point is that the paradigm advanced

by the research and engineering, reported herein, is based

on a premeditated conflation of argument/argumentation and

proof/mathematical reasoning.19

A second wide-ranging treatment of reasoning in AI

approached via logic is provided in the study mentioned in

18 Bench-Capon and Dunne (2007) astutely concede in footnote #2 on

page 620 that even in mathematics there are disputes about premises (or

axioms); they give the Axiom of Choice as an example. However, they insist

that a sine qua non for rational dispute is having on hand an “alternative

theory” (in this case e.g., ZF rather than ZFC). Moreover, at any given point

in mathematics (and, needless to say, mathematical physics pursued through

formal logic), there has been dispute in the absence of an alternative theory.

A case in point is the rejection to Cantor’s seminal introduction of transfinite

numbers and their logic by many mathematicians, on the grounds not of an

alternative theory, but of their perceived near absurdity. A more recent case

in point is that Gödel’s now-fulfilled prophecy that new axioms governing

very large sets (e.g., the independence of the Continuum Hypothesis from

ZF/ZFC) would simply be legislated. Another example, perhaps the sharpest

one, is the rejection of infinitesimals in the absence of alternative theory

that accommodated them (rather than simply leaving aside, as in the case

of limits), and then the subsequent vindication of Leibniz on infinitesimals by

Robinson (1996).

19 Alert readers will perceive that our terminological practice in the present

study reflects this, as e.g., we sometimes use “proof” instead of “argument”

to refer to a chain of inferences found automatically by our ShadowProver

system.
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Davis (2017), and we now offer analysis of it in relation to our own

approach as well. Davis (2017) provides a survey of the attempt to

formalize commonsense reasoning in a logic, and certainly some

(including a reviewer of an earlier draft of the present study who

encouraged us to factor in Davis’s study) regard our argumentation-

focused work in human-centric AI to be at least in large measure

devoted to commonsense reasoning. It seems reasonable, for

example, to view MHP as a commonsense-reasoning challenge.

At any rate, for the sake of argument, we are more than willing to

agree that this is the case. However, while the survey in question

is as far as it goes in our opinion masterful, our approach is quite

different in important, enlightening ways, as we now explain. We

list three ways our work in computational inductive logics for

formalization and automation of argumentation differs from all

the work that Davis (2017) surveys:

1. Our foundation is decidedly not mathematical logic. Repeatedly,

Davis writes that the approach he is analyzing and summarizing

is the use of “mathematical logic” for formalizing commonsense

reasoning. For example, on p. 651 he writes: “One of the

most studied approaches toward [the] goal [of formalizing

commonsense reasoning] has been to use formal mathematical

logic” (emphasis ours). On p. 656 he writes: “This paper focuses

on developing representations of fundamental commonsense

domain by hand by experts using mathematical logic as a

framework” (emphasis ours). There are other such quotes

available in the study, but we omit them as redundant. The point,

here, is that mathematical logic is the branch of logic devoted

to formalizing mathematical reasoning, a pursuit that started

with Aristotle (Glymour, 1992). However, our roots are in the

tradition of devising formal logics that can capture human-level

cognition, not mathematical reasoning or anything of the sort

(see Bringsjord et al., 2023c). In a word, mathematical logic has

for over two millennia been purely extensional.

2. We straddle formal deductive logic and formal inductive logic;

the latter is not on Davis’s radar screen. The phrase “inductive

logic” (nor any equivalent) does not occur in Davis (2017).

Given that the work surveyed therein is avowedly aligned

with mathematical logic (as we have pointed out), this is

unsurprising. However, formal logic is a large discipline that—

as we have shared above—includes not just deductive logic but

inductive logic, and the latter is itself any enormous enterprise

now. There is, for example, no mention of the Carnapian edifice

of pure inductive logic (Paris and Vencovská, 2015) in the

survey, and nomention of inductive logic as the part of logic that

includes analogical and abductive reasoning and enumerative

induction (Johnson, 2016). To his great credit, Davis does

consider logics in the categories of non-monotonic, probabilistic,

and fuzzy (see final paragraph of p. 664). Moreover, here, there is

for sure a connection to our approach and formalisms, but one

important difference is that our study makes crucial use of the

concept of likelihood, as distinct from probability (see below).

3. There is an expressivity canyon between what Davis is concerned

with vs. our cognitive calculi (= our logics). Our cognitive calculi

start at the level of quantified multi-modal logic and expand

from there. However, when Davis reports on modal logics, his

orientation is that of containment. For instance, he reports

with approval that “propositional modal logics . . . are often

both expressive enough for the purpose at hand and reasonably

tractable, or at least decidable” (p. 662). However, from the

standpoint of human-level cognition, our position is that modal

operators are almost invariably accompanied by quantification

(and in fact quite naturally to L3).

Now, what about work specifically in defeasible argumentation

systems, with an eye to the desiderata Des to be laid down

momentarily in the next section? We wrap up the present

section by summarizing two examples of such related

prior study, and distinguish them from our approach in

broad strokes:

1. Modgil and Prakken (2014) have presented and made available

a general, computational framework—ASPIC+—for structured

argumentation. This impressive framework is based on two

fundamental principles, the second of which is that “arguments

are built with two types of inference rules: strict, or deductive

rules, whose premises guarantee their conclusion, and defeasible

rules, whose premises only create a presumption in favor of

their conclusion” (p. 31 of Modgil and Prakken, 2014). This

second principle is directly at odds with desideratum d5 in the

full list Des given in the next section. In our approach, all non-

deductive inference schemata are checked, in exactly the way

that deductive inference schemata are. For instance, if some

inferences are analogical in nature, as long as the schema 8
C

(8 for a collection of premises in some formal language and

C for the conclusion) for an analogical inference is correctly

followed, the inference is watertight, not different than even

modus ponens, where of course specifically we have φ→ψ ,φ
ψ

.20

2. Cerutti et al. (2017) is an overview of implementation of

formal-argumentation systems. However, the overview is highly

constrained by two attributes. The first is that their emphasis

is on Turing-decidable reasoning problems, whereas our

emphasis—as reflected in Des and in our case studies—is on

reasoning challenges that, in the general case, are Turing-

undecidable. As to the second attribute, the authors are careful

to say that their study is constrained by the “basic requirement”

that “conflicts” between arguments are “solved by selecting

subsets of arguments,” where “none of the selected arguments

attack each other.” Both of these attributes are rejected in our

approach; in fact, in the coming trio of case studies (Section 7),

automated processing is possible because of this rejection. With

respect to the first of their attributes, most of the interesting parts

of automated-reasoning science and technology for us only start

with problems at the level of the Entscheidungsproblem; see in

this regard desideratum d7. As to the second attribute, it is not

true for our approach.

Now, as promised, here are our desiderata, which the reader will

notice are in play when we reach our case studies.

20 For a discussion of this sort of explicit rigidity in the case of analogical

inference, see Bringsjord and Licato (2015). Analogical inference schemata

arise again below, in Section 8.
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5 Desiderata driving our approach

Wedenote the 7-fold desiderata for the capability we seek in our

automatic argumentation systems by ‘Des’. An automated reasoner

of the kind we seek must:

Desiderata “Des”

d1 be defeasible (and hence non-monotonic) in nature (when new

information comes to light, past reasoning is retracted in favor

of new reasoning with new conclusions);

d2 be able to resolve inconsistencies when appropriate and tolerate

them when necessary in a manner that fully permits reasoning

to continue;

d3 make use of values beyond standard bivalence and standard

trivalence (e.g., beyond e.g., Kleene’s, 1938 TRUE, FALSE, and

UNKNOWN trio), specifically probabilities and strength factors

(= cognitive likelihoods), (the latter case giving rise to multi-

valued inductive logics);

d4 be argument-based, where the arguments have internal

inference-to-inference structure, so that justification (and hence

explanation) is available;

d5 have inference schemata (which sanction the inference-to-

inference structure referred to in d4), whether deductive or

inductive, that are transparent, formal, and hence machine-

checkable;

d6 be able to allow automated reasoning over the cognitive

verbs/operators of knowledge, belief, desire, perception,

intention, communication, etc., of the humans who are to be

helped by this AI;

d7 be able to allow automated reasoning that can tackle Turing-

unsolvable reasoning problems, e.g., queries about probability

at and even above the Entscheidungsproblem. We do not here

assume anything like hypercomputation. The requirement, here,

is that formal science and engineering be harnessed to tackle

particular instances of the Turing-uncomputable problem of

algorithmically deciding provability.

We turn now to more detailed coverage of the technical

background needed to understand our approach and its application

in the promised three case studies.

6 Formal background of our brand of
logicist AI

We first provide the reader with enough background to

understand our approach and its application to the three case

studies.

6.1 AI, logicist = logic-based AI, and
artificial agents

AI has become a vast field as chronicled and explained in

Bringsjord and Govindarajulu (2018). Accordingly, the pursuit of

computing machines that qualify as intelligent and indeed even

the meaning of “intelligent” itself in some contemporary debates

are defined differently by different researchers and engineers, even

though all of them work under the umbrella of “AI.” Our approach

is a logicist one, or—as it is sometimes said—a logic-based one. A

full characterization of our approach to AI and robotics is of course

beyond the reach of the present study, but we must give at least

enough information to orient the reader and enable understanding

of our three case studies, and we do so now. We turn first to

the generic concept of an artificial intelligent agent, or—since, by

context, it is clear that we must have intelligence, in some sense,

front and center—simply artificial agents.

6.1.1 Artificial agents/AI, generically speaking
For present purposes, we rely upon how dominant textbooks,

for example Russell and Norvig (2009, 2020); Luger (2008),

characterize artificial agents. Their characterization is simply that

such an agent computes a function from what is perceived

(percepts) to behavior (actions). All such agents are assumed to

operate this way in a certain environment, but for present purposes,

we can leave explicit consideration of this aspect of the AI landscape

to the side; doing so causes no loss of generality or applicability

for the work we relate herein. However, what about the nature

of the function from percepts to actions? As pointed out in the

course of an attempt to show that the so-called Singularity21 is

mathematically impossible (Bringsjord, 2012), the fact is that in

the dominant AI textbooks, these functions are firmly assumed

to be recursive. In the present study, we affirm this assumption,

but the reader should keep in mind that despite this affirmation,

our AI technology can still be based on automated reasoning that

is routinely applied to problems that are Turing-uncomputable

in the general case. This is directly expressed in desideratum d7
in Des. After all, all automated reasoners that are specifically

automated theorem provers for first-order logic confront the

Entscheidungsproblem, first shown unsolvable by Church (Church’s

Theorem). Our automated reasoners routinely attempt to discover

arguments and proofs in order to settle queries at levels far above

Church’s negative result.

6.1.2 The logicist approach to AI/robotics
We can now quickly state the heart of our logicist approach to

AI and cognitive robotics as follows. The artificial agents we specify

and implement compute their functions (from, again, percepts to

actions) via automated reasoning over a given formula 8 in some

formal language L for some formal logic L. This means that what

these agents perceive must ultimately be transduced into content

expressed in such formulae; and it means that an action, before

translated into lower-level information that can trigger/control an

effector, must also be expressed as a formula. The reader will see

this in action below when we show our AI used in the trio of case

studies. But how, specifically, are the functions computed in the

case of such agents? The answer is straightforward: These functions

are computed by automated reasoning. Of course, it has long been

known that computation, while often understood in procedural

21 The point in future time at which, so the story goes, AIs reach human-

level intelligence, and then immediately thereafter ascend to intellectual

heights far, far above our own.
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terms (e.g., in terms of Turing machines), is fully reducible to, and

usable as, reasoning.22

What about cognitive robotics, specifically? This is a key

question because our Case Study 2 features our cognitive robot,

PERI.2 (alert readers have noticed that we have already used the

adjective “cognitive”). Alternatively, the introduction of cognitive

elements to a formalism is said to make that formalism behavioral

in nature; see Camerer, 2003.) We specifically pursue cognitive

robotics as defined in the study by Levesque and Lakemeyer

(2007),23 with a slight formal tweak, and say simply that a cognitive

robot is one whose macroscopic actions are a function of what

the robot knows, believes, intends, and so on. As seen below,

these verbs are at the heart of a cognitive calculus, the class of

cognitively oriented logics we employ in general and in automated

reasoning quite concretely. It will soon be observed that the

robot PERI.2 is a cognitive robot, by the definitions just given

and affirmed.

Our logicist-AI work is specifically enabled by cognitive calculi.

Details regarding this class of logics and exactly how they are

tailor-made for handling cognitive attitudes/verbs are provided

in numerous publications in which such calculi are harnessed

for various implementations (see Govindarajulu and Bringsjord,

2017a; Bringsjord et al., 2020b). Put with a brevity here that is

sufficient, a cognitive calculus C is a pair 〈L,I〉 where L is a formal

language (composed, in turn, minimally, of a formal grammar

and an alphabet/symbol set), and I is a collection of inference

schemata (sometimes called a proof theory or argument theory) I ;

in this regard, our logicist-AI work is in the tradition of proof-

theoretic semantics inaugurated by Prawitz (1972) and others

(and for a modern treatment, see Francez, 2015; Bringsjord et al.,

2022c).

Cognitive calculi have exclusively proof-theoretic and

argument-theoretic semantics; no model theory is used,

no possible worlds are used.24 Within the present study,

as explained below, dialects of the cognitive calculi DCEC

(deductive) and IDCEC (inductive) will be utilized, and

this is what makes success in our case studies in Section 7

possible.

We said that IDCEC is an inductive cognitive calculus. The

great pioneer of modern inductive logic in any form was Rudolph

Carnap. Carnap would say, and the logicians and mathematicians

today who continue his particular approach in the form of what is

known as pure inductive logic (PIL) (Paris and Vencovská, 2015)

would still say, that “There is a blue cube on the table” and

“There is an orange sphere on the table” should each be assigned

22 This is what allows proofs of the Halting Problem for Turing machines

to be relied upon to prove the undecidability of the Entscheidungsproblem;

see Boolos et al. (2003).

23 As pointed out in that study, as far as most relevant thinkers know,

it was actually Ray Reiter (the same thinker who introduced default logic,

briefly mentioned above) who coined and first defined the phrase “cognitive

robotics.”

24 Bringsjord’s rejection of possible-worlds semantics can be traced

to his proof rather long ago that such structures can be shown to be

mathematically impossible; see Bringsjord (1985).

a probability value (a real number between 0 and 1, inclusive), and

this content, combined with additional probabilitized propositions,

can be used in a process that dictates what should be rationally

believed. Unfortunately, Carnap and his followers pay precious

little attention to the “coin of the realm” in human reasoning and

decision-making: arguments and argumentation. This tradition

(which began long before Carnap and includes e.g., Keynes and

Bayes) also runs afoul of the brute fact that humans very rarely

use probabilities and the probability calculus. In our approach,

to computational inductive logic for AI, inference schemata that,

when instantiated in sequence, lead to arguments and proofs, are

front and center. This can be observed clearly in the specifications

of both of the cognitive calculi used in the present study, which

we now provide (next section). Later, in the three forthcoming

case studies, it is the automated discovery of arguments and proofs

based on linked inferences as instantiations of these schemata that

is key.

6.2 Cognitive calculi, in more detail

Cognitive calculi, as we have said, are members of an infinite

family of highly expressive logics that, for instance, include

unrestricted third-order logic, meta-logical quantification, and

predication (it can be expressed not only that a property has

a property but that a formulae has a property), and all this

extensional machinery is intertwined with intensional operators

for belief, knowledge, intention, communication, action, and the

traditional alethic modalities as well. To the best of our knowledge,

cognitive calculi are the most expressive logics that have been

implemented and used with corresponding automated reasoners.

For more on cognitive calculi, see Arkoudas and Bringsjord

(2009a); Govindarajulu and Bringsjord (2017a); Govindarajulu

et al. (2019); Bringsjord et al. (2020b). For the shortest account of

cognitive calculi, and implementation of reasoning over declarative

content therein, in which it is made clear that such calculi

are exclusively proof- and argument-theoretic, see Bringsjord

and Govindarajulu (2020). For an explanation of how natural-

language understanding works in connection with cognitive calculi,

see Bringsjord et al. (2022c). There are many more resources

available, as cognitive calculi are well established at this point,

but for present purposes, it suffices to economically provide the

specifications of the two cognitive calculi used for modeling

and simulation in the present study, and these specifications

follow now.

6.2.1 Specifications of cognitive calculiDCEC

and IDCEC

Below is the signature of the standard dialect of DCEC. The

signature contains the sorts, function signatures, and grammar of

this cognitive calculus, presented in a manner that is standard

and self-explanatory for the most part. As obvious, lower-case

Greek letters are formulae, bolded majuscule Roman letters are

intensional/modal operators (K for knows, B for believes, I for

intends, etc.).
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DCEC Signature

S : : = Agent | ActionType | Action ⊑ Event |Moment | Fluent

f : : =



































































action :Agent× ActionType → Action

initially : Fluent → Formula

holds : Fluent×Moment → Formula

happens :Event×Moment → Formula

clipped :Moment× Fluent×Moment → Formula

initiates :Event× Fluent×Moment → Formula

terminates :Event× Fluent×Moment → Formula

prior :Moment×Moment → Formula

t : : = x : S | c : S | f (t1 , . . . , tn)

φ : : =























q : Formula | ¬φ | φ ∧ ψ | φ ∨ ψ | ∀x :φ(x) | ∃x :φ(x)

P(a, t,φ) | K(a, t,φ) | S(a, b, t,φ) | S(a, t,φ)

C(t,φ) | B(a, t,φ) |D(a, t,φ) | I(a, t,φ)

O(a, t,φ, (¬)happens(action(a∗ ,α), t′))

Perceives, Knows, Says, Common-knowledge

Believes,Desires, Intends,Ought-to

Next is the standard set of inference schemata for DCEC.

They say that when what is above the vertical line is instantiated,

that which is below can be inferred (in accordance with that

instantiation); this top-bottom notation is common in descriptions

of so-called natural deduction. The approach to logicist AI-based

on cognitive calculi is not restricted in any way to “off the shelf ”

logics but are instead created and specified for given purposes and

applications in AI. However, all cognitive calculi include standard

extensional logics (one or more of L0,L1,L2,L3, and standard

natural-inference schemata for these extensional logics).

DCEC Inference Schemata

K(a, t1 ,Ŵ), Ŵ ⊢ φ, t1 ≤ t2

K(a, t2 ,φ)
[IK]

B(a, t1 ,Ŵ), Ŵ ⊢ φ, t1 ≤ t2

B(a, t2 ,φ)
[IB]

C(t,P(a, t,φ) → K(a, t,φ))
[I1]

C(t,K(a, t,φ) → B(a, t,φ))
[I2]

C(t,φ), t ≤ t1 , . . . , t ≤ tn

K(a1 , t1 , . . .K(an , tn ,φ) . . .)
[I3]

K(a, t,φ)

φ
[I4]

t1 ≤ t2 ≤ t3

C(t,K(a, t1 ,φ1 → φ2)) → K(a, t2 ,φ1) → K(a, t3 ,φ2)
[I5]

t1 ≤ t2 ≤ t3

C(t,B(a, t1 ,φ1 → φ2)) → B(a, t2 ,φ1) → B(a, t3 ,φ2)
[I6]

t1 ≤ t2 ≤ t3

C(t,C(t1 ,φ1 → φ2)) → C(t2 ,φ1) → C(t3 ,φ2)
[I7]

C(t, ∀x. φ → φ[x 7→ t])
[I8]

C(t,φ1 ↔ φ2 → ¬φ2 → ¬φ1)
[I9]

C(t, [φ1 ∧ . . . ∧ φn → φ] → [φ1 → . . .→ φn → φ])
[I10]

B(a, t,φ) B(a, t,φ → ψ)

B(a, t,ψ)
[I11a]

B(a, t,φ) B(a, t,ψ)

B(a, t,φ ∧ ψ)
[I11b]

S(s, h, t,φ)

B(h, t,B(s, t,φ))
[I12]

I(a, t, happens(action(a∗ ,α), t′))

P(a, t, happens(action(a∗ ,α), t′))
[I13]

B(a, t,φ) B(a, t,O(a, t,φ,χ)) O(a, t,φ,χ)

K(a, t, I(a, t,χ))
[I14]

The following two framed boxes specify the additional

signature and inference schemata for IDCEC, respectively. That

is, they build on top of those given for DCEC immediately above.

These specifications enable reasoning about uncertain belief. In

the first of three case studies discussed next, we will describe

the uncertainty system which enables the ascription of likelihood

values to beliefs present in these schemata. Herein, we only

provide a subset of the inference schemata of IDCEC; a full

exposition of IDCEC and its inference schemata are the focus

of a doctoral dissertation (Giancola, 2023). For an early inductive

cognitive calculus with cognitive likelihood, see Govindarajulu and

Bringsjord (2017b).

Additional Signature for IDCEC

S : : = Number | List

f : : =

{

min : List[Number] → Number

max : List[Number] → Number

φ : : =
{

Bσ (a, t,φ)

where σ ∈ [−5,−4, . . . , 4, 5]

Additional Inference Schemata for

IDCEC

S(s, a, t1 ,φ), t1 < t2

B1(a, t2 ,φ)
[Iℓ1 ]

P(a, t,φ)

B4(a, t,φ)
[Iℓ4 ]

Bσ (a, t1 ,φ), Ŵ 6⊢ ¬Bσ (a, t2 ,φ), t1 < t2

Bσ (a, t2 ,φ)
[IℓPROP]

Bσ1 (a, t,φ1), . . . ,B
σm (a, t,φm), {φ1 , . . . ,φm} ⊢ φ, {φ1 , . . . ,φm} 6⊢ ⊥

Bmin(σ1 ,...,σm)(a, t,φ)
[IℓWLP]

where σi ∈ [0, 1, . . . , 4, 5]

6.2.2 Regarding metatheoretical properties of
our cognitive calculi and associated automated
reasoners

As the chief purpose of the study we report herein is

to advance logicist AI, both formally and computationally,

rather than to advance computational formal logic in and of

itself, it would be inappropriate to spend appreciable time

and space explaining, let alone proving, the metatheoretical

properties—soundness, completeness, un/decidability, complexity

measures, etc.–of the family of cognitive calculi and the members

thereof used herein (DCEC& IDCEC) and of our automated

reasoners. However, we do now provide some brief metatheoretical

information that readers well versed in formal logic will likely find

helpful.

To begin, recall that desideratum d7, if satisfied, ensures that

the fundamental question as to whether some formula φ can be

inferred (via some collection of inference schemata) from some

set 8 of formulae is for us usually25 Turing-undecidable. We have

already mentioned Church’s Theorem in this regard, which of

course applied to theoremhood in first-order logic= L1. However,

as a matter of fact, L1 is semi-decidable: if, in fact, there exists a

25 There will be the o� case of a query, e.g., as to whether a low-

expressivity φ is inferable from a low-expressivity 8, for instance when all

formulae selected for automated processing aremere propositional-calculus

formulae, or—more realistically—when all formulae fall into a decidable

fragment of L1, e.g., fluted logic. However, the standard cases for use

of cognitive calculi, which are multi-modal quantified logics, will include

high-expressivity formulae.
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proof in the first-order case that supports an affirmative answer to

the question, that proof can be algorithmically found. However,

in the case of our paradigm, there are many general inference

questions posable by and to our artificial agents using as a basis a

cognitive calculus (whether deductive or inductive) that are fully

undecidable. This can be immediately observed from the well-

known theorem that L2 is not even semi-decidable.26 However,

our study, as it is based on cognitive calculi, places crucial reliance

upon human-level cognitive verbs, where these verbs are logicized

by relevant modal operators; for example: P for perceives, B for

believes (which, in our approach, can have a positive likelihood

parameter attached), K for knows (which also can have a positive

likelihood parameter attached), and so on. This means that things

are only that much harder computationally, and in fact, since both

the Arithmetic and Analytic Hierarchies are purely extensional

(the former based on L1 and the latter based on L2), and hence

devoid of modal operators, things are only even harder, given

our willingness to consider formulae and queries arising from an

unflinching look at the human case. This is simply the nature of

the beast—that beast being the undeniable expressivity of human-

level cognition and specifically of human-level argumentation.

After all, there can be no denying that humans create and assess

arguments that, when logicized, require remarkably high levels

of expressivity; this holds for even everyday activity, not just

for recherché academic problems. For an everyday example, let

us consider an argument, to be found and verified by our AI

technology, for the proposition (‡) that the dog Rover is scary,

based chiefly on these two premises:

(P1) As trainer David knows, there are some properties that are

downright scary and that some dogs have; and if they have any

of these properties, the dog in question is itself scary.

(P2) David also knows that one of these scary properties is

having prominent and pronounced musculature, and another

is having long and large incisors.

Now further suppose that (P3) David perceives a particular

dog, Rover, who as it happens has thick, pronounced incisors and

prominent pronounced musculature. Our automated reasoner,

ShadowProver, working with the formal representation of

{P1, P2, P3} in the cognitive calculus DCEC3,27 is able to find an

argument, and verify it, for (‡)—despite the formal fact that, in

the general case, the question as to whether a proposition follows

from modalized third-order formulae is a Turing-undecidable

question.28

Some readers, even cognoscenti, may then ask: But if the

queries your artificial agents much seek to handle are this difficult,

how does the engineering of your automated-reasoning systems

work? This question alone, if answered fully, would require its

own monograph. However, the answer is actually quite simple,

26 In general, once one moves beyond first-order logic, a dramatic loss of

metatheoretical properties desirable to many (not us) occurs, as revealed in

Lindström’s Theorems, elegantly covered in Ebbinghaus et al. (1994).

27 When the extensional core is L3.

28 We do not spend the space to recount why.

fundamentally, The short version of the answer is that our

engineering (a) reflects the famous conception, originated by AI

pioneer Herbert Simon, of “satisficing” (Simon, 1956); and (b) this

engineering makes use of a most valuable but low-technology sub-

system: a stopwatch, in the form of timeouts on duration of CPU

processing. In other words, we engineer for success on particular

cases within the general space of Turing-uncomputable problems,

and if processing takes too long and no answer has been returned,

we curtail processing by fiat, in accordance with a pre-set length of

time allowed for CPU activity. In the case of our three case studies

featured herein, temporal thresholds were not reached, in fact were

not even approached.29

What about other metatheoretical properties in the realm of

formal logic? What about complexity, soundness, completeness,

for example? Complexity is irrelevant, because almost all of the

problems that our human- and argumentation-centric artificial

agents seek to solve are not even in the Polynomial Hierarchy (since

they are above 61 in the Arithmetic Hierarchy). Soundness and

completeness, given that our approach is purely proof-theoretic, is

beyond scope; readers for a start are directed to Govindarajulu et al.

(2019). As can be readily understood given the foregoing, while

there is a lot of truly impressive work in AI and intelligent systems

that makes use of computational logic, much of it is nonetheless

radically different in formal orientation than ours. An example is

the use of logic programming. For a specific example, as Brewka

et al. (2011) show, answer set programming (ASP) is quite powerful

and promising—but its nature is applauded and affirmed because

“ASP . . . aim[s] to maintain a balance between expressivity, ease of

use, and computational effectiveness” (Brewka et al., 2011, p. 92–

93). The balance, here, can indeed be very powerful, but as should

be abundantly clear, our approach and the concrete case studies

within it reported herein, we do not desire this balance.30

One final word, aimed especially at those who subscribe, as

the first author long did but no longer does, to the general

expressivity-vs.-tractability tradeoff for formal (extensional) logics

that has become part of the fixed furniture of logicist AI. This

tradeoff, entrenched since at least the publication of the important

(Levesque and Brachman, 1985), is far from being both clear

and ironclad in the case of our brand of AI engineering. The

logico-mathematical reason stems directly from Gödel’s Speedup

Theorem (GST) (Buss, 1994, 1995), which, in word, says that the

move from first- to-second-order logic enables a non-recursive

gain in efficiency, measured by length of proof (and likewise for

jumping from second- to-third-order, and so on for each jump).31

In engineering terms, while of course we have no recourse to

algorithms for answering queries fully in the general case, we

also know that engineering techniques just might find staggering

gains in efficiency for cases at hand. Readers interested in learning

29 In fact, every run arising from every query that triggers automated

reasoning/planning in our three case studies is clocked in milliseconds: no

run exceeded 3 s on an Apple laptop.

30 We do not by the way mean to imply that no one within the ASP rubric

has tackled human-level cognition. Ganascia (2007), e.g., has modeled and

simulated aspects of lying constrained by this rubric.

31 Gödel’s results pertain directly only to elementary number theory, but

they carry over their application to other domains.
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more about this phenomenon are advised to start with the striking

example of Boolos (1987) and move from there to study GST itself

via the references we provided.

7 Three Case Studies

We turn now to our three case studies. In the third and final

study, reasoning is explained in somewhat higher-level terms than

in the case of the first and second; more specifically, the arguments

in Case Study 3 are for space-saving and expository purposes

expressed rather informally. Our first study takes us back to Monty

Hall, and we proceed to it now.

7.1 Case Study 1: MHP3 redux

We have every confidence the reader will remember MHP3,

which we suppose that some artificial agents have perceived in full,

automatically discovered the correct answer for, and now share that

answer with a typical human who fails to grasp the problem, and

thought the correct answer was STAY. How helpful is this artificial

agent going to be to this human? Not very. After all, our human

does not know why the correct answer is SWITCH. The obvious

solution, given the need for genuinely helpful human-centric AI,

is a class of artificial agents that can not only find solutions but also

provide cogent, compelling, verified arguments, certifying those

solutions. If such a thing is provided in the present case, the human

will be enlightened. This is what our artificial agents can do.

Given the complexity of MHP3, we cannot, herein, canvass the

full terrain of this problem, its logicization into our inductive logic

IDCEC, and solutions automatically found, but let us consider

two prominent arguments regarding MHP3, the first sound (and

hence both veracious and valid32) and the second not. The sound

argument goes as follows:

1. Without loss of generality, assume that you select Door 1.33

2. There are three potential cases, in which the prize is behindDoor

1, Door 2, or Door 3, respectively.

3. Let’s first consider the outcome of the three cases under the STAY

protocol.

(a) If the prize is behind Door 1, you win. If it is behind Door 2

or 3, you lose.

(b) Hence there is a 1
3 chance of winning if you follow STAY.

4. The cases are a bit more complex if you follow SWITCH, because,

crucially, Monty knows where the prize is, and, having perceived

your initial choice, will always reveal a door without the prize

behind it.

32 Following long-established and customary terminology, a sound

argument is both veracious and valid; a veracious argument has true (or at

least plausible to some level in some stratification of plausibility) premises;

and a valid argument has inferences that abide by the collection of inference

schemata taken to be operative in the case at hand.

33 Since it is equally likely that the prize is behind any of the three doors,

the same argument can be generated regardless of which door is initially

selected.

(a) If the prize is behind Door 1, you will lose. Monty can

open either of Door 2 or Door 3 (and should be assumed to

randomly choose which one), and regardless of which door

you switch to, you will lose.

(b) If the prize is behind Door 2, Monty must open Door 3.

Therefore if you SWITCH to Door 2, you will win.

(c) If the prize is behind Door 3, Monty must open Door 2.

Therefore, if you follow SWITCH and move to Door 2, you

will win.

(d) Hence, by simply counting, we deduce that there is a 2
3 chance

of winning if you follow SWITCH.

While many arguments have beenmade for STAY,34 they mostly

follow the same general pattern. That pattern is as follows:

1. Without loss of generality, assume that you select Door 1, and

that Monty then opens Door 3.

2. When Monty opens Door 3 that door of course has dropped

out of consideration, and we are down to two doors, so the

probability that the prize is behind Door 1 becomes 1
2 ; same as

the probability that the prize is behind Door 2.

3. Hence there is no reason to switch doors (and since—as the

economists who study rationality say—time is money, switching

is irrational).

Pinpointing where this invalid argument goes awry is

enabled by our concept of likelihood, specifically what we

term cognitive likelihood (Giancola, 2023). The invention

of this concept and its use in our intelligent, defeasible

argumentation systems satisfies desideratum d3. This concept

enables the ranking of the strength of beliefs (and other cognitive

attitudes), in accordance with their likelihood values. The

spectrum of the 11 possible values are presented in Table 1

(the caption for which offers some contextualization of

these values in contrast with probabilities). The use of these

strength-factor/cognitive likelihood values makes IDCEC

a multi-valued (or many-valued) logic; an efficient, broad

overview of such logics is provided in the study by Gottwald

(2015).35

By enabling beliefs to take on these uncertainty levels, cognitive

likelihood allows agents to reason with uncertain beliefs generated

by and reasoned over in integration with other modalities, for

example, with perception, communication, and intention. This is

formalized in the inference schemata of IDCEC. For example,

34 See Pinker (2021) for an argument (authored and advocated by a

mathematician) made by a analogy to horse race, and for more extensive

coverage of such arguments, see Granberg (2014). We explain in the study

mentioned in Section 8 that two-horse arguments are ideal specimens of

sophistic argumentation.

35 To the best of our knowledge, while the first multi-valued modal logic

(a three-valued one) appeared in 1967 due to the study by Segerberg

(1967), IDCEC is the first multi-valued multi-modal-operator logic, and

with little question (for better or worse), the first such logic computationally

implemented. Multi-valued logics in the non-modal/extensional case (three

values) originated with the study by Łukasiewicz (1920), and our basis

on the extensional side (e.g., standard L1) for our cognitive calculi is an

extension and refinement of Łukasiewicz’s study by Kleene’s (1938); see again

desideratum d3 in Des.
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TABLE 1 The 11 cognitive likelihood values.

Numerical Linguistic

5 CERTAIN

4 EVIDENT

3 OVERWHELMINGLY LIKELY

= BEYOND REASONABLE DOUBT

2 LIKELY

1 MORE LIKELY THAN NOT

0 COUNTERBALANCED

-1 MORE UNLIKELY THAN NOT

-2 UNLIKELY

-3 OVERWHELMINGLY UNLIKELY

= BEYOND REASONABLE BELIEF

-4 EVIDENTLY NOT

-5 CERTAINLY NOT

These values, notably, are not in any way real numbers in an interval, as are probabilities

in Kolmogorov’s (1933) probability calculus (the interval of course being [0, 1]), much

used in modern AI, e.g., in Bayesian approaches. Rather, these are fixed values in the

traditional sense of ‘value’ in multi-valued (or many-valued) logics, where each value has an

independent justification as a determinate value in rational human cognition. For example,

when strength/value is 3 for a belief, this corresponds to what humans in general refer to

as something that ought (epistemically, not morally, speaking) to be believed because the

proposition is “beyond reasonable doubt,” a concept central to occidental jurisprudence. For

the present study, it is beyond scope to present our full axiomatic theory L of cognitive

likelihood that is subsumed by IDCEC, in which Kolmogorov’s axioms do not hold. E.g.,

where p yields the probability of an event/proposition φ, Kolmogorov’s second axiom says

that if φ is a theorem in a standard, elementary extensional logic (such as the propositional

calculus), p(φ)=1. However, theorems in such a logic are not at all guaranteed to have a

likelihood value of 5, since an infinite number of such theorems are not familiar to human

beings and hence cannot be believed. In addition, theorems ofL are often completely without

corresponding analogs in the probability calculus. E.g., “if ℓ(φ) = 5, ℓ(¬φ) = 0” is a theorem

inL that has no analog in the probability calculus.

perception of φ sanctions, by inference schema Iℓ4 (see the

specification of inference schemata in the specifications shown in

Section 6.2.1), a belief that φ—but only at the cognitive-likelihood

value σ := 4. (that which we perceive, at least when we are

talking about perception of things in the external world, might be

illusory). Certainty, when σ := 5, is reserved in our framework

for belief regarding mathematical propositions. In general, this

ability to reason with cognitive-likelihood values enables the kind

of nuanced argumentation we seek, as it provides a formalism

in which individual statements and arguments as a whole can be

assigned relative strengths (= cognitive likelihoods), which, in turn,

allows certain statements and arguments carrying higher strength

to “defeat” others non-monotonically as time flows; this occurs in

our case studies.

Now, back to MHP3. The first argument is fully supported

by the basic tenets of probability theory viewed through the

lens of odds (i.e., the probability of an event is the ratio of

the number of possible outcomes in which it occurs, over the

number of total possible outcomes).36 Therefore, a belief in

36 This approach to probability can be formalized in what is known as

probability logic (Adams, 1998), and probability logic can be subsumed in

the conclusion of Argument 1—namely, that one should follow

SWITCH—can be held at the level of EVIDENT. It is EVIDENT,

not CERTAIN, because the argument fundamentally relies on the

agent’s perception of various elements of the game, which could be

compromised without violation of any mathematically necessary

axioms or theorems. Such beliefs are inferred using schema Iℓ4 as

follows:

P(a, t,φ)

B4(a, t,φ)
[Iℓ4] (1)

On the other hand, Step 2. of Argument 2 is generally asserted

with no justification. One could argue that it is justified by the large

group of people who state it. Given the inference schema [Iℓ2], such

a justification can warrant a belief at the level of MORE LIKELY

THAN NOT but not higher. Therefore, we have formally observed

that the first argument is stronger than the other and hence should

be accepted.

As mentioned above, while a full formal and computational

account of the overarching argument and its sub-proofs are out

of scope in the present study, we give the automated proofs found

by ShadowAdjudicator in Figure 1 and point the interested reader

to Giancola (2023) for a full exposition of the relevant inference

schemata, all the arguments and proofs, and full analysis. We

mention as well that there are now numerous variants ofMHP3 that

are a good deal trickier than the original; these are comprehensively

treated in the study by Bringsjord et al. (2022b), which takes

account, for instance, of the variants discussed in the study by

Rosenthal (2008).

7.2 Case Study 2: the robot PERI.2 meets
“Clouded” Meta-Forms

Our second case study revolves around a very interesting

and challenging reasoning game that we are using in a sustained

attempt to quite literally have the cognitive robot PERI.237 attend

school and progress grade-by-grade through at least high school,

on the road thereby to artificial general intelligence (AGI); this

project was announced in Bringsjord et al. (2022a). The game

is called “Meta-Forms” (see Figure 2 for a rapid orientation to

the game).

For our second case study, PERI.2 is issued the challenge of

solving a Meta-Forms problem; not one of the very hardest of such

problems, but certainly a non-trivial one, even for adult humans;

the problem is shown in Figure 3.

PERI.2 does meet with success, in what as far as we

know is one of the most robust uses of argumentation-

based AI in cognitive robotics. This success is shown

in Figure 4, and the automatically found reasoning that

leads to PERI.2’s knowledge38 (which, in turn, leads to the

intention to act accordingly, and then the performance of

cognitive calculi that subsume the two—DCEC and IDCEC–we employ

herein, but this is out of scope.

37 The precursor robot, PERI, anchored the introduction, to the field of AI,

what is called psychometric AI; see Bringsjord and Schimanski (2003).
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FIGURE 1

Two arguments for supposedly solving MHP3, automatically found by ShadowAdjudicator/ShadowProver. The complete valid argument includes six

sub-proofs, the result of considering whether switching or staying will result in a win depending on the three possible locations of the prize (and

assuming, without loss of generality, that the contestant initially selected Door 1). In the graphic here, we show two of the six: switching when the

prize is behind Door 2, and staying when the prize is behind Door 1. One of the others is the same as one shown: the contestant wins if they switch

when the prize is behind Doors 2 or 3. The other 3 proofs result in failure; e.g., one cannot prove that staying will result in a win if the prize is behind

Doors 2 or 3.

the action) is shown in Figure 5. It is important to realize

that because of the nature of Meta-Forms problems, dynamic

argumentation through time is part and parcel of how

PERI.2 operates.

However, now what happens if PERI.2’s environment is

uncoöperative? Specifically, what happens when this cognitive

robot is faced with fog (or smoke, etc.), to the point where some

possibly crucial information cannot be perceived, then believed,

and then reasoned about? Such a situation is shown in Figure 6.

In this situation, PERI.2 is unable to arrive at knowledge in support

of action that can be taken in order to physically solve the problem

(see Figure 7).

38 In the case of the step presented in Figure 4, PERI.2 is able to utilize

disjunctive syllogism to satisfy the probability query in schema [IK]. Essentially,

because PERI.2 knows that there are already puzzle pieces in three of the

four possible places it can put the blue piece, the piece must go in the only

remaining place.

7.3 Case Study 3: a life-and-death
multi-agent decision

The ARCADIA human-level cognitive architecture (Bridewell

and Bello, 2015) provides means by which we are able to integrate

our cognitive calculi and associated automated reasoners with a

perceptual system that takes into account not only the general

cognitive science of perception but also specifically a given agent’s

dynamically shifting attention. Computational cognitive science

has disclosed that attention and perception go hand in symbiotic

hand, and when an agent is designed and implemented as an

ARCADIA model, this symbiosis is made computationally real.

In the present section, we give a case study of a robust

multi-agent system perceiving and reasoning, and in which our

automated-reasoning technology helps assess threat levels in a

delicate scenario that is too depressingly real in the world today.

The simulation is in real time, as perceptual information is

communicated to and from multiple agents. However, before
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FIGURE 2

The Meta-Forms game, from FoxMind. This game provides a series of “clues” to the would-be puzzle solver, each of which is a visual version of a

“logical statement,” which, in turn for our AI work, becomes a formula in a cognitive calculus (often requiring for such logicization only the formal

language of a standard extensional logic such as L1). The goal is to physically construct a complete configuration of the 3×3 board from these

clues, i.e., a full placement of each of the nine di�erent objects in the game (3D versions of a triangle, square, and circle, each of which can be one of

the three colors of red, blue, and yellow). Formally, if 5 is a complete configuration of the board, and Ŵ the collection of formulae that logicize all

clues, necessarily 5 ∪ Ŵ is provably consistent in L1 and more expressive logics that subsume it.

FIGURE 3

A Meta-Forms problem. This is the full problem that serves as the

challenge at the heart of Case Study 2. Clues are best read by the AI

system top to bottom and left to right. The goal is to reason out

where to place all nine objects on the grid.

the case study, we give now some brief—but given purposes—

additional relevant background on ARCADIA.

The ARCADIA cognitive architecture is composed primarily

of a collection of non-introspectable processing units called

components. On each ARCADIA processing cycle, components

may take in and produce interlingua content items, which are tables

of labeled data able to be interpreted by other components. Once

generated, content items are placed in an accessible content area

from which the architecture will select one on each processing

cycle to become the focus of attention. This selected element is

fed back into the components and used to generate more content

items. The strategy for selecting a content item is decided on a

task-to-task basis that favors items, representing things deserving

of more attention, such as those representing changes to objects

within the field of vision. Though this architectural design and

various types of components are motivated, as we have said, by

the cognitive science of cognition, ARCADIA is able to smoothly

and efficiently perform a robust range of tasks as implemented

computation—such as object recognition, tracking, and driving

(Bello and Bridewell, 2020).

To move into the case study, let us suppose that it is known

that some people of interest are working on an unknown device

in a building in an area that has a history of terrorist training

and planning.39 A team of “blue” artificial agents is tasked with

deciding (and reporting to humans thereafter) whether or not

these people of interest and the device with them pose a threat.

The investigating team operates under the two-part assumption

that those in the building are possibly terrorists, and the device

in question possibly a bomb. In total, there are four investigative

artificial agents. Three of them are in the vicinity of the building

and are approaching it to ascertain the nature of the device in

question via their sensors. These three agents are a high-altitude

drone with a scanner (denoted by constant hdrone), a low-altitude

drone with a camera (denoted by constant ldrone), and a land-

based agent with wall-penetrating radar (denoted by constant

radar). The final agent is a special argument-adjudicating agent

(adjudicator) in full command of both cognitive calculi DCEC

and IDCEC and also ShadowProver and ShadowAdjudicator; this

agent is tasked with sending mission commands and receiving

39 This general premise is unfortunately far from implausible and is used

as well in a simpler ARCADIA-less/perception-less adjudication scenario

presented in Bringsjord et al. (2021), which is directly inspired by real events

in the past.
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FIGURE 4

PERI.2 observes the clue (left) and holds a Meta-Form piece in One Hand (center), correctly placing the shape (right). The clue, when logicized by

PERI.2, can be represented as: B[peri2,now, LocatedAt(bluesquare, 1) ∨ LocatedAt(bluesquare, 2) ∨ LocatedAt(bluesquare, 4)

∨LocatedAt(bluesquare, 5)]. Notably, this is a disjunction. The challenge is to dynamically adjust arguments through time as clues are perceived by

trying to negate disjuncts. Machine-vision middleware for PERI.2 is courtesy of Cognex, three of whose cameras are part of PERI.2 as well; hands are

from Barrett Technologies.

FIGURE 5

PERI.2 comes to know by reasoning that the Blue Square is at location #4. A rather long run of automated reasoning eventuates in PERI.2’s coming to

know that the blue square is at location #4. The proof given here provides justification for PERI.2’s belief. It is, in fact, true that the blue square

belongs to location 4. Therefore, in accordance with the conception of knowledge as justified true belief, where both belief and knowledge are

allowed to vary in strength [in order to surmount the famous problem of Gettier (1963), as explained in Bringsjord et al. (2020b)], PERI.2 knows the

correct placement.

messages from the other agents. From these messages, it is to use

all its information at each time step to determine by reasoning

if the people and the device are a threat. The other agents do

not have full cognitive power (i.e., most of the cognitive verbs

captured by both DCEC and IDCEC cannot be instantiated by

their processing; e.g., these agents do not have the epistemic

“power” of believing and knowing); rather, they are only perceptive

and communicative agents, able to focus on commands and changes

in their environment and report their percepts to the adjudicator

agent. The adjudicator agent is, thus, able to reason about the state

of the world using the full ensemble of our calculi and automated

reasoners, but the subsidiary agents are restricted to proper parts
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of the cognitive calculi in question. Both DCEC and IDCEC have

in their formal languages both a perception operator P and a

communication operator S, read as “says” (see again as needed

Section 6.2.1); but the operators in this pair for belief, knowledge,

intention, and action are not available to the subsidiary agents.

For implementation of this scenario, we use the Minigrid

environment (Chevalier-Boisvert et al., 2018): a virtual grid world

in which we can model our artificial agents with limited field-

of-view and perceptual impedances. Our house is represented as

a structure enclosed by walls that block visual sensors but allow

use of wall-penetrating radar. There is an opening in the house;

it represents a garage in which the individuals are working on

the mysterious device. The individuals under investigation and

the device being worked on are represented by special tiles, as

are perceptual disturbances such as dust clouds. At a high level,

the situation can be observed playing out in our environment, as

shown in Figure 8. Our agents on the scene (i.e., hdrone, ldrone,

and radar) use instances of ARCADIA, while the adjudicator agent

(adjudicator), again, is built atop ShadowAdjudicator (Giancola

et al., 2020), which now, courtesy of a tie-in with ARCADIA, has

scientifically serious capacity for both perception and argument-

based reasoning.40

Time in our implementation is conceptualized as adjudication

timesteps and ARCADIA steps. On each reasoner cycle, a

predetermined movement command is issued to each of hdrone,

ldrone, and radar by adjudicator and received by a transceiver

component that creates an interlingua item based on this

command. The attentional strategy prioritizes these command

items; they, thus, become the focus of attention. The agent’s

movement effector component receives this command item and

executes it. In parallel to this, ARCADIA’s robust attentional-

and-visual system monitors for changes from the visual sensor;

this sensor creates items from objects in the field of view. In

the event a fully represented object in memory is perceived and

becomes the focus of attention, it will be passed to the transceiver

component, which will, in turn, send a message containing

the agent’s perception to the adjudicator agent, which adds the

information about the agent’s perception to its knowledge-base.

This information includes whether a threat was perceived or

not. After receiving a new percept, adjudicator will reason over

the known percepts and return a belief about the situation, in

particular, the degree of belief regarding whether a threat exists.

The overarching pipeline is shown in Figure 9. These degrees

correspond to the levels introduced earlier in the present study (see

again, if needed, Table 1).

The situation plays out as follows and is presented in Figure 10.

First, hdrone is issued orders to scan the building in a fly-by. It

perceives the building but does not perceive any objects beyond

this. From these percepts (or lack thereof in this case), adjudicator

cannot determine whether there is a threat at this time-step, derived

as a counterbalanced (recall again Section 7.1 and Table 1) belief as

40 As the reader by now knows, DCEC has a perception operator (and a

communication operator), but they are not in and of themselves connected

to any genuine mechanization of attention and perception that is, in turn,

based on the science of attention and perception in computational cognitive

science. Connecting to ARCADIA changes this in one fell swoop.

FIGURE 6

A Full Trio of clues are fogged over. Fog (courtesy of a fog machine)

has appeared in the RAIR Lab, and the results are not good

perception-wise.

to whether or not there is a threat. In other words, at this point

adjudicator is agnostic.

Next, the low-altitude drone (ldrone), in possession of a camera,

receives orders to make an approach. As it obeys, its attention is

focused on the people of interest and the device, but before the

internal representation of the object can be fully assembled . . . a

dust storm is kicked up, and this blocks ldrone’s visual sensors,

which, in turn, nullifies its ability to have its visual component form

representations of individuals or the device. Instead, it directs its

attentional focus at the dust cloud itself; this blocks its view. These

percepts of the people and cloud are sent back to adjudicator, which,

at this point (rationally), maintains a counterbalanced/agnostic

epistemic attitude regarding a threat/no-threat (i.e., re. p).41

At this point, the aforementioned ground-based agent with

wall-penetrating radar (radar) is deployed to the side of the

building. Its attention is drawn to two men located around the

suspicious device. The ground-based agent reports these percepts

to the adjudicator agent; it, accordingly, believes that there is more

likely than not a threat present.

We explain in some detail the reasoning at t2 below.

The adjudicator uses its Domain_Knowledge, which contains

general rules for the situation, such as how to prioritize the

beliefs of each agent and the definitions of negative and 0 belief

in this context. When combined with the percepts reported by

the ARCADIA Agents (IDCEC_KB_at_t2), ShadowAdjudicator

is able to use IDCEC inference schemata to derive the

current threat level. More formally, where this notation is

simply “pretty printed” from underlying code, the situation is

as follows:

41 This agnosticism is, in part, based on the initial percepts of the people

of interest in the garage.
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FIGURE 7

PERI.2 fails to find a proof when perception is compromised. Due to fog in the environment, some key clues are now absent in automated reasoning,

and there is failure because PERI.2 cannot turn disjunctive (indeterminate) clues into knowledge.

FIGURE 8

Multi-agent scanning. (Top Left) The high-altitude drone scans the building but does not perceive anything. (Top Right) The low-altitude drone

moves in, but before attention can be focused on the objects in the building, a dust storm blocks its visual sensors. (Bottom Left) A ground-based

agent with ground-penetrating radar moves into position and scans the inside of the building. (Bottom Right) The dust cloud disappears and the

low-altitude drone’s attention is drawn to the open building, where it perceives two men benignly working on an engine.

Domain_Knowledge ={∀t0, t1, t2 :B
h(hdrone, t0,φ)

∧ Br(radar, t1,φ) ∧ Bl(ldrone, t2,φ) ⇒

Bmax(r·1/4,h·1/4,l·1/2)(adjudicator,max(t0, t1, t2),φ),

∀t :Bσ (adjudicator, t,¬φ)}

⇔ B−σ (adjudicator, t,φ),

∀t :∀a :¬P(a, t,¬φ) ∧ ¬P(a, t,φ) ⇒ B0(a, t,φ)}

IDCEC_KB_at_t2 ={¬P(hdrone, t0,¬p),¬P(hdrone, t0, p),

¬P(ldrone, t1,¬p),¬P(ldrone, t1, p)

P(radar, t2,¬p)}

Domain_Knowledge∪IDCEC_KB_at_t2 ⊢IDCEC

B1(adjudicator, t2, p)

Finally, the low-altitude drone (ldrone) manages to emerge

from the dust storm after new orders and is thus once again able to

observe into the building. It focuses its attention on the device and

. . . perceives it to be a benign car engine. Once this information is

relayed back to adjudicator, it reasons that it is unlikely there is a

threat.

It should be noted here that adjudicator has situation-

dependent definitions within its knowledge-base and is able

to perform perception-infused reasoning that factors in these

formulae. For example, notably, the true percept reported to the

adjudicator is not really the presence of threat proposition p as

simplifyingly shown in P(·, ·, p), as shown in Figure 10, but rather

a percept of the true object that the agent perceives [in this case

that of hdrone, P(hdrone, t0,wall)]. From this, adjudicator uses

domain-context knowledge with the given percept to determine

whether the agent perceived a threat or if not enough was

perceived to ascertain whether the agent perceived a threat

or not. Additionally, this extends to the adjudicator having a

context-aware understanding of different types of agents and

different levels of perception power, some being stronger than

others, which is why the visual sensor on ldrone overrides the
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FIGURE 9

The information pipeline between the ARCADIA agent and the adjudicator agent. The high-level information pipeline between ARCADIA agents and

the adjudicator agent is shown here. At each time step, mission instructions are passed to the ARCADIA agent in the situation via the agent’s

transceiver component. These commands are attended to and passed to the agent’s movement e�ectors. The ARCADIA agent’s perceptual sensors

(visual, radar, etc.) pick out new items attended via the visual components that create objects. The finalized objects are interpreted to be fully

perceived and are sent to the Adjudicator via the transceiver. The Adjudicator adjudicates between arguments factoring in the percepts of multiple

agents on the ground, along with mission-relevant domain-context knowledge, to determine if there is a threat.

perceptions from radar at t2 and t3. This event leads to its

final belief at the unlikely level. This is also why the percepts

from the wall-penetrating radar only lead to a more likely than

not level of belief, rather than a belief at the level of likely

at t2.

Summing up, our third case study provides not only a

potential real-life example in which our automated argumentation

systems play a central and salutary role, but also demonstrates

that our system has many capabilities outlined in our desiderata,

Des. In particular, Case Study 3 exemplifies the defeasible

nature of our system as encapsulated by desiderata d1 and

the ability of our system to reason over cognitive operators

as stated in desiderata d6. Regarding desiderata d1: As new

information comes to light over the course of the scenario,

the adjudicator is able to update its reasoning regarding

the threat level at each time-step (see Figure 10); hence the

reasoning capability of the system is observably defeasible,

as desired. For desiderata d6, the system reasons over the

cognitive operators for both belief and perception, as observed

in depictions of both the agents on the scene and the

adjudicator agent; see both Figure 10 and our presentation of

Domain_Knowledge. This reasoning over cognitive operators

also includes reasoning over the belief levels; hence part of

desiderata d3 is satisfied.

8 Sophistic argumentation

There is, it seems to us, a long-standing bias or presumption

within the logicist AI tradition (into which, as explained above,

our study as reported herein firmly falls) that treats arguments

as fundamentally similar to earnestly constructed proofs (or at

least to simplified, scaled-down proofs, earnestly and sincerely

constructed). In this tradition, the purpose or function of

arguments, like that of the authoring of proofs by humans engaged

in the formal sciences, is to support rational belief fixation and

to thereby enable new knowledge to arrive in the mind of

cognizers who assimilate these proofs. This tradition makes room

for and indeed realistically expects (at least periodically) invalid

proofs (the history of mathematics having seen many), just as

the tradition of computer programming makes plenty of room

for programs that are invalid (but certainly programs).42 In point

of fact, we ourselves, in adopting a thoroughgoing inference-

theoretic perspective, regard arguments to be akin to proofs and

42 After all, program verification makes little sense if there cannot be

programs that are invalid. For discussion of this, see Arkoudas and Bringsjord

(2007). For a paradigm of program verification based directly on our brand of

logicist AI, see Bringsjord (2015).
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FIGURE 10

The timeline. Shown here is the state of the situation at each reasoner time-step, with the percepts of three agents in the scene regarding the

proposition p, that a threat is present, where p is a�rmed by the adjudicator if a dangerous object is reported as perceived. The adjudicator agent, on

the bottom, reports its derived belief from the percepts at each reasoning time-step.

argument crafting on the part of humans to be akin to the

craft of articulating proofs. However, while arguments do often

function as demonstration and warrant in support of belief and

decision-making, these are undeniably neither the sole functions

of arguments nor are all warrants rational ones. This is something

we suspect that AI should start to take note of, carefully. We, thus,

now briefly explain, and our explanation will wrap up by drawing

once again upon the three-doorMontyHall Problem=MHP3, now

familiar to our readers given earlier discussion of this problem.

To explain, let us first consider the function of arguments:

Arguments are often instruments of persuasion. In fact, an

argument’s persuasiveness may be of greater import than its

veracity or validity, depending on the arguer’s intent with regard

to its audience. Logicist AI has largely followed in the footsteps

of formal logic by privileging the dialectic (i.e., in a word, logic)

over the other members of the ancient trivium. By eschewing

rhetoric (essentially argumentation as treated today what is known

as informal logic; see Groarke, 1996/2017), most logicist AI fails

to appreciate the persuasive function of argument and its role in

dialogical games such as disputation. This failure is not a small

one. The persuasive power of argument is central to the practice

of policy-making, politics, and law, and the life-altering decisions

sometimes made therein. Moreover, persuasion is essential to the

utility and success of logicist AI—even if this is unrecognized by

practitioners. Why is it essential? Well, insofar as logicist AI in

support of, and interacting with, humans is concerned, the goal is

both to “be correct” and to “be believed;” systems that are correct

but not believed are useless. Furthermore, we charitably assume

that acceptance and use of these logicist-AI systems are intended

to be volitional, and as such, the goal again is to “be believed,”

not simply to “be obeyed;” systems that are obeyed even when not

believed are undesirable, dangerous, and potentially unethical.

Second, regarding rationality, arguments can be persuasive

even when they are invalid or untruthful, and veracious arguments

can be unpersuasive (as the literature on MHP3 confirms; see the

discussion of this empirical fact in Chapter 1 of Pinker, 2021).

In terms of bringing about human belief, validity and veracity

guarantee nothing. That invalid, pseudo-rational arguments can

be persuasive is not a new revelation; Aristotle knew this over

two millennia back when he wrote that arguments can have

the appearance (but not always the substance) of demonstrable

justification that makes belief warranted (Aristotle, 1823). Indeed,

the methodological and disciplinary distinction between rhetoric

and dialectic—between persuasion and veracity—dates back firmly

and in general to ancient Greece and the age and work of not

just Aristotle, but Plato and Socrates (see, specifically, the claimed

intellectual battles between Socrates and the sophists).

Who were the sophists? To brutally summarize some of Plato’s

dialogues, the sophists were itinerant teachers who, for money,

taught the skill of persuasive argumentation and debate to Athenian

citizens so that they might prevail in the courts and in civic life—

even if they were in the wrong. The sophists were criticized and

opposed by Socrates and others because they (supposedly) only

cared about being persuasive. They have been characterized as

purveyors of the semblance of wisdom and not the genuine article,

having rejected the doctrinal ideal of “truth” to promulgate, instead
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of the virtue of persuasive cleverness without moral good (Aristotle,

1955). While many contemporary scholars (see Marback, 1999;

Gagarin, 2001; McComiskey, 2002) have attempted to rehabilitate

the sophists’ reputation, the legacy of the sophists—among both

scholars the general public—still amounts to “sophistry” being a

byword for insincerity, self-interest, and, above all, manipulative

persuasion by clever argumentation.

This encapsulated history of the sophists is given by us here

for more than just trivia; the sophists demonstrated the power and

importance of persuasion (viz. rhetoric), attempted to systematize

it, and stand as a cautionary warning about the pursuit of

argument-based persuasion unchecked by truth or virtue. However,

why, the reader might ask, did the sophists’ techniques work? More

importantly, why are invalid arguments sometimes so persuasive?

The answer to that is rather simple: Absent sufficient training and

in-the-moment mental effort, humans are abysmal at normative

argumentation and rational judgment. Humans are, unknowingly,

imperfect reasoners who predictably and instinctively succumb to

a host of biases and illusions and, moreover, are supremely, yet

undeservedly, overconfident of their ability to reason and judge the

reasoning of others—at least when compared with the standards of

formal deductive and inductive logics and probability theory.

Moreover, the takeaway is that not only do logicist-AI systems

need argumentation but also they need persuasive argumentation

that ensures and preserves truthfulness (veracity) and formal

validity in order to engender rational human use. Perhaps the

reader will agree that we do not want artificial agents able to

understand and generate arguments wonderfully, in order to, in

part, persuade humans sophistically.

Before moving on to the final section of the present study, it is,

in our view, worthwhile to say a bit more about the sophists, and

to then end this section by looking at a specimen of just the sort of

sophistic argumentation that AI systems should not produce and

promote in order to persuade humans.

Naïve and unfair as their remembrance may be—the truth is

that ancient sophistic techniques have been vibrantly alive and

well and continuously refined for over two millennia—persuasive

techniques that prey upon the audience’s cognitive dissonance,

ignorance, intellectual laziness, and desire for comforting belief

reinforcement. Is there the specter of digital sophists emerging?

Why yes. Sophistic AI is literally a past accomplishment. Starting

in the early 2000s, the application of AI to natural argumentation

refocused on audience-centric systems that take subjective aspects

of argumentation seriously (see Reed and Grasso, 2001, 2007; Reed

and Norman, 2004) and this resulted in the development of various

neo-rhetorical (e.g., Grasso, 2002) and logico-dialectical (e.g.,

Aubry and Risch, 2006) approaches to persuasive and deceptive

argumentation. In 2010, cognitive models were added to the mix,

resulting in The Lying Machine (Clark, 2010), an explicitly sophistic

artificial agent that persuades via a combination of argumentation

and illusion.

The Lying Machine (TLM) is a logicist-AI system that

manipulates human beliefs through persuasive argument by

using cognitive models to generate convincing yet potentially

disingenuous arguments. In design, the machine maintains

conceptually separate repositories for its first- and second-order

beliefs (i.e., its beliefs about the world and its beliefs about its

audience’s beliefs about the world). It reasons over first-order

beliefs in a normatively correct fashion, but when reasoning over

second-order beliefs, it uses both normatively correct reasoning

and a predictive theory of human reasoning, namely,mental models

theory (Johnson-Laird, 1983, 2006), one of the most influential

theories of human reasoning in cognitive science. In so doing,

the machine internally contrasts (i) what it believes, (ii) what it

believes its audience ought to believe were they to reason correctly,

and (iii) what it believes its audience will likely believe given their

predicted fallibility. In operation, TLM seeks to achieve various

persuasion goals of the form “persuade the audience of φ,” where

φ is a logicization of a proposition 〈φ〉 about the world. Given such

a goal, the machine first forms its own justified belief about φ.43

TLM, then, determines whether its audience ought to believe 〈φ〉

and whether 〈φ〉 can be justified in convincing fashion based solely

on second-order beliefs (i.e., beliefs it ascribes to its audience).

If so, the machine, then, constructs and articulates a credible

argument for φ, presented then as an argument for 〈φ〉.44 Like the

sophists, TLM aims for perceived credibility as opposed to objective,

logical, or epistemological credibility. While its arguments may

be logically valid or invalid, the importance is that they appear

valid to its audience. Argument credibility is enhanced by limiting

the initial premises to what the audience is believed by TLM to

already believe. Moreover, since the machine is not constrained by

logical validity, it is able to produce all of the following types of

arguments:

• a veracious argument for a true proposition emanating from

shared beliefs;

• a valid argument for a false proposition emanating from one

or more false premises that the audience erroneously believes

already;

• a fallacious argument for a true proposition (an expedient

fiction for the fraudulent conveyance of a truth); and

• a fallacious argument for a false proposition (the most

opprobrious form being one that insidiously passes from true

premises to a false conclusion).

With the above repertoire in hand, the lying machine attempts

to take on the pejorative mantle of the sophists by causing arbitrary

belief to materialize in the minds of those targeted, through

persuasive argumentation without concern for validity, sincerity,

or truth. The results of experiments with TLM are, perhaps,

unfortunate but not surprising, given that the fully replicated and

thoroughly confirmed empirical fact of the matter in the cognitive

science of reasoning has disclosed that humans confidently believe

any number of things on the strength of reason that is often

downright absurd, logically and mathematically speaking. [An

excellent, if depressing, survey of this science is given in the study

43 That is to say, it determines and internally justifies whether φ follows

from, or is contradicted by, first-order beliefs (i.e., its own beliefs about the

world), as regulated by background inference schemata (which obviously

include normatively invalid ones, e.g., a�rming the consequent).

44 Natural-language-generation aspects of TLM are left aside here since

out of scope.
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by Pinker (2021), the anchoring first chapter of which features the

very same MHP3 problem first introduced in the present essay in

Section 2.] Humans find the machine’s sophistic arguments both

credible and persuasive, even when those arguments are opposed

by (logically) valid rebuttals (Clark, 2010, 2011).

We now end the present with an informal presentation of an

argument regarding MHP3 that practitioners of human-centric AI

need to ensure is not generated, nor accepted, by artificial agents.

The argument in question is in support of a policy of STAY in the

problem, and runs as follows:

The Lame-Horse Argument

(1) Suppose you bet at random on Horse #2 in a three-

horse race, where all three horses at the outset are

indistinguishable with respect to all of their respective racing-

relevant properties.

(Of course, the idea is that in MHP3 we have a three-door

“race,” and the bet is the initial selection of one of the three

doors.)

(2) From (1), we deduce that your odds of winning at t, the

moment the race starts, are 1
3 .

(3) Suppose as well that during the race, at t′(t′ > t), Horse #3

suddenly comes up lame and is out for good, while Horse #1

and Horse #2 continue running, neck and neck.

(4) From (3), we deduce that your odds of winning at t′′(t′′ > t′),

the moment after Horse #3 drops out, are 1
2 .

(5) We can also infer that switching your bet to Horse #1 at

the next instant t′′′(t′′′ > t′′), with all conditions remaining

the same (& assuming that you are given the opportunity to

switch) is irrational, because the effort of doing so will not

improve your 1
2 odds at all.

(6) Since the scenario here is isomorphic to that seen in MHP3
(where of course your opportunity to switch doors is just like

your opportunity to switch horses), it’s irrational for you, or for

that matter any contestant, to switch doors after Monty Hall

reveals a donkey (or llama, etc.), a move that is of course the

analog for Horse #3 coming up lame and thus “revealing” itself

to be a guaranteed loser.

The Lame Horse Argument is a powerful sophistic argument;

as Pinker (2021) explains, it even persuaded many professional

mathematicians that a STAY policy in MHP3 is irrational (an

extensive treatment of, and references for, The Lame-Horse

Argument, can be found in the study by Granberg, 2014). Of

course, this is not to say that such mathematicians intended

to persuade their targets while knowing that their argument

was invalid. However, regardless, this is certainly something

that could be done by malevolent agents (whether human or

artificial), rather easily. Thus, if we may be so bold, the argument

here is one that by our lights, the sophists would be quite

happy with, in general; it is an argument, if you will, right up

their alley.

However,why is The Lame-Horse Argument unsound? Though

it is persuasive, it is not veracious because (in short), in point of

fact, the two scenarios are not isomorphic at all (and that they

are is a premise in the argument); they are not even analogous

by the simplest inference schemata for analogical argumentation.45

The reason is that a number of intensional factors in the mind of

Monty Hall himself are crucial to a correct, reasoned solutions, but

these factors are entirely absent from the three-horse scenario; these

factors were discussed and logicized in the cognitive calculusDCEC

in Section 7.1.46

9 Next steps; conclusion

We now briefly describe a series of steps we are already in

the process of taking, to further broaden and apply our approach.

Readers both alert and knowledgeable will in the case of most if

not all of them have already wondered whether our approach is

applicable in these directions.

9.1 Surmounting the paradoxes of
perception

The history of argument-based defeasible/non-monotonic

systems in AI, as evidenced prominently by Pollock (1995), has

been driven in no small part by the need to solve certain paradoxes,

among which are the Lottery Paradox and the Paradox of the

Preface.47 Are there paradoxes specifically in the intersection of

perception and such argumentation systems? Indeed there are;

see for example the rather tricky one presented in Davis (1989).

We are working hard on proving, and empirically demonstrating

via simulations, that this and other even-harder paradoxes can

be surmounted by our cognitive calculi and associated automated

reasoners, in keeping with the desiderata that sum up our approach.

9.2 What about abductive argumentation?

Some of our readers will inevitably be curious about a type of

reasoning we have yet to touch upon: abductive reasoning.48 While

45 Laid out e.g., in Bartha (2013); Bringsjord and Licato (2015).

46 The three intensional prerequisites are: (i) Monty must know what’s

hidden by all doors; (ii) hemust perceive and thereby come to know that initial

choice; (iii) he must intend to open a losing door, and accordingly perform

the associated action.

47 We do not fully agree with Pollock’s proposed solutions to this pair of

paradoxes, but such matters are out of scope presently.

48 Because (a) we momentarily provide information regarding how our

approach will be extended into abductive reasoning, and (b) this information

could not have been assimilated by the reader in advance of our laying out

our approach, and instantiating it in the three case studies, we judged the

present, concluding section to be the optimal location for our discussion

of abduction. Notably, there are forms of abduction that in fact are not

viewed as reasoning. This is nicely discussed in the study by Douven (2021),

which begins with a key distinction: abduction viewed as the generation

of hypotheses vs. abduction as the reasoning that justifies propositions,

especially propositions that are hypotheses. Clearly, it is the latter form that

is our concern.
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it is certainly the case that there is no consensus as to what the

precise nature of this reasoning is, the agreed-upon kernel of such

reasoning in formal logic and AI expressed as an inference schema

at least roughly in the fashion, followed earlier in the study, is as

follows (where “φ” and “ψ” are formulae in accordance with some

formal language, ‘ν” denotes one or more variables free in these

formulae, and χ denotes one or more constants/names):

ψ(χ), ∀ν[φ(ν) → ψ(ν)]

φ(χ)

Let us label this inference schema “IA.” This (deductively

invalid, as desired) schema accords with many of the simple,

familiar specimens of abduction. For example, suppose that soon

after waking in the morning Bertram goes to the kitchen to make

a cup of coffee, but upon entering the room finds a steaming cup

of cappuccino sitting on his placemat at the breakfast table. No

one else is present. Bertram asks himself: How did this situation

come to be? Knowing that there is only one person—Abigail—

in his household fully capable of making the exact kind of coffee

he prefers, with knowledge of where he customarily sits, Bertram

abduces via IA, instantiated, to produce the following argument,

to which Bertram accedes, and the mystery is solved (and he has

gained knowledge as to whence the coffee cup).49

The Abductive Coffee-Mystery Argument

1. OnTable(cup22)

2. Prepared(abigail,cup22) → OnTable(cup22)

∴ 3. Prepared(abigail, cup22)

Unfortunately, as has been long and widely appreciated, IA, and

indeed any schema that is of this general sort, is deeply problematic.

The set of defects has little to do with the mere (and desired) fact

that abductive reasoning is non-deductive (it is, in this regard,

a specific type of reasoning falling with inductive logic as the

subdiscipline of logic our work falls into and is hence analyzed

in the study by Johnson, 2016). For instance, this set of defects

includes the havoc that can ensue from multiple uses of IA: Let the

universally quantified formula be instantiated twice (separately) to

yield

∀x[R(x) → S(x)]

and

∀x[¬R(x) → T(x)],

49 Because abductive reasoning is often described as “inference to the

best explanation”, and such inferencing is (plausibly, in our opinion) taken

by many to be a cornerstone of the empirical sciences (see Douven, 2021),

more elaborate examples from science could be given instead of our simple

parable, but doing so is beyond scope and available space here—but we

provide a few leads: For the reader not all that familiar with abduction, but

with logic and science, in general, our recommendation is to read a seminal

abductivemodel fromHintikka (1998). For those with an interest like ours, i.e.,

in human-centric AI and cognition, the place to start is without question the

recently released Magnani (2023), and for a somewhat older but still-relevant

overview of AI and computational logic, see Paul (2000).

and then suppose we have S(a) and T(a). A contradiction is, then,

directly provable by two inferences, each in conformity with IA.

Thus, one can view the chief challenge of working out a logic

of abduction in the style of our cognitive calculi to be specifically

the development of inference schemata that (i) are in the spirit of

IA, (ii) are (as it in fact is) machine checkable so that abductive

argumentation is verifiable/falsifiable but (iii) have none of the

obviously objectionable attributes of this inference schema. Of all

the work we are aware of in this vein, Meheus and Batens (2006)

comes closest to conforming to it and our approach. In this study,

there is firm insistence upon having a proof theory, indeed one

that is based on an attempt to expand and refine IA. However, this

proof theory could not be used to model and solve any of our three

case studies. The reason is that the logic in question, LAr , is purely

extensional, as admitted by the researchers in question:

The logic presented in this study [LAr] will be based on

Classical Logic — henceforth CL. Moreover, all references to

causality, laws of nature, and similar non-extensional concepts

[such as belief, knowledge, and perception] will be out of the

picture. We do not doubt that more interesting results may be

obtained from intensional logics (Meheus and Batens, 2006, p.

22–223).

This quote can be viewed as a convenient stepping stone

for a next step on our part, in which our cognitive calculi

and automated reasoners, as introduced, explained, and deployed

above, cover human-level abductive argumentation. The novel

inference schemata in these calculi will minimally have perception

and epistemic operators. Additionally, there would be a knowledge-

base for the agent/s reasoning abductively. Thus, from our

perspective, the coffee mystery is an enthymematic argument, both

perceptually and epistemically. To achieve more precision, schema

IA would need to be expanded and refined; here, in fact, is a

schema—IintA —marking a first such step in that direction, making

use of the operators B, K, and P (for, as the reader will recall from

the foregoing, belief, knowledge, and perception, respectively):

P(a,ψ(χ)),K(a, ∀ν[φ(ν) → ψ(ν)])

B(a,φ(χ))

This inference schema can formally and computationally

undergird the argument Bertram might offer to someone as to why

he regards the “mystery” to be solved, the idea being that he would

express his reliance on perceiving the cup of cappuccino and his

knowing beforehand the key conditional formula (and particular

propositions re. Abigail), suitably instantiated. We are actively

working on the expansion of our paradigm in this abductive

direction.

9.3 What about pictorial argumentation?

Human agents make considerable use, even in sophisticated

settings observed in the formal sciences, of arguments and proofs

that include pictorial representations, where such representations

are not reduced, and in some case not even in principle reducible to,

symbolic content. [In our study described above (Case Study 2), we
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have of course relied on the reduction of diagrams in Meta-Forms

to linguistic formulae.] Notably, we are not here referring to

arguments or proofs laid out in graphical ways (an important

issue briefly discussed in Footnote 17). Reasoning frameworks, at

least of the deductive sort that subsume extensional logics such

as L1 and include both symbolic content (e.g., formulae in the

formal language of a logic or—as in our case—cognitive calculi)

and pictorial content, were seminally introduced by Barwise

and Etchemendy (1995); they call such logics heterogeneous.

Subsequently, a more general formal logic for heterogeneous

reasoning, Vivid, was introduced by Arkoudas and Bringsjord

(2009b). Vivid can be used to allow PERI.2 (and for that matter

any logicist artificial agent) to reason about the Meta-Forms

game board and clues relating to it as a diagram, unreduced to

or represented by anything linguistic/symbolic. We are actively

working on this direction, based on a new cognitive calculus with

all the extant expressive and reasoning powers of DCEC and

IDCEC and, at the same time, the vivid-like capacity to directly and

irreducibly represent and allow reasoning over pictures, images,

and diagrams.

9.4 Final words

We end by admitting that, at least in our view, the most

daunting obstacle standing in the way of HCAI being based on

argumentation science and engineering is not a technical one, at all.

We are, for what it is worth, completely confident that the research

trajectory explained (and hopefully rendered at least somewhat

promising in the reader’s view by virtue of the foregoing) above can

indeed be used as the basis of artificial agents with near-human-

level intelligence that profoundly help humans. However, humans

have to want what argumentation-centric AI can provide. Our

directive Dir is not (yet) universally affirmed. In a world where

forms of AI, for instance large language models produced by so-

called “Deep Learning,” wholly forego any argument or proof of

the sort that we are calling for, we see room for plenty of rational

concern. The forms we refer, as the reader will likely well-know,

are purely statistical/connectionist ones entirely devoid of any

declarative content expressed in accordance with a formal language

(since they rely upon tokenization into formats that are only strings

with none of the structure of quantification, inference schemata,

etc.) and thus by definition devoid of any reasoning over such

content in accordance with inference schemata.
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