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Bone age assessment (BAA) from hand radiographs is crucial for diagnosing

endocrinology disorders in adolescents and supplying therapeutic investigation.

In practice, due to the conventional clinical assessment being a subjective

estimation, the accuracy of BAA relies highly on the pediatrician’s professionalism

and experience. Recently, many deep learning methods have been proposed for

the automatic estimation of bone age and had good results. However, these

methods do not exploit su�cient discriminative information or require additional

manual annotations of critical bone regions that are important biological identifiers

in skeletal maturity, whichmay restrict the clinical application of these approaches.

In this research, we propose a novel two-stage deep learning method for BAA

without any manual region annotation, which consists of a cascaded critical bone

region extraction network and a gender-assisted bone age estimation network.

First, the cascaded critical bone region extraction network automatically and

sequentially locates two discriminative bone regions via the visual heat maps.

Second, in order to obtain an accurate BAA, the extracted critical bone regions are

fed into the gender-assisted bone age estimation network. The results showed that

the proposed method achieved a mean absolute error (MAE) of 5.45 months on

the public dataset Radiological Society of North America (RSNA) and 3.34 months

on our private dataset.

KEYWORDS

bone age assessment, two-stage deep learning method, critical bone region extraction

network, gender-assisted bone age estimation network, visual heat map

Introduction

Bone age assessment refers to a clinical application that is widely used in pediatric

radiology, therapeutic estimation of endocrinology disorders, and judgment of children’s

growth (Poznanski et al., 1978; Carty and Journal, 2002; Thodberg et al., 2009). The BAA

technique usually estimates the skeletal maturity of bones based on left-hand radiographs,

for the reason that the bone ossification levels of the non-dominant hand reveal the bone

maturity. The conventional standard bone age assessment methods are Greulich-Pyle (G&P)

method (Greulich and Pyle, 1959) and Tanner Whitehouse (TW) method (Morris, 1976).

The G&P method compares the radiographs with the reference atlas until the most similar

atlas is selected, and the labeled age of the selected atlas represents the estimated bone

age. Compared to the G&P method, the TW method is more complex, it analyzes specific
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FIGURE 1

ROIs of bone X-ray images for bone age assessment.

regions of interest (ROIs, which consist of the radius, ulna, carpal,

and metacarpus & phalanx bones, as shown in Figure 1), and

bone age is evaluated individually through a scoring mechanism,

rather than based on the entire radiograph. Due to the critical

anatomical features in ROIs playing important roles in BAA, each

ROI is assessed by a numerical scoring system, and the final

bone age is estimated by averaging all ROI scores. Nonetheless,

these conventional evaluating works are generally conducted by

experienced radiologists or pediatricians through visual inspection

and manual annotation, which is not only tedious, heavy workload,

and long time-consuming, but also faces the influence of different

doctors with different standards. As a result, automated assessment

approaches for BAA are currently receiving increasing attention.

In recent years, many reported studies have shown that

deep learning-based models and architectures were good at

medical image segmentation, classification, and prediction

(Anthimopoulos et al., 2016; Duan et al., 2018; Sanchez-Riera

et al., 2018; Tajbakhsh et al., 2020). The existing deep learning

models, such as convolutional neural networks (CNN), deep

belief networks (DBN), and recurrent neural networks (RNN),

demonstrate effective performance for image recognition,

segmentation, prediction, and classification.

Meanwhile, many deep learning approaches have become

increasingly popular and have been reported for automatic bone

age estimation (Halabi et al., 2018), on account that they can extract

the ossification patterns from the bone images and complete the

complicated bone age approximation. Automatically deep learning

methods for BAA could overcome the issues that refer to as

time-consuming, inherent subjectivity of human interpretation,

inter-operator, and intra-operator variations (Lee and Lee, 2021).

Liu et al. (2019) applied learning-to-rank methods to evaluation

problems and proposed a new architecture VGG-U-Net. Chu

et al. (2018) proposed a fully convolutional network, U-Net-VGG,

that can quickly obtain accurate masks for all input images and

transform the ordered regression problem of bone age assessment

into a K-1 binary classification subproblem to reduce the effect of

outliers. Among all the deep learning models, the CNN model is

most usually employed to segment and classify bone age, for the

reason that CNNmodel could extract features and utilizes global or

local information of carpal bones, which improves the robustness of

bone age assessment and reduces the mean error of the assessment

results. Nevertheless, accurate automatic bone age assessment is

still a challenging task.

Due to the ROIs (metacarpus & phalanx, carpal, ulna, and

radius bones) playing important roles in bone age estimation, the

previous deep learning approaches for BAA could be separated into

two classes, including annotation-free methods and annotation-

based methods. The former annotation-free methods employ the

whole hand radiographs as input and usually fed them into the

end-to-end and single-stage model for estimated bone age directly.

Spampinato et al. (2017) built Bonet with an extra deformation

layer to get low and middle-level pattern maps, and it achieves the

MAE of 9.6 months on the RSNA dataset. Larson et al. (2017) built

a deep residual network structure (ResNet50) for automated bone

age recognition based on the G&Pmappingmethod, and it achieves

the MAE of 6.24 months on the RSNA dataset. This network

quantitatively evaluates the bone age, and it also qualitatively

identifies the most sensitive regions of each image. Pan et al. (2020)

also used a U-Net model to segment hand mask images from raw

X-ray images, and it is a deep active learning technique that could

reduce the annotation burden, and it achieves the MAE of 8.59

months on the RSNA dataset. The method proposed a new active

learning framework for hand radiograph segmentation via a few

labeled datasets. As a result, these above annotation-free methods

demonstrate poor bone age estimation and are explainable.

The latter annotation-based methods use the processed images

with manual annotations of bounding boxes as input. These

strategies could extract features in specific regions according to

prior knowledge and then produce the estimated age. Iglovikov

et al. (2017) employed a U-net structure to extract important

point areas based on manually labeled hand masks and achieved

a performance of 6.3 months MAE for men and 6.49 months MAE

for women. Escobar et al. (2019) utilized the input hand images that

annotated key points with extra manual labeled boundary boxes

into the training network, as a result, they obtained an effective

performance in RSNA with 4.14 months MAE. Ren et al. (2018)

utilized Faster-RCNN to figure out the hand foreground and used

Inception-V3 architecture for age recognition, which achieved a

result with 5.2 months MAE on the RSNA dataset. Son et al. (2019)

localized the areas within 13 different bones based on the TW3

method and evaluated the bone age, which achieved a result with

5.52 months MAE on the RSNA dataset.

The annotation-based methods with the additional manual

annotations generally show better performance and higher

accuracy than the annotation-free methods. The methods that use

the original image as input do not fully exploit the discriminative

local information and ignore the fine-grained analysis of specific

regions, so the accuracy and interpretability of these methods

tend to be poor. Manual annotation is also time-consuming

and has hindered the translation of experimental methods into

clinical applications.

Given the problems existing in existing research methods and

the shortcomings of the most commonly used G&P and TW

methods, our two-stage bone age evaluation method of positioning
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+ prediction not only considers the weight of different bone areas

but also does not require physicians to spend a lot of time on bone

age analysis as the TWmethod does, which also reduces the impact

of subjective differences among different evaluators. At the same

time, we used Grad-CAM to visually present the imaging content of

the bone region in the positioning stage and compared the extracted

hand bone region with the observation area of the traditional atlas

method, which has better clinical acceptance for physicians.

We have proposed a two-step method for fully automatic bone

age estimation based on X-ray images of hand bones without

any annotation. The architecture consists of a key bone region

localization network and a bone age estimation network. In the first

step, an enhanced Inception V3 network with the Convolutional

Block Attention Module (CBAM) is implemented to automatically

identify and localize the critical regions of hand bone images

via visualized heat maps. In the second step, the Xception and

ResNet50 networks were used to extract the bone region features

of the carpal and metacarpophalangeal regions, respectively. The

modal fusion information was then obtained by dynamically

exchanging feature mappings. We feed the gender information

into the age estimation network as an additional input, which

helps to optimize the deep learning network and improve the

estimation performance.

The contributions of this paper are summarized as follows: (1)

This method proposes an effective strategy to identify the critical

bone regions for bone age estimation, which could encourage the

model to focus on the features of critical regions and weaken

the influence of irrelevant regions. (2) The proposed method

feeds the gender information into the age assessment network as

additional input, which improves the generalization of the bone

age assessment network. (3) This two-stage structure, including

critical bone region localization and bone age estimation, is

more interpretable and increases the clinical acceptance of the

proposed method.

Materials and methods

Dataset

The RSNA dataset is public and collected by the Radiological

Society of North America (RSNA), it consists of 14,236 hand bone

radiographs, including 12,611 training datasets, 1,425 validation

datasets, and 200 test datasets (Halabi et al., 2018). Among the

12,611 training datasets, there are 5,778 female subjects and 6,833

male subjects, with an age range of 1–228 months, mainly specific

to children aged 5–15 years, and each image is labeled with the

true bone age. The experimental data can be downloaded on the

website https://www.kaggle.com/kmader/rsna-bone-age.

The CQJTJ dataset is an additional dataset collected by the

radiology department of Chongqing Jintongjia Children’s Hospital.

It consists of 3,551 left-hand X-ray images and corresponding

clinical reports. Among these images, some are collected from the

same subjects at different periods, 1,502 images are obtained from

FIGURE 2

Illustration of the proposed network architecture for the BAA.
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FIGURE 3

The architecture of Inception V3 with Convolutional Block Attention Module.

male subjects and 1,949 images are obtained from female subjects,

with an age range of 13–218 months, mainly for children aged

4–16 years.

Network architecture for bone age
assessment

In this section, we introduce the architecture of the proposed

two-stage method, which composes a critical bone region

extraction network and a bone age recognition network.

Specifically, the whole hand image data was fed into an improved

Inception V3 network with CBAM as input, generating visual heat

maps. The peak attention area of the heat map could be considered

a critical bone region, and such a critical bone region (carpal area)

was cropped and preserved. Then the original image was masked

by a black rectangle on the critical bone area. The masked image

went through the critical region extraction network again, and

another critical bone region (metacarpal and finger area) could

be extracted. For the bone age recognition network, automatically

cropped images are input into the Xception model and ResNet50

model for feature learning. Then, according to the mid-fusion

method, the carpal bone features extracted from the Xception

model and the metacarpus&phalanx bone features extracted from

the Res-Net50 model are exchanged and concatenated. The gender

information is then entered into the second network as additional

input. Finally, the concatenate feature vectors were sent into the

fully connected layer for bone age estimation. The BAA network

architecture is shown in Figure 2.

Critical bone region extraction network

To better extract the important bone regions of the hand

bone images and achieve an accurate assessment, we embedded

the Convolutional Block Attention Module (CBAM) attention

mechanism module into the Inception V3 architecture. This

specific model can fully automatically detect and extract the critical

bone regions via the peak attention area of the generated visual heat

map. Figure 3 demonstrates the architecture of Inception V3 with

the Convolutional Block Attention Module.

The Inception V3 architecture, proposed by Szegedy, is an

advanced pre-trained CNN model (Szegedy et al., 2016). This

model comprises 316 layers and 350 connections. There are

94 convolution layers of different filter sizes, where the size

of the first input layer is 300 × 300 × 3. The Inception

V3 is a network with good local topology because it consists

of symmetrical and asymmetrical building blocks, where each

block comprises multiple convolution operations, average pooling,

max pooling, concatenations, and fully connected operations. In
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FIGURE 4

The architecture of convolutional block attention module.

Xception, convolutional operations are employed to compress

the original data, and various types of filters also are utilized

on each depth space. Besides, this model benefits from the

auxiliary classifier module within the medial layers to improve

the discrimination capability in the lower layers. And batch

normalization is commonly used and applied to the activation layer

input into this model.

For the sake of saving computing power and extracting themost

useful features quickly, the attention mechanism shows an effective

performance in promoting the feature-extracting capability, and

it concentrates restricted attention on the important features and

neglects other unnecessary information automatically. Specifically,

CBAM (Woo et al., 2018) is an attention mechanism module

that combines two independent submodules, including a Channel

Attention Module (CAM) and a Spatial Attention Module (SAM).

These two submodules are capable of improving the segmentation

performance and ensuring the neural network focuses on the small

target, respectively. After achieving the input feature data from

the Inception V3 model, the feature data is sent to the CBAM

module. Firstly, the feature data is fed to the channel attention

submodule for calculation, leading to the channel attention feature

data. Secondly, the channel attention feature data is multiplied by

input feature data to generate the refined feature data. Thirdly,

the refined feature data is sent to the spatial attention submodule

and generated the spatial attention feature data. Finally, the output

feature data is obtained by multiplying the spatial attention feature

data with the refined feature data. The architecture of the CBAM

module is shown in Figure 4.

Here, Figure 5A demonstrates the computing process of CAM,

and each CAM input feature data is followed by a global maximum

pooling and a global average pooling simultaneously, and the two

pooling layers undergo a shared multilayer perceptron (MLP).

Then, the two obtained intermediate feature layers are followed by

a sum operation and a sigmoid activation operation.

On the other hand, Figure 5B illustrates the computing process

of SAM, and the output feature data from the CAM is sent to the

SAM submodule. A global maximum pooling and a global average

pooling are conducted in order. Then the obtained intermediate

data is followed by a 7 × 7 convolutional operation and a sigmoid

activation operation. The channel attention weights Mc(F) and

spatial attention weights Ms(F) are represented as follows:

Mc (F)= σ
(

MLP
(

AvgPool (F)
)

+MLP (MaxPool (F))
)

= σ

(

W1

(

W0

(

Fcavg

))

+W1

(

W0

(

Fcmax

))

)

(1)

Ms (F)= σ
(

f7×7
([

AvgPool (F) ;MaxPool (F)
]))

= σ

(

f7×7
([

Fsavg;Fsmax

]))

(2)

where F represents the output feature map for each layer of the

model, MLP is the fully connected layer, AvG&Pool is the global

average pooling layer, MaxPool is the global maximum pooling

layer, and σ is the sigmoid activation function. The spatial attention

weights are calculated in a similar way, but the pooling layer is

changed to be a channel domain pooling, and the MLP layer is

changed to be a convolution layer, where f (7× 7) represents 7× 7

convolution layer.

In the critical bone region network, we omit the top layer of the

Inception V3 network, then the remaining architecture is adopted

as the backbone network for feature extraction, and the model is

loaded with pre-trained weights on the ImageNet dataset. Applying

a modified CAM method, the grad-CAM method, visualized heat

map of the hand bone image is generated. In light of the peak

attention of visualized heat maps, the important bone region

(including the carpal bone region and the metacarpal finger bone

region) could be localized.

Bone age assessment from hand bone
images

In this assessment module, the backbone network for feature

extracting was built using the mid-term fusion method, which
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FIGURE 5

The architectures of the channel attention module and spatial attention module. (A) Channel attention module. (B) Spatial attention module.

FIGURE 6

Bone age assessment network.
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FIGURE 7

The architecture of Xception network.

refers to the first transformation of different modal data into high-

dimensional feature expression, and then fusion in the middle

layer of the model (Wang et al., 2020). Combined with the basic

principles of the mid-term fusion method, we used the Xception

network and ResNet50 network to extract the bone region features

of the carpal and metacarpus&phalanx regions, respectively. Then

we extract the modal fusion information through the dynamic

exchange of feature mappings. The method of exchanging feature

information is to exchange the car-pal bone information extracted

by Xception and the metacarpus&phalanx bone information

extracted by ResNet50 as a whole and then concatenate the

exchanged feature information. Finally, the obtained characteristics

of key bone regions and gender information were concatenated and

input into the last fully connected layer to output the age of hand

bones. The bone age assessment network is shown in Figure 6.

The Xception network (Chollet, 2017) has been modified to

remove the top layer and is followed by a convolution layer and a

maximum pooling layer. The architecture of the Xception network

is shown in Figure 7. The Xception architecture is composed of

an entry flow module, a middle flow module (repeat 8 times),

and an exit flow module. Compared to the Inception network,

the Xception network first uses filters on each depth map and

then condenses the data space via convolution operation across the

depth. Therefore, this network is capable of revealing the spatial

relationships for each output channel separately and extracting

the cross-channel relationship. The Xception model is a linear

amount of depthwise separable convolution layers with residual

connections, and the depthwise separable convolution is another

version of traditional convolutions that contributes to decreasing

the computational time. There are 36 convolution layers in this

architecture for feature learning and they constitute 14 modules.

Excepting the first and last modules, the remaining modules have

linear residual connections. In addition, both the convolution layer

and depthwise separable convolution layers are followed by a

ReLU layer.

ResNet50 is a representative network of ResNet residual

network series through the short-circuit mechanism (He et al.,

2016). The structure of the residual learning unit is shown in
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FIGURE 8

ResNet50 residual learning unit structure.

Figure 8. Through the introduction of identity mapping, the

residual learning unit establishes a direct correlation channel

between input and output, which makes the powerful reference

layer concentrate on learning the residual between input and

output. An important design principle of ResNet is that when the

feature map size is reduced by half, the number of feature maps is

doubled, which maintains the complexity of the network layer.

Because of the obvious discrepancies between male and female

radiographs with the same bone age assessment, gender provides

critical information for bone age assessment. Therefore, the

auxiliary network inputs the gender information into the encoder

to obtain the corresponding gender features. After concatenating

feature maps extracted from the backbone network xlD and feature

maps extracted from the auxiliary network xlG in an lth layer,

we utilize the backbone network to train the combined data and

send the feature maps to the last fully connected layer of the

backbone network.

x̃D = ∝l
Dx

l
D+∝l

Gx
l
G (3)

Where x̃D denotes the assessment bone age result of the

corresponding subject, the ∝l
D and ∝l

G are learnable weights in the

lth layer of the assessment network and∝l
G reveals the contribution

of gender information.

Loss function and evaluation metrics

In this experiment, the neural network was trained on

the RSNA dataset and the additional dataset, respectively. The

Inception V3 model loaded with pre-trained weights on the

ImageNet dataset is employed as the backbone and the prediction

network was used by the Xception model and Resnet50 model. A

linear transformation was employed for the gender information,

and it was considered as an additional input of the prediction

network. In the training process, the input hand image is

preprocessed, namely, resampling, rotating, and changing contrast,

and brightness, to prevent overfitting. The size of the initial image

is set to (300, 300, 3), the size of the learning rate is set to 0.0003,

and the number of epochs for training is set to 30.

Due to the proposed model regards the bone age assessment as

a regression task, mean square error (MSE) is adopted as the loss

function in this task,

LMSE=
1

n

n
∑

i=1

∣

∣yi−gi
∣

∣

2
(4)

where n represents the number of the training sets, yi is the

ground-truth age and gi is the predicted value of bone age.

In this study, bone age assessment was treated as a regression

task, the evaluation indicator for network performance is the mean

absolute error (MAE) between the output of the model and the

ground-truth age, which is represented as

MAE= 1

N

N
∑

i=1

∣

∣yi−ŷi
∣

∣ (5)

where N represents the number of input samples and yi is the

true value of bone age, and ŷi is the predicted bone age.

Results and discussion

In this study, we present a deep neural network incorporating

CBAM to address the limitations of neglecting important regions

in hand bone images and the costly manual annotation process.

The results of the ROI extraction and feature activation heat map

are presented in Figure 9. To evaluate the performance of the

part extraction module, visual maps were generated using the

Inception V3 model with CBAM. The extracted hand regions

were then outlined with red and green bounding boxes on the

maps, with the green boxes indicating the carpal bones and

the red boxes indicating the metacarpal and phalanx bones.

This supports conventional bone age assessment theories by

clearly distinguishing between these regions. The proposed method

extracts key bone areas in an explainable and reasonable manner,

with the part extraction module effectively removing background

distractions, thereby improving the robustness of the method

without additional segmentation.

Meanwhile, we evaluated the visual interpretation of the

feature-extracting network through the grad-CAM method and

examined the activated heat maps on the original images. The

third and fourth rows in Figure 9A show activated heat maps on

the RSNA dataset. The red-colored areas indicate high attention

and the results reveal that the network has broad activation over

the carpal and metacarpal areas with a peak focus on the carpal

area initially. Masking the carpal part of the input images results

in an expanded activation region to the entire hand, and the

peak attention shifts to the metacarpal finger area. On the other

hand, Figure 9B displays activated heat maps on our private CQJTJ

dataset, which reveals activation across almost the entire hand

with peak attention on the critical hand bone areas including

carpals, metacarpals, and fingers. This difference in activation could

be attributed to the improved image quality and resolution in

our private CQJTJ dataset. Essentially, the visualized heat maps

confirm that the proposed neural network is attending to the
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FIGURE 9

Visual heat map of critical bone region (A) RSNA dataset, (B) CQJTJ dataset.

critical locations, aligning with conventional clinical approaches

that focus on carpals, metacarpals, and phalanx. In comparison,

the ResNet50 method, a ROI-free approach, concentrate activation

on the metacarpal areas, which may limit recognition learning

and make it tendentious (Liu et al., 2020). Thus, the feature

activation from the proposed deep network is explainable. In

conclusion, the visual explanation suggests that the proposed

part-extracting network achieves better and more effective feature
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FIGURE 10

Relationship between actual age and predicted age (A) RSNA dataset, (B) CQJTJ dataset.

learning performance about important bone areas, leading to

improved bone age estimation.

After obtaining the critical bone areas, we fed the critical bone

images into the backbone network for feature learning and age

prediction. The correlations between the true age and the estimated

age are shown in Figure 10. It is obvious that our predicted ages

are strongly consistent with the true age. Specifically, Figure 10A

illustrates the correlation results on the public data set RSNA,

and Figure 10B illustrates the correlation results on the private

CQJTJ data set. In our research, we utilize MAE to estimate

the performance of our proposed approach. The assessment

performance results show the MAE of 5.45 months on the public

RSNA dataset, and the MAE of 3.34 months on the private CQJTJ

dataset. As analyzed above, the improved performance on the

private CQJTJ dataset can be attributed to the higher quality and

resolution of the images, as well as the homogeneity of the subjects,

which consist of a single race. This is consistent with the known fact

that bone maturation varies based on race.

We also compare the assessment performance of our proposed

method with other existing advanced networks, as illustrated in

Table 1. Particularly, the ROI-free methods reported by Larson

et al. (2017), Spampinato et al. (2017), Pan et al. (2020), Li

et al. (2022), respectively, employ the entire hand images as

input without any additional manual annotations. The ROI-

based approaches reported by Iglovikov et al. (2017), Ren et al.

(2018), Zhao et al. (2018), Son et al. (2019), respectively, utilize

critical bone area images as input with precise ROI annotations.

The method proposed by Iglovikov et al. (2017) requires the

use of additional CNN to perform pre-processing steps, as well

as a manual annotation to obtain hand bone mask images of

hand bone images. Each mask image takes 2min. At the same

time, in the training process of removing the background and

improving the accuracy of segmentation results, it is also necessary

to manually label the images with poor hand bone quality 6

times. Compared with the method proposed by Iglovikov et al.

(2017) the method proposed by Ren et al. (2018) regards bone

age assessment as a regression task. The method they proposed

only takes 1.5 s to complete one bone age assessment, but when

removing the influence of background irrelevant factors, 1,000

rectangular boundary boxes need to be manually marked to

remove the irrelevant background. Iglovikov and Ren’s method

has good accuracy, but they require manual annotation of bone

images, and this additional manual annotation is time-consuming

and expensive. To overcome the time-consuming and expensive

problem of additional manual annotation, CBAM, a plug-and-

play attention mechanism, can be added to better automatically

locate the key bone region of the hand bone image. Meanwhile,

Grad-CAM is used to generate visual heat maps of the carpal

bone and metacarpus&phalanx, which is also conducive to an

intuitive comparison between physicians and traditional mapping

methods. It further demonstrated the excellent clinical acceptance

of this study method. Generally speaking, ROI-based methods

demonstrate better performance in BAA than ROI-free methods,

as shown in Table 1. As mentioned above, the additional manual

annotation is tedious and time-consuming. Furthermore, Wu

et al. (2018), Mehta et al. (2021), Yang et al. (2021) and our

method detects the specific bone area automatically without any

additional manual annotations and fed the critical bone area

images into the age prediction network as input. In general, the

experimental results show that our method performs better than

the majority of current evaluation methods without additional

labor annotation costs.

To reinforce the efficacy of the proposed method and

emphasize the importance of incorporating gender information,

we conducted a comparative study on the RSNA dataset. The

results of the experiment, which compared the impact of attention

mechanisms and gender information on prediction outcomes, are

presented in Table 2.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1142895
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Li et al. 10.3389/frai.2023.1142895

TABLE 1 The results of comparison with other methods on RSNA dataset.

Method Dataset No critical bone-areas Additional annotations MAE (months)

Spampinato et al. (2017) RSNA
√ × 9.12

Larson et al. (2017) RSNA
√ × 6.24

Marouf et al. (2020) RSNA
√ × 6

Pan et al. (2020) RSNA
√ × 8.59

Li et al. (2022) RSNA
√ × 6.2

Ren et al. (2018) RSNA × √
5.2

Zhao et al. (2018) RSNA × √
7.66

Iglovikov et al. (2017) RSNA × √
4.97

Son et al. (2019) RSNA × √
5.52

Wu et al. (2018) RSNA × × 7.38

Yang et al. (2021) RSNA × × 6.14

Mehta et al. (2021) RSNA × × 5.92

Ours RSNA × × 5.45

MAE, mean absolute error.

TABLE 2 E�ect of attentional mechanism and gender information on prediction results.

Original image Carpal Metacarpus and phalanx Carpal + metacarpus and phalanx

No Gender+ No CBAM 8.60 7.85 11.08 7.78

Gender+ No CBAM 5.95 6.20 6.71 5.71

No Gender+ CBAM — 7.67 8.66 7.30

Gender+ CBAM — 5.50 6.23 5.45

CBAM, Convolutional Block Attention Module.

The results presented in Table 2 demonstrate the significance

of incorporating gender information in bone age evaluation. The

accuracy of the evaluation, measured as MAE, was found to

decrease fromMAE 5.95months toMAE 8.60months when gender

information was removed. This highlights the importance of

considering gender as a factor in bone age assessment. Additionally,

the results show that the proposed method, which utilizes the

combination of the carpal region, metacarpus and phalanx region,

and gender information as input, outperforms other methods, with

aMAE of 5.45months on the public RSNA dataset and 3.34months

on a private dataset. Furthermore, the results indicate that the

utilization of the CBAM attention mechanism in the recognition

network can improve performance, as it emphasizes relevant

features and suppresses irrelevant information. The optimal result

was achieved by combining both the attention mechanism and

gender information, demonstrating that they are complementary

and can be employed together to enhance accuracy in bone

age recognition.

Conclusion

In this study, we introduce a novel two-stage, fully automatic

method for evaluating bone age without the requirement for

manual annotations. Our results demonstrate that the localization

of critical bone regions can significantly improve the accuracy

of bone age evaluation, and gender information plays a crucial

role in this process. The proposed method addresses the issue

of extracting key hand bones and reduces the dependence on

costly and subjectivemanual annotations. Consequently, it achieves

an acceptable level of accuracy and interpretability and has the

potential for eventual clinical implementation. We believe that

this proposed method holds great promise for future clinical

applications. However, the research in the field of bone age

assessment can be expanded and improved from the following

aspects: This study demonstrated the influence of key bone regions

on the prediction results but did not further discuss the influence of

key areas such as carpal bone andmetacarpus&phalanx bone on the

accuracy of bone age prediction. In future studies, specific regions

can be extracted by positioning network for networkmodel training

to further demonstrate the influence of different bone regions in

the field of bone age prediction. At the same time, the experimental

effect achieved in this study is the two-stage separation mode of

positioning and prediction. In the later stage, it can be considered

to integrate positioning and prediction into an end-to-end network.

This end-to-end network not only has strong clinical acceptance

but also can be better applied in the field of bone age evaluation,

helping physicians realize accurate bone age evaluation.
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