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Evaluating and selecting
arguments in the context of
higher order uncertainty

Christian Straßer* and Lisa Michajlova

Institute for Philosophy II, Ruhr University Bochum, Bochum, Germany

Human and artificial reasoning has to deal with uncertain environments.

Ideally, probabilistic information is available. However, sometimes probabilistic

information may not be precise or it is missing entirely. In such cases we reason

with higher-order uncertainty. Formal argumentation is one of the leading formal

methods to model defeasible reasoning in artificial intelligence, in particular in the

tradition of Dung’s abstract argumentation. Also from the perspective of cognition,

reasoning has been considered as argumentative and social in nature, for instance

by Mercier and Sperber. In this paper we use formal argumentation to provide

a framework for reasoning with higher-order uncertainty. Our approach builds

strongly on Haenni’s system of probabilistic argumentation, but enhances it in

several ways. First, we integrate it with deductive argumentation, both in terms

of the representation of arguments and attacks, and in terms of utilizing abstract

argumentation semantics for selecting some out of a set of possibly conflicting

arguments. We show how our system can be adjusted to perform well under

the so-called rationality postulates of formal argumentation. Second, we provide

several notions of argument strength which are studied both meta-theoretically

and empirically. In this way the paper contributes a formal model of reasoning

with higher-order uncertainty with possible applications in artificial intelligence

and human cognition.

KEYWORDS

abstract argumentation, probabilistic argumentation, argument strength, higher-order

uncertainty, reasoning with uncertainty, non-monotonic logic

1. Introduction

1.1. Reasoning with uncertainties

Many sources of information provide uncertain information. Such information may

come with probabilistic estimations of how likely specific events are (think of a weather

report), in which case we deal with (precise or first order) probabilistic uncertainty. However,

often probabilistic information is missing, or the probabilities are not known precisely, in

which case we deal with higher-order uncertainty (in short, HOU). HOU occurs when the

underlying probability distribution is not or only partially known.1 We illustrate the role of

HOU with two examples.

1 We note that following Keynes and Knight “uncertainty” is often used for non-probabilistic

uncertainties in contradistinction to “risk” (which in this paper is first order uncertainty). For a discussion

on the subtle di�erences in Knight and Keynes and for further discussion on the pairs of distinctions

risk-vs-uncertainty and the related probabilistic-vs-non-probabilistic uncertainty (see O’Donnell, 2021).

In contrast, here we use first order vs. higher-order uncertainty in place of risk vs. uncertainty.
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Example 1 (COMARG). The COMARG conference is to be held

during December 2023. We have the following information

concerning the question whether COMARG will be held hybrid (see

Figure 1, left).

1. The organizers of COMARG announce that a sufficient condition

for the conference to be held hybrid is if there is another wave of

COVID in autumn.

2. If there is no COVID wave in autumn, the steering

committee will take into account other considerations (such as

environmental issue, etc.) and decide on this basis whether the

conference is to be held hybrid. We lack any information about

how likely it is that such considerations lead to a decision in

favor (or disfavor) of a hybrid conference.

3. According to expert opinion, the likelihood of a COVID wave in

autumn is at 0.7.

The answer to the question whether the next COMARG conference

will be held hybrid is uncertain. Moreover, one cannot attach a

precise probability to it: the best that can be said is that it has at

least the likelihood 0.7 (given statements 1 and 3). We are dealing

with HOU in contradistinction to mere first order uncertainty: in

contrast to the question how likely a COVID wave in autumn is,

the question how likely it is that COMARG will be held hybrid has

no precise answer.

Example 2 (Ellsberg, 1961). Suppose an urn contains 30 red balls,

and 60 non-red balls, among which each ball is yellow or black,

but we do not know the distribution of yellow and black balls. The

question of whether a randomly drawn ball is red is one of first

order uncertainty since it comes with the (precise) probability of 1/3.

The question whether it is yellow is one of HOU since the available

probabilistic information does not lead to a precise probabilistic

estimate. See Figure 1 (right) for an illustration.

1.2. First and higher-order uncertainty in
human cognition and AI (HCAI)

Since our environments come with many sources of uncertain

information, both quantifiable and not, it is not surprising that

human reasoning is well-adjusted to dealing with such situations.

What is more, human reasoning distinguishes the two types of

uncertainty by treating them differently. For example, in Example 2

people are more willing to bet on drawing a red ball than on

drawing a yellow ball in a game in which one wins if one bets

the right color. This phenomenon is known as ambiguity (or

uncertainty) aversion. The distinction can be traced back both to

the psychological and neurological level. For instance, different

types of psychological or other medical problems are associated

with a compromised decision making under first order uncertainty,

but not under HOU [e.g., gambling problems in Brevers et al.

(2012), obsessive-compulsive disorder in Zhang et al. (2015),

pathological buying issues in Trotzke et al. (2015)] and vice versa

(e.g., Parkinson’s disease in Euteneuer et al., 2009). This shows that

different causal mechanisms are related to the human capacities

of reasoning with the two types of uncertainties. Similarly, on the

neurological level differences can be traced, though it is still an open

issue whether the two uncertainty types have separate or graded

representations in the brain [see De Groot and Thurik (2018), to

which we also refer for a recent overview on both the psychological

and neurological literature].

What the discussion highlights is that a formal model of

human reasoning should pay special attention to both types of

uncertainties and provide a framework that can integrate mixed

reasoning processes, such as in our Examples 1 and 2. The same

can be stated for AI for the simple reason that in many applications

artificial agents will face sources of uncertain information.

When reasoning with uncertain information, we infer

defeasibly, that is, given new (and possibly more reliable)

information we may be willing to retract inferences. As forcefully

argued on philosophical grounds in Toulmin (1958), reasoning

is naturally studied as a form of argumentation. Similarly,

the cognitive scientists Mercier and Sperber developed an

argumentative theory of human reasoning (Mercier and Sperber,

2017). Dung’s abstract argumentation theory (Dung, 1995)

provides a unifying formal framework for an argumentative model

of defeasible reasoning and has been widely adopted by now both in

the context of symbolic AI and to provide explanatory frameworks

in the context of human cognition (Saldanha and Kakas, 2019;

Cramer and Dietz Saldanha, 2020). Several ways of instantiating

abstract argumentation with concrete formal languages and rule

sets have been proposed, such as ASPIC+ (Modgil and Prakken,

2014), assumption-based argumentation (Dung et al., 2009), and

logic-based argumentation (Besnard and Hunter, 2001; Arieli and

Straßer, 2015).

It would therefore seem advantageous for the theoretical

foundations of HCAI to combine formal argumentation with a

representation of first and higher-order uncertainty. This paper will

propose such a formal framework.

1.3. Formal methods

Several formal models of this type of reasoning are available:

from imprecise probabilities (Bradley, 2019) to subjective logic

(Jøsang, 2001) and probabilistic argumentation (Haenni, 2009).

However, the link to the leading paradigm of computational

argumentation, namely Dung-style argumentation semantics, is

rather loose.

Probabilistic argumentation with uncertain probabilities is

comparatively understudied in formal argumentation. Works by

Hunter and Thimm (Hunter and Thimm, 2017; Hunter, 2022)

focus on precise probabilities. Our framework generalizes aspects

of such settings to include a treatment of HOU. Also, in contrast

to them, we will utilize Dung argumentation semantics in the

context of probabilistic argumentation. Hunter et al. (2020) equip

arguments with a degree of belief as well as disbelief, notions

that can also be expressed in Haenni’s framework and will be

considered in our study of argument strength. A framework

that considers imprecise probabilities is presented by Oren

et al. (2007). It utilizes subjective logic in the context of a

dialogical approach for reasoning about evidence. Similarly, Santini

et al. (2018) label arguments in abstract argumentation with

opinions from subjective logic. In contrast, our study focuses on

structured argumentation.
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FIGURE 1

Illustration of Example 1 (left) and Example 2 (right). The dashed arrow signify HOU. The numbers on the arrows represent the probabilities of the

associated events.

Mainly starting with the seminal (Ellsberg, 1961), HOU has

been intensively studied in the context of decision theory. As

has been shown there, human reasoning with HOU may lead

to violations of axioms of subjective expected utility theory

(as axiomatized in Savage, 1972), leading to several alternative

accounts [e.g., maxmin expected utility in Gilboa and Schmeidler

(2004) or prospect theory in Kahneman and Tversky (1979)]. In

this paper, we omit utilities, values, and practical decision making

and concentrate instead on reasoning in the epistemic context of

belief formation and hypothesis generation. As we will show, even

without utilities HOU gives rise to interesting and challenging

reasoning scenarios.

1.4. Our contribution

In this paper we integrate reasoning with HOU in abstract

argumentation. For achieving this goal, several key questions have

to be answered:

1. What is a knowledge base? A knowledge base contains strict

assumptions (also, constraints) and defeasible assumptions

for which probabilistic information is available in form of a

family of probability functions. Following Haenni (2009), we

distinguish probabilistic and non-probabilistic (also, logical)

variables, where only for the former set probabilistic information

is available.

2. What is a logically structured argument? We will follow the

tradition in logical/deductive argumentation according to which

an argument is a pair 〈S ,φ〉 where S is a set of assumptions and

φ a sentence that deductively follows from S (in signs, S ⊢ φ).

3. When is an argument stronger than another one? We

propose several measures of argument strength with special

consideration of HOU and study their properties. Any model

of defeasible reasoning may have various applications, from

normative philosophical models of non-monotonic inference

to symbolic artificial intelligence, to descriptively adequate

(and therefore predictive) models of human reasoning. When

considering argument strength, we here focus on the latter

and provide a small empirical study (incl. well-known

reasoning tasks such as Ellsberg, 1961) to check the accuracy

of the previously defined notions. Clearly, this is a first

preliminary step which can only point in a direction, rather

than conclusively validate the formal notions developed in

this paper.2

4. What constitutes an argumentative attack? We study four types

of argumentative attack, namely, rebut and three forms of

undercut.

5. How to obtain meta-theoretically well-behaved selections of

arguments?We study several standard argumentation semantics

from Dung (1995) for different attack forms in terms of

rationality postulates developed for structured argumentation

Caminada and Amgoud (2007). When applying argumentation

semantics, problems concerning the consistency of extensions

already known from logical argumentation re-occur: namely,

the set of conclusions of arguments in a given complete

extension may be inconsistent. We will propose a solution to

this problem that is also applicable in the context of probabilistic

argumentation in the style of Hunter and Thimm (2017) and

logical argumentation. Moreover, we argue that a naive selection

of arguments whose strength passes a certain threshold can

lead to inconsistency. Instead, selections in the tradition of

Dung seem to be more promising. First, our Dung-based

approach satisfies several rationality postulates (including some

concerning the consistency of selections). Moreover, it allows

for the reinstatement of arguments that are defended by other

selected arguments from attacks by non-selected arguments.

This is advantageous e.g., when adopting an investigative or

hypothetical reasoning style.

Our work takes as the starting point the theory of probabilistic

argumentation developed in Haenni (2009). The framework

is enhanced by (1) a structured notion of argument in the

style of logical argumentation, (2) argumentative attacks, (3)

several notions of argument strength [based on notions of

degree of support and degree of possibility presented in

Haenni (2009)], and (4) a study of Dung-style argumentation

2 The focus point of the paper will be on strength measures that associate

arguments with strength values in [0, 1], leading to linear strength orderings

on the given set of arguments. In future work we will investigate broader

notions allowing for incomparabilities between arguments.
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semantics. This way, we obtain a generalization of both

(some forms of) logical argumentation (Besnard and Hunter,

2018) and probabilistic argumentation in the tradition of

Hunter and Thimm (2017).

The structure of the paper is as follows. In Section 2,

we introduce knowledge bases and arguments. In

Section 3, we discuss the application of argumentation

semantics and study rationality postulates relative

to the attack form used. Section 4 presents the

empirical study on argument strength. We provide a

discussion and conclusion in Section 5. In the Appendix

(Supplementary material), we provide proofs of our main results,

some alternative but equivalent definitions, and details on our

empirical study.

2. Knowledge bases and arguments

2.1. Knowledge bases

Our reasoning processes never start from void, but wemake use

of available information when building arguments. This available

information is encoded in a knowledge base. In our initial

Example 1, we had two types of information available:

1. probabilistic information concerning a COVID-wave (“the

likelihood of a COVID wave in autumn is 70%”). This

information may ground defeasible assumption such as “a

COVID wave will (probably) (not) take place”; and

2. information about a factual constraint concerning the

circumstances in which the conference will be held hybrid

(namely, if there is a COVID wave in autumn).

More generally we will follow this rough distinction in

probabilistic information that gives rise to defeasible assumptions,

on the one hand, and factual constraints, on the other hand.

Constraints are taken for granted, either because a reasoner is

convinced of their truth, or otherwise committed to them in the

reasoning process (e.g., they may be supposed in an episode of

hypothetical reasoning3).

Altogether a knowledge base consists of the following

components:

Assumptions. Our knowledge bases are equipped with

a (finite) set of propositional variables Vp about which

probabilistic information (in the form of probability

functions) is available. Out of these propositional variables

a set of defeasible assumptions A is formed, whose strength

will be influenced by their probabilities. So, where sent(Vp)

is the set of the propositional sentences with atoms in Vp,

A ⊆ sent(Vp).

Probabilities. We work with a set probability functions

P based on states(Vp), where states(Vp) is the state

space for Vp (i.e., the set of all truth-value assignments

v :Vp → {0, 1}). This allows for cases in which

more than one probability function is available, e.g.,

3 For work in non-probabilistic structured argumentation on hypothetical

reasoning, see Beirlaen et al. (2018), Cramer and Dauphin (2019).

TABLE 1 Overview: technical notation.

Syntactic entities

p, q, . . . Propositional atoms

φ,ψ , . . . Propositional sentences

Ŵ Set of sentences

ŝ Syntactic representation of state s

Vp Set of probabilistic propositional variables

Vl Set of logical propositional variables

sent(V) Set of sentences over V

A Set of assumptions (subset of sent(Vp))

C Set of constraints (subset of sent(Vp ∪ Vl))

K Knowledge base

a, b, . . . Arguments

Sup(a) Support of a

Con(a) Conclusion of a

Arg(K) Set of arguments induced byK

@(Ŵ) The argument 〈Ŵ,
∧
Ŵ〉

E Set of arguments, an argumentation extension

Semantic entities

s State

states(V) Set of states over variables in V

P Probability function

PC Probability function after Bayesian update on C

P Set of probability functions

℘(·) Power set

‖φ‖ Set of states that verify φ

‖φ‖C Set of states that verify φ and are consistent with C

str(a) Placeholder for argument strength function

dsp(a) Degree of support of a

dps(a) Degree of possibility of a

scenarios in which multiple sources of probabilities are

considered or in which the probabilistic information

about the state space states(Vp) is incomplete (see below

for examples).

For a sentence φ we let ‖φ‖ be the set of states s ∈ states(Vp)

for which s |H φ. For some s ∈ states(Vp), we denote by ŝ the

conjunction
∧
{φ | α(φ) = 1,φ ∈ Vp} ∪ {¬φ | α(φ) = 0,φ ∈ Vp}.

The reader finds an overview of the notation used in this paper in

Table 1.

We may also use propositional variables for which no (direct)

probabilistic information is considered. We collect these in Vl (the

logical variables) and require Vl ∩ Vp = ∅. By allowing logical

variables as well as probabilistic ones, we can unite logical (where

Vp = ∅) and probabilistic reasoning (where Vl = ∅) and can

involve both systems seamlessly, following the approach by Haenni
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TABLE 2 The state space and the probabilities for Example 3.

State s |H p P

s1 0.3

s2 X 0.7

(2009). Constraints will typically relate probabilistic with non-

probabilistic information and therefore they are based on atoms

from both sets, Vp and Vl.

Constraints. The last element of knowledge bases is a set of

factual constraints (in short, constraints) C. The formulas in C

are based on atoms in Vp ∪ Vl.

In the following we write Ŵ ⊢C φ as an abbreviation of Ŵ ∪ C ⊢

φ, where Ŵ ⊆ sent(Vl ∪ Vp). It will also be useful to collect all

states that are consistent with C and that support a formula φ ∈

sent(Vl ∪ Vp) in ‖φ‖C = {s ∈ states(Vp) | ŝ 0C ¬φ and ŝ ⊢C φ}.

Similarly, we write s |HC φ in case s ∈ ‖φ‖C .

We summarize the above discussion in the following definition:

Definition 1 (Knowledge Base). A knowledge base K is a tuple

〈〈Vp,Vl〉,A, C,P〉 for which

• Vp is a finite set of probabilistic variables,

• Vl is a finite set of logical variables such that Vl ∩ Vp = ∅,
4

• A ⊆ sent(Vp) is a finite set of defeasible assumptions,

• C ⊆ sent(Vp ∪ Vl) is a finite set of constraints,

• P is a non-empty set of probability functions P : states(Vp)→

[0, 1].

Example 3 (Ex. 1 cont.). Let us return to our example. It can be

modeled by the knowledge base

COVID = 〈〈Vp :{p},Vl :{q}〉,A :{p,¬p}, C :{p→ q},P :{P}〉,

where P(p) = 0.7, p stands for a COVID-Wave to happen and q for

the conference to by held hybrid. Our defeasible assumptionsA are

{p,¬p} (“there will (not) be a COVID-Wave”). Our set of factual

constraints is C = {p → q}. Table 2 shows the state space induced

by Vp.

2.2. Arguments, support, and strength

Given a knowledge base K = 〈A, C,P〉, a natural way of

thinking about arguments is in terms of support-conclusion pairs:

Definition 2 (Argument). Given a knowledge base K = 〈A, C,P〉,

an argument a forK is a pair 〈Sup(a),Con(a)〉, where

• Sup(a) ⊆ A is a set of assumptions, the support of a,

• Con(a) ∈ sent(Vl ∪ Vp) is the conclusion of a,

4 Where the context disambiguates, we will omit the listing of the variables

Vp and Vl to avoid clutter in the notation.

• such that Sup(a) ⊢C Con(a).

We write Arg(K) for the set of all arguments based onK.

Example 4 (Ex. 3 cont.). In our example we can form the argument

hybrid = 〈{p}, q〉 for the conference to be held hybrid, the

argument wave = 〈{p}, p〉 for there being a COVID-wave, and

noWave = 〈{¬p},¬p〉 for there being no wave.

When considering the question of how strong an argument a =

〈Ŵ,φ〉 is, a naive approach is to simply measure the probabilistic

strength of the support. In the simple case of our example and the

argument hybrid = 〈{p}, q〉 this would amount to P(p) = 0.7, the

same as for the argument wave, whereas noWavewould only have

a strength of 0.3. However, there are some subtleties whichmotivate

amore fine-grained analysis. To show this, we enhance our example

as follows.

Example 5 (COMARG2). We also consider another conference,

COMARG2, for which we know that it will be held hybrid

(symbolized by q′) if and only if(!) a COVID-wave breaks

in autumn. Our enhanced knowledge base is COVID
′ =

〈〈{p}, {q, q′}〉,A :{p,¬p}, C′ :{p→ q, p ↔ q′}〉. We now added also

p ↔ q′ to the set of constraints C. We can now also consider the

additional argument hybrid′ = 〈{p}, q′〉 for COMARG2 to be held

hybrid.

Observation 1 (Stronger, but less precise arguments.).

Intuitively, the argument hybrid in favor of q is stronger than

the argument hybrid′ in favor of q′ (see also our empirical

study in Section 4). Although both arguments have the same

support, {p}, the conclusion q of hybrid is compatible with

both states, s1 and s2 (it is certain in s2 and possible in s1), while

the conclusion q′ of hybrid′ is only compatible with s2. As

a consequence, q has at least the probability 0.7, while q′ has

precisely the probability 0.7.

In sum, it is intuitive to consider an argument a as at least as

strong as an argument b, in case both arguments have the same

support, but the conclusion of a is at least as probable as the

conclusion of b.

Let us analyse this observation in more formal terms. We write

s |HC 3φ iff s ∈ ‖⊤‖C \ ‖¬φ‖C . This means that φ is possible in

s in view of the constraints in C. Similarly, we write ‖3φ‖C for the

set of states ‖⊤‖C \ ‖¬φ‖C .

Fact 1. Let a ∈ Arg(K) and Con(a) ⊢C φ. Then (1) ‖Sup(a)‖C =
‖
∧

Sup(a)‖C ⊆ ‖Con(a)‖C ⊆ ‖φ‖C , and (2) ‖Con(a)‖C ⊆
‖3Con(a)‖C ⊆ ‖3φ‖C .

In our Example 5 we have the validities for the different states

shown in Table 3. Following Observation 1, hybrid = 〈{p}, q〉 is

stronger than hybrid′ = 〈{p}, q′〉. The reason seems to be that

despite having the same support, the “space of possibility” for q is

larger than the one for q′: {s1, s2} vs. {s2}. From the probabilistic

perspective, the support for p seems to be located in [0.7, 1] while

the one for q′ is exactly 0.7.

Following this rationale, the strength of the support of an

argument is measured relative to a lower and upper bound: the
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TABLE 3 Validities for Example 5.

State s s |H p s |HC′ q s |HC′ 3q s |HC′ q
′ s |HC′ 3q′

s1 X

s2 X X X X X

lower bound is the cautious measure of how probable the support is

in the worst case, the upper bound considers the best case scenario

in which states in which the conclusion holds have maximal

probability mass. As we will see, the central idea for modeling

argument strength in this paper is by means of functions that map

arguments to [0, 1] (their strength) by aggregating the worst and

best case support.

Before discussing two complications, we shortly summarize

the ideas so far. Arguments are support-conclusion pairs. When

considering the strength of an argument a = 〈Sup,φ〉 it is

advisable not only to consider the probabilistic strength of its

support Sup, but also to consider the probabilistic support for the

possibility of its conclusion3φ. A measure of argument strength is

expected to aggregate the two.

2.3. Imprecise probabilistic information

In many scenarios it will be advantageous or unavoidable to

work with families of probability functions, instead of a unique

probability function. These are cases in which the probabilistic

information concerning the probabilistic variables in Vp is

incomplete or it stems from various sources, each providing an

individual probability function. The following example falls in the

former category.

Example 6 (Three conferences). Peter and Mary are in the

steering committee of CONFB, CONFP, and CONFM. Their votes

have different weights for the decision making of the respective

committees. Both of their positive votes are sufficient but not

necessary for CONFB to be held hybrid. For CONFP the decision

relies entirely on Peter’s vote, and for CONFM it relies entirely on

Mary’s vote.

• If Peter votes hybrid, CONFB will be hybrid. p1 → q1
• If Mary votes hybrid, CONFB will be hybrid. p2 → q1
• CONFP will be hybrid if and only if Peter votes hybrid. p1 ↔

q2.

• CONFMwill be hybrid if and only if Mary votes hybrid. p2 ↔

q3.

• According to Peter, there is a 2/3 likelihood that he will vote

hybrid. P(p1) = 2/3

• According to Mary, she is at least as likely to vote hybrid as

Peter. P(p2) ≥ 2/3

(We lack more precise information.)

Altogether our knowledge base is given by K =

〈〈{p1, p2}, {q1, q2, q3}〉,A, C,P :{Pµ | µ ∈ [0, 1/3]}〉, where

A = sent(Vp) and C = {p1 → q1, p2 → q1, p1 ↔ q2, p2 ↔ q3}.

Moreover, in this case the probabilities for our defeasible

assumptions p1 and p2 are not precise. They are expressed by

means of a family of probability functions (see Table 4).5

Given an argument 〈Sup,φ〉, a cautious way to consider

the worst case probabilistic support is by considering

infP∈P(P(‖Sup‖C)). Following Haenni, we refer to this measure as

the degree of support of an argument. For the best case probabilistic

support, on the other hand, we consider supP∈P(P(‖3φ‖C)). We

refer to this measure as the degree of possibility of an argument.

An overview for the current example can be found in Table 5.

Before formally defining the two discussed measures, we have to

still consider one more complication, however, which will discuss

in the next section.

2.4. Updating the probabilities in view of
the constraints

Consider the following example:

Example 7 (Witnesses). 1. According to witness 1 p∧q is the case.

p1 → p ∧ q

2. According to witness 2 p ∧ ¬q is the case. p2 → p ∧ ¬q

3. Witness 1 tells the truth in 2/3 of cases. P(p1) = 2/3

4. Witness 2 tells the truth in 3/4 of cases. P(p2) = 3/4

We may model this scenario with the knowledge base K =

〈〈Vp :{p1, p2},Vl :{p, q}〉,A : sent(Vp), C :{p1 → p ∧ q, p2 → p ∧

¬q},P = {P}〉 where P assigns the probabilities as depicted in

Table 6.

In this case s4 is incompatible with the set of constraints C of

our knowledge in K and the probabilities have to be updated. We

followHaenni (2009) by using a Bayesian update on
∧

C and letting

PC(s) =
P(s)

P(‖C‖)
· P(‖C‖ | s) =

P(s)

P(‖⊤‖C)
·
P(‖s‖C)

P(s)
=

P(‖ŝ‖C)

P(‖⊤‖C)
.

(1)

Similarly, where P is a family of probability functions, we let PC =

{PC | P ∈ P}. When calculating the degrees of support and degrees

of possibility of an argument we will consider PC instead of P.

Definition 3 (Degree of Support and Degree of Possibility,

(Im)Precision). Given a knowledge base K = 〈A, C,P〉 and an

argument a = 〈Sup,φ〉 forK,

• The degree of support of a (in signs, dsp(a)) is given by

infPC∈PC (P
C(‖Sup‖)),

• The degree of possibility of a (in signs, dps(a)) is given by

supPC∈PC (P
C(‖3φ‖)),

• The imprecision of a (in signs, imprec(a)) is given by dps(a)−
dsp(a),

• The precision of a (in signs, prec(a)) is given by 1−imprec(a).

Fact 2. Let a, b ∈ Arg(K).

5 Here we assume probabilistic independence of p1 and p2. If this

assumption is given up we operate on the basis of P = {Pλ,µ | λ ∈ [0, 2/3],µ ∈

[2/3− λ, 1/3]} where Pλ,µ : s1 7→ 1/3− µ, s2 7→ µ, s3 7→ 2/3− λ, s4 7→ λ.
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TABLE 4 The state space and probabilities for Example 6, where µ ∈ [0, 1/3].

State p1 p2 Pµ Pµ=0 Pµ=1/3 q1 q2 q3

s1 0 0 1/3 · (1/3− µ) 1/9 0 3 0 0

s2 0 1 1/3 · (2/3+ µ) 2/9 1/3 1 0 1

s3 1 0 2/3 · (1/3− µ) 2/9 0 1 1 0

s4 1 1 2/3 · (2/3+ µ) 4/9 2/3 1 1 1

TABLE 5 The degrees of support and possibility for Example 6.

Argument Degree of support Degree of possibility Precision Imprecision

a1 = 〈p1 , q1〉
infµ∈[0,1/3](Pµ(‖p1‖)) =

inf({2/3}) = 2/3

supµ∈[0,1/3](Pµ(‖3q1‖)) =

sup({1}) = 1

2/3 1/3

a2 = 〈p2 , q1〉
infµ∈[0,1/3](Pµ(‖p2‖)) =

inf([2/3, 1]) = 2/3

supµ∈[0,1/3](Pµ(‖3q1)‖) =

sup({1}) = 1

2/3 1/3

a3 = 〈p1 ∨ p2 , q1〉
infµ∈[0,1/3](Pµ(‖p1 ∨ p2‖)) =

inf([8/9, 1]) = 8/9

supµ∈[0,1/3](Pµ(‖3q1)‖) =

sup({1}) = 1

8/9 1/9

b = 〈p1 , q2〉
infµ∈[0,1/3](Pµ(‖p1‖)) =

inf({2/3}) = 2/3

supµ∈[0,1/3](Pµ(‖3q2‖)) =

sup({2/3}) = 2/3

1 0

c = 〈p2 , q3〉
infµ∈[0,1/3](Pµ(‖p2‖)) =

inf([2/3, 1]) = 2/3

supµ∈[0,1/3](Pµ(‖3q3‖)) =

sup([2/3, 1]) = 1

2/3 1/3

TABLE 6 The states for Example 7.

State s p1 p2 P s ∈ ‖⊤‖C PC(s) s |HC p s |HC 3p

s1 0 0 1/12 X P(s1)/P({s1 ,s2 ,s3}) = 1/6 X

s2 0 1 1/4 X P(s2)/P({s1 ,s2 ,s3}) = 1/2 X X

s3 1 0 1/6 X P(s3)/P({s1 ,s2 ,s3}) = 1/3 X X

s4 1 1 1/2 P(∅)/P({s1 ,s2 ,s3}) = 0

The 5th column indicates which states are consistent with C (the only exception is state s4). The 6th column represents the updated probabilities for each state in accordance with Equation (1).

1. If Sup(a) ⊆ Sup(b) then dsp(a) ≥ dsp(b).
2. If {Con(a)} ⊢C Con(b) then dps(b) ≥ dps(a).

As discussed above, we expect a measure of argument strength

to aggregate the two measures of degree of support and degree of

possibility.

Definition 4 (Argument strength function). Let K = 〈A, C,P〉

be a knowledge base. A measure of argument strength for K is a

function str :Args(K) → [0, 1] that is associated with a function

π :2 → [0, 1] for which 2 = {(n,m) ∈ [0, 1]2 | n ≤ m} and

str(a) = π(dsp(a), dps(a)).

3. Argument selection

In this section, we consider the question of how to evaluate the

strength of arguments and how to select them for acceptance out

of a scenario of possibly conflicting arguments. The questions of

argument strength and of argument selection are connected: e.g., if

two arguments conflict, it is usually advisable to select the stronger

of the two. We will proceed in several steps.

1. We propose several notions of argument strength and study

their properties (Section 3.1).

2. In Section 3.2, we discuss two types of argumentative attacks:

rebuttals and undercuts. We show that both lead to suboptimal

outcomes when combined with Dung-style argumentation

semantics for selecting arguments in a naive way.

3. In Section 3.3, we propose a solution to the problem of argument

selection.

While this section is devoted to the theoretic foundations of

probabilistic argumentation, we will provide a small empirical

study to compare some of the proposed measures in Section 4.

3.1. Argument strength

As discussed above, we have two underlying measures which

can serve as input for a measure of argument strength: the degree of

support and the degree of possibility (recall Definition 4): str(a) =
π(dsp(a), dps(a)) where π :{(n,m) ∈ [0, 1]2 | n ≤ m} → [0, 1].

As for π there are various straight-forward options. We list a

few in Table 7. Support and possibility reflect the lower and upper
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probabilistic bounds represented by dsp and dps, while mean

represents their mean. Boosted support follows the idea underlying

Observation 1 according to which an argument c with dsp(c) <
dps(c) should get a “boost” as compared to an argument d for which

dsp(d) = dps(d) = dsp(c). The factor m ≥ 1 determines the

magnitude of the boost, the lower m the more the lower bound

dsp is boosted (where for m = 1 the boosted support is identical

to dps). Convex combination follows a similar idea by letting the

strength of an argument a be the result of a convex combination

of dsp(a) and dps(a), where the parameter α determines how

cautious an agent is: the higher α the less epistemic risk an agent

is willing to take (where for α = 1 the convex combination is

identical to dsp(a)). Precision mean is a qualification of mean in

that it also considers the precision of an argument as a marker

of strength (see Pfeifer, 2013). The precision of an argument a is

given by 1 − (dps(a) − dps(a)): the closer dsp(a) and dps(a) the
more precise is a. The precision mean of an argument is the result of

multiplying its meanwith its precision.We note that this measure is

in tension with the intuition behind Observation 1 in that it would

measure the strength of hybrid higher than that of hybrid′,

unlike boosted support or convex combination.

Clearly, some of the measures coincide for specific parameters

(the proof can be found in Appendix A):

Fact 3. 1. mean(a) = bst2(a) = convex.5(a)
2. dsp(a) = convex1(a) and dps(a) = convex0(a) = bst1(a)
3. bstm(a) = convex1−1/m(a) and convexα(a) = bst1/(1−α)(a)

(where α < 1).

Proof: Items 1 and 2 are trivial. We show Item 3. We have, on

the one hand, bstm(a) = dsp(a) + dps(a)−dsp(a)
m = dsp(a) −

dsp(a)
m +

dps(a)
m = (1 − 1/m) · dsp(a) + (1 − (1 − 1/m)) · dps(a) =

convex1−1/m(a). On the other hand, convexα(a) = α·dsp(a)+(1−
α)dps(a) = dsp(a)+dps(a)−dps(a) ·α−dsp(a)+dsp(a) ·α =
dsp(a)+ (dps(a)− dsp(a)) · (1− α) = bst1/(1−α)(a).

Example 8. In Table 8, we apply the different argument strength

measures to Examples 1 and 6.

We now analyse the different strength measures in view of

several properties, some of which may be considered desiderata.6

Table 9 offers an overview on which properties are satisfied for

which measures.

• Domain Restriction. str(a) ∈ [dsp(a), dps(a)]. In the

context of a given knowledge base, the degree of support

represents a cautious estimation of the probability of the

conclusion of a in view of its support, while the degree of

possibility represents the most optimistic (in that it considers

its possibility) estimation of its probability.

• Precision. If prec(a) = 1 then str(a) = dsp(a) =
dps(a). This is a special case of Domain Restriction for cases

in which the available information concerning a is precise.

6 The question of what properties are considered desired depends on

the applications: if the application is to obtain a predictive mode of

human reasoning these properties are in need of empirical verification (see

Section 4).

• Neutrality. str(a) = 0.5 if prec(a) = 0. If prec(a) = 0, we

have dsp(a) = 0 and dps(a) = 1. According to Neutrality we

treat such cases as flipping an unbiased coin.

• Moderation. str(a) ≤ mean(a). Moderation is a cautious

approach, putting more weight on the degree of support than

the degree of possibility.

The following properties specify various ways the degrees of

support and/or possibility are related to argument strength in

terms of offering sufficient resp. necessary conditions. For the

following properties let a ⊑ b iff dsp(a) ≤ dsp(b) and dps(a) ≤
dps(b). Let < be the strict version of ⊑, i.e., a < b iff a ⊑ b

and b 6⊑ a.

Fact 4. Let a, b be precise arguments (so, prec(a) = prec(b) = 1).

If Precision holds for str, then: str(a) ≤ str(b) iff a ⊑ b.

• Weak epistemic sufficiency. str(a) ≤ str(b) if a ⊑ b.

• Strict epistemic sufficiency. str(a) < str(b) if a <

b. Our Observation 1 follows the intuition of Strict epistemic

sufficiency. In Example 5 we have hybrid = hybrid′ and

therefore we expect also str(hybrid) > str(hybrid′).
• Epistemic risk aversion. dsp(a) ≤ dsp(b) if str(a) ≤

str(b). The criterion says that for b to be at least as strong

as a it also has to have an at least as strong degree of support.

The agent would take epistemic risk if it were to consider

an argument b stronger than a, although b has less degree of

support (but maybe more degree of possibility). The contrast

case is expressed next.7

• Epistemic risk tolerance. It is possible that str(a) ≤ str(b)
while dsp(a) > dsp(b).

• Upper compensation. str(a) > str(b) and mean(a) ≤
mean(b) implies dps(a) > dps(b). Choosing an argument a

over b despite the fact that b has at least as high mean has to be

compensated by a having a higher degree of possibility.

• Lower compensation. str(a) > str(b) and mean(a) ≤
mean(b) implies dsp(a) > dsp(b). Analogous to the

previous criterion, except that the compensation is in terms

of the degree of support.

The following criteria present various ways of considering

precision a sign of argument quality. For instance, Pfeifer (2013)

considers precision a central marker of strength.

• Precision sufficiency. If mean(a) = mean(b) and prec(a) ≥
prec(b) then str(a) ≥ str(b). If two arguments have the same

mean, the one with more precision is better. The rationale is

that the latter is supported by more informative evidence.

• Strict precision sufficiency. If mean(a) = mean(b) and
prec(a) > prec(b) then str(a) > str(b).

• Precision necessity. str(a) ≥ str(b) implies prec(a) ≥
prec(b). An argument can only be at least as good as another

one if its precision is at least as good.

7 We note that Epistemic risk aversion is not very suitable for strength

measures that linearly order arguments such as the ones studied in this paper.

Indeed, dsp is the only of our measures that satisfies it.
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TABLE 7 Various notions of argument strength expressed as function of the degree of support and the degree of possibility of an argument.

Name π :(x, y) 7→ . . . str(a) = π(dsp(a),dps(a)) = . . .

Support x dsp(a)

Possibility y dps(a)

Mean
x+y
2

mean(a) = dsp(a)+dps(a)
2

Boosted support x+
y−x
m

(m ≥ 1) bstm(a) = dsp(a)+ imprec(a)
m

Convex combination α · x+ (1− α) · y (α ∈ [0, 1]) convexα(a) = α · dsp(a)+ (1− α) · dps(a)

Precision mean
x+y
2
· (1− (y− x)) precMean(a) = mean(a) · prec(a)

TABLE 8 The strengths of arguments presented in Examples 5 and 6.

Example Argument dsp(a) dps(a) mean(a) bst3(a) resp. precMean(a)

convex2/3(a)

Example 5 wave 0.7 0.7 0.7 0.7 0.7

hybrid 0.7 1 0.85 0.8 0.595

hybrid′ 0.7 0.7 0.7 0.7 0.7

Example 6 a1 2/3 1 5/6 7/9 5/9

a2 2/3 1 5/6 7/9 5/9

a3 8/9 1 17/18 25/27 68/81

b 2/3 2/3 2/3 2/3 2/3

c 2/3 1 5/6 7/9 5/9

TABLE 9 Overview on the properties.

Property dsp(a) dps(a) mean(a) bstm(a) convexα(a) precMean(a)

Domain restriction⊤ ✓ ✓ ✓ ✓ ✓ ✗ [Example 10]

Precision⊤ ✓ ✓ ✓ ✓ ✓ ✓

Neutrality⊤ ✗ [Example 9] ✗ [Example 9] ✓ ✓ [m = 2] ✓ [α = 0.5] ✗

Moderation⊤ ✓ ✗ [Example 9] ✓ ✓ [m ≥ 2] ✓ [α ≥ 0.5] ✓

Weak ep. sufficiency♥ ✓ ✓ ✓ ✓ ✓ ✗ [Example 10]

Strict ep. sufficiency ✗ [Example 9] ✗ [Example 9] ✓⊤ ✗ [Example 9]◦ ✗ [Example 9]◦ ✗ [Example 10]

Ep. risk aversion ✓ ✗ [Example 12] ✗ [Example 12] ✗ [Example 12] ✗ [Example 12] ✗ [Example 12]

Ep. risk tolerance ✗ ✓ [Example 12] ✓ [Example 12] ✓ [Example 12] ✓ [α < 1] ✓

Upper compensation• ✗ [Example 9] ✓ ✓⊤ ✓ ✓[α < 1] ✗ [Example 10]

Lower compensation♠ ✓ ✗ [Example 9] ✓ ✓ [m ≥ 2] ✓ [α ≥ 0.5] ✗ [Example 10]

Precision sufficiency† ✓ ✗ [Example 9] ✓ ✓ [m ≥ 2] ✓ [α ≤ 0.5] ✓

Str. prec. sufficiency† ✓ ✗ [Example 9] ✗ [Example 9] ✓ [m > 2] ✓ [α < 0.5] ✓

Precision necessity ✗ [Example 9] ✗ [Example 9] ✗ [Example 9] ✗ [Example 9]◦ ✗ [Example 9]◦ ✗ [Example 10]

Precision compensation ✓ [Proposition 4] ✗ [Example 9] ✓⊤ ✗ [Example 9]◦ ✗ [Example 9]◦ ✓ [Proposition 4]

Counter‡ ✓ ✓ ✓ ✓ ✓ ✓

R-Weakening⋆ ✓ ✓ ✓ ✓ ✓ ✗ [Example 10]

L-Weakening⋆ ✓ ✓ ✓ ✓ ✓ ✓

(⊤) The proofs of these properties are trivial and therefore omitted. (♥) shown in Proposition 2. (♠) shown in Proposition 6. (†) shown in Proposition 3. (‡) shown in Proposition 7. (⋆)

shown in Proposition 8. (•) shown in Proposition 5. (◦) The counter-examples for dsp and mean apply in view of Fact 3. Proposition 2–8 and their proofs are presented in Appendix A

(Supplementary material).

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2023.1133998
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Straßer and Michajlova 10.3389/frai.2023.1133998

• Precision compensation. str(a) > str(b) and mean(a) ≤
mean(b) implies prec(a) > prec(b). Choosing an argument

a over b despite the fact that b has at least as high mean, has to

be compensated by a having a higher precision.

Finally, we offer some criteria that relate arguments to other

arguments in a logical way.

• Counter. If infP∈P(P(‖Con(a)‖C)) = 0 and Con(b) =
¬Con(a), then str(b) ≥ str(a). If the conclusion of a has no

probabilistic support in the knowledge base and b concludes

the opposite, then b is at least as good as a.

• R-Weakening. If Sup(a) = Sup(b) and Con(a) ⊢C Con(b)
then str(b) ≥ str(a). For two arguments with the same

support the one with the logically weaker conclusion is at least

as strong as the other argument. Clearly, its conclusion is more

cautious.

• L-Weakening. If Sup(a) ⊇ Sup(b) and Con(a) = Con(b)
then str(a) ≤ str(b). For two arguments with the same

conclusions the argument which has more support is at most

as strong as the other argument.

Before studying these properties for our different notions of

argument strength, we observe some logical relations between some

of them.

Proposition 1. For any argument strength measure str we have:

1. If str satisfies Domain restriction then it satisfies Precision.

2. If str satisfies Weak epistemic sufficiency, then it also satisfies

R-weakening and L-weakening.

Proof: Ad 1. Trivial. Ad 2. Concerning R-weakening and L-

weakening, observe that if a and b fulfill the requirements of the

left hand side of R-weakening resp. of L-weakening, then b ⊒ a. So,

by Weak epistemic sufficiency, str(a) ≤ str(b).

Example 9 (Violation of properties for dsp, dps and mean.). An

argument a with prec(a) = 0 is such that dsp(a) = 0 and

dps(a) = 1. Clearly, neutrality is violated for dsp and dps. Such
an argument also violatesmoderation for dps.

To illustrate other violations we give an

example similar to Example 6. Let K =

〈〈Vp :{p1, p2},Vl :{q1, q2, q3, q4}〉,A : sent(Vp), C :{(p1 ∧ p2 ↔

q1),¬(p1 ∨ p2) → q2, p1 → q4},P :{P}〉 with the probabilities

as in Table 10. We note that mean(a1) > mean(a2)
[resp. dsp(a1) > dsp(a2)] while dps(a2) > dps(a1)
illustrating a violation of lower compensation for dps. Since

prec(a2) = 0.1 < 1 = prec(a1) this also gives a counter-example

for precision compensation and necessity, for dps. For a counter-

example for upper compensation and dsp consider arguments

a3 and a5: dsp(a3) < dsp(a5) and mean(a5) ≤ mean(a3),
while dps(a5) < dps(a3). A counter-example for strict epistemic

sufficiency and dps is given in view of dps(a2) 6> dps(a3), although
a3 < a2.

Strict epistemic sufficiency and precision necessity for dsp is

violated in view of hybrid and hybrid′ in Example 5, where

dsp(hybrid) = dsp(hybrid′) while hybrid = hybrid′ and

prec(hybrid) < prec(hybrid′).

Consider K = 〈A :{p}, C : ∅,P :{P}〉 where P(p) = 0.5 and the

arguments a :〈{p}, p〉 and b :〈∅,⊤〉. Then dsp(a) = 0.5 = dps(a) =
mean(a) and prec(a) = 1, while dsp(b) = 0, dps(b) = 1,

mean(b) = 0.5 and prec(b) = 0. The example represents a

counter-example for (i) precision necessity for str ∈ {dps,mean},
(ii) strict precision sufficiency for str ∈ {dps,mean} and (iii)

precision sufficiency for dps.

Example 10 (Violation of properties for precision mean.). In

Table 8, we have dsp(hybrid) = 0.7, dps(hybrid) = 1,

while precMean(hybrid) = 0.595 (see Table 8). This shows that

precMean does not satisfy domain restriction. Note that wave ⊑

hybrid and precMean(wave) = 0.7. So, we also have a counter-

example for weak and strict epistemic sufficiency, as well as for

R-weakening.

We consider the knowledge base K =

〈〈Vp :{p1, p2},Vl :{q1, q2, q3, q4}〉,A : sent(Vp), C :{¬(p1 ∨ p2) →

q1, (¬p2∨p1)→ q2,¬p2 → q3, (p1∧p2)→ ¬(q3∨q4),¬p1∧p2 →

q4,¬(p1 ∨ p2) → ¬q4},P :{P}〉 with the probabilities and

arguments in Table 11. For a counter-example for upper

(resp. lower) compensation consider a1 and a2 (resp. a3).

The arguments a3 and a5 also provide a counter-example for

precision necessity since precMean(a3) > precMean(a5) while
prec(a5) = 0.75 > prec(a3) = 0.6.

Example 11 (Violation of lower compensation, Boosted support,

and Convex combination). In the knowledge base of Table 11 we

have a counter-example for lower compensation and bstm for m =

1.5. Note that bstm(a2) > bstm(a4) and mean(a2) ≤ mean(a4)
while dsp(a4) > dsp(a2). In view of Fact 3 the example applies

equally to convexα for α = 1/3.

Example 12 (Epistemic Risk Tolerance). We note that, in the

example of Table 11, dps(a2) > dps(a1) [resp. mean(a2) >

mean(a1)] (resp. bst1.5(a2) > bst1.5(a1)), while dsp(a2) <

dsp(a1), demonstrating epistemic risk tolerance for dps [resp for

mean] (resp. for bst1.5 and convex2/3). For precMeanwe consider

arguments a1 and a3.

3.2. Naively applying argumentation
semantics

Argumentation semantics aim at providing a rationale for

selecting arguments for acceptance in discursive situations in

which arguments and counter-arguments are exchanged. Some

requirements are, for instance, that a selection does not contain

conflicting arguments, or that a selection is such that any counter-

argument to one of its arguments is attacked by some argument

in the selection. In this section, we will gradually introduce new

notions and observations based on a list of problems. Ultimately

the critical discussion will lead to an improved account to be

introduced in Section 3.3. In order to define argumentation

semantics we first need a notion of argumentative defeat.

Definition 5 (defeat types). Let K be a knowledge base, str a

strength measure, and a, b ∈ Arg(K).

rebuttal: a rebuts b if (1) str(a) ≥ str(b) and (2) Con(a) ⊢C
¬Con(b).
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TABLE 10 Arguments and state space for the knowledge base K = 〈〈Vp :{p1,p2},Vl :{q1,q2,q3,q4}〉,A : sent(Vp), C :{(p1 ∧ p2 ↔ q1),¬(p1 ∨ p2) → q2,

p1 → q4},P :{P}〉, Example 9.

State p1 p2 P q1 q2 q3 q4 Argument dsp dps mean precMean

s1 0 0 0.1 0 1 3 3 a1 :〈{p1 ∧ p2}, q1〉 0.7 0.7 0.7 0.7

s2 0 1 0.1 0 3 3 3 a2 :〈{¬(p1 ∨ p2)}, q2〉 0.1 1 0.55 0.055

s3 1 0 0.1 0 3 3 1 a3 :〈∅, q3〉 0 1 0.5 0

s4 1 1 0.7 1 3 3 1 a4 :〈{p1}, q4〉 0.8 1 0.9 0.72

a5 :〈{¬(p1 ∧ p2)},¬q1〉 0.3 0.3 0.3 0.3

TABLE 11 Arguments and the state space for K = 〈〈Vp :{p1,p2},Vl :{q1,q2,q3,q4}〉,A : sent(Vp),C :{¬(p1 ∨ p2) → q1, (¬p2 ∨ p1) → q2,¬p2 →

q3, (p1 ∧ p2) → ¬(q3 ∨ q4),¬p1 ∧ p2 → q4,¬(p1 ∨ p2) → ¬q4},P :{P}〉 (see Example 10).

p1 p2 P q1 q2 q3 q4 Argument dsp dps mean precMeanbst1.5 bst2.5

s1 0 0 0.1 1 1 1 0 a1 :〈{p1}, p1〉 0.5 0.5 0.5 0.5 0.5 0.5

s2 0 1 0.4 3 3 3 1 a2 :〈{¬(p1 ∨ p2)}, q1〉 0.1 1 0.55 0.055 0.7 0.46

s3 1 0 0.25 3 1 1 3 a3 :〈{¬p2 ∨ p1}, q2〉 0.6 1 0.8 0.48 0.867 0.76

s4 1 1 0.25 3 1 0 0 a4 :〈{¬p2}, q3〉 0.35 0.75 0.55 0.33 0.62 0.51

a5 :〈{¬p1 ∧ p2}, q4〉 0.4 0.65 0.525 0.394 0.567 0.5

undercut: a undercuts b if (1) str(a) ≥ str(b) and (2)Con(a) ⊢C
¬

∧
Sup′ for ∅ 6= Sup′ ⊆ Sup(b).

undercut′: a undercuts′ b if (1) str(a) ≥ str(@(Sup(b))),
where @(Sup(b)) = 〈Sup(b),

∧
Sup(b)〉, and (2) Con(a) ⊢C

¬
∧

Sup′ for ∅ 6= Sup′ ⊆ Sup(b).

Lemma 1. Suppose Weak Epistemic Sufficiency holds for str. Let
a, b ∈ Arg(K).

1. If Con(a) ⊢C Con(b) and Sup(a) = Sup(b) then str(a) ≤
str(b).

2. str(@(Sup(a))) ≤ str(a).
3. If Sup(a) ⊆ Sup(b) then str(@(Sup(a))) ≥ str(@(Sup(b))).
4. If a undercuts b, a also undercuts′ b.

Proof: Ad 1. Suppose Con(a) ⊢C Con(b) and Sup(a) =
Sup(b). By Fact 2, dsp(a) = dsp(b) and dps(b) ≥ dps(a).
By Weak Epistemic Sufficiency, str(a) ≤ str(b). Ad 2. This

is a special case of item 1 since Sup(a) = Sup(@(Sup(a)))
and Con(@(Sup(a))) ⊢C Con(a). Ad 3. In this case

Con(@(Sup(b))) ⊢C Con(@(Sup(a))). By Fact 2, dps(a) ≥
dps(b) and dsp(a) ≥ dsp(b). By Weak Epistemic Sufficiency,

str(@(Sup(a))) ≥ str(@(Sup(b))). Ad 4. Suppose a undercuts b.

In order to show that a undercuts′ b we only have to show that

str(a) ≥ str(@(Sup(b))). Since str(a) ≥ str(b) this follows with
Item 2.

We are now in a position to define argumentation frameworks

and subsequently argumentation semantics.

Definition 6 (AF). An argumentation framework based on a

knowledge base K is a pair 〈Arg(K), def〉 where def is a (non-

empty) set of defeat-types (as in Definition 5) for a given measure

of argument strength str.

3.2.1. Problem 1. Reinstatement and threshold
selections

When selecting arguments for acceptance one may follow a

naive “threshold-strategy” according to which one sets a threshold

τ , say τ = 0.55, and simply selects all arguments which are

stronger than τ (e.g., according to their degree of support, or

another argument strengthmeasure).8 This strategy, however, leads

to various kinds of problems. One, illustrated in Example 16 below,

is that following this strategy one may be left of with arguments

whose conclusions form an inconsistent set. In this sense, the

strategy selects too many arguments. On the other hand, this

strategy does not validate a central principle from argumentation

theory: reinstatement. It states that an argument which is defended

by a set of accepted arguments, should also be accepted.

Example 13 (Reinstatement). Consider the following knowledge

base:K = 〈〈Vp :{w1,w2,w3},Vl :{scene,home,pub, . . .}〉,A :

{w1,w2,w3}, C :{w1 → home,w2 → scene,w3 →

pub,¬(scene ∧ home),¬(scene ∧ pub),pub →

home},P :{P}〉. In our scenario we have 3 witnesses. Witness

1 states, among other things, that Mr. X was in his home town at

the time of the murder (w1 → home), witness 2 states that Mr. X

was at the scene of the murder (w2 → scene), and witness 3 that

he was at the pub (w3 → pub). Mr. X cannot be both at the scene

and in his home town. Also, the pub is located in Mr. X’s home

town. Witness 1 has a reliability of 0.82 (e.g., we estimate that she

tells the truth in 82/100 cases), witness 2 of 0.91 and witness 3 of 0.6.

After correcting the probabilities according to the states consistent

with C (see Section 2.4) we obtain the ones listed in Table 12. There,

we also state three key arguments a1, a2 and a3, their strength and

the argumentation framework based on str = mean and rebuttal.

8 For instance, Hunter (2013) uses a threshold of 0.5 to define his epistemic

extensions.
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TABLE 12 State space, probabilities, and arguments for Example 13.

State w1 w2 w3 P(si) PC(si) home scene pub Argument [dsp,dps] mean

s1 0 0 0 0.18 · 0.09 · 0.4 0.044 3 3 3 a1 [0.506, 0.551] 0.528

s2 0 1 0 0.18 · 0.91 · 0.4 0.449 0 1 0 a2 [0.449, 0.494] 0.472

s3 1 0 0 0.82 · 0.09 · 0.4 0.202 1 0 3 a3 [0.304, 0.551] 0.427

s4 1 0 1 0.82 · 0.09 · 0.6 0.304 1 0 1

AF a1 → a2 → a3

We omit states that are incompatible with C. We calculate PC (si) by P(si)/e where e = P(‖⊤‖C ) =
∑4

i=1 P(si) = 0.146 (see Section 2.4). We have the arguments a1 :〈{w1},pub〉,

a2 :〈{w2},scene〉 and a3 :〈{w3},home〉. The argumentation framework on the right (bottom) is based on rebuttal and str = mean.

The strongest argument a1 is in favor of Mr. X being in

his home town, which would clear Mr. X from suspicion. If we

subscribe to this argument, however, the argument a3 for him being

in the pub becomes quite reasonable, since its only attacker a2 (him

being at the scene) is refuted. If we put ourselves in the investigative

spirit of a detective working the case, it seems reasonable to select

arguments a1 and a3 to form an investigative and/or explanatory

hypothesis (despite the strength of a3 being below a threshold such

as 0.5, both in terms of its degree of support or mean value).

This hypothesis, may then lead us to the decision to investigate

the question whether he was at the pub further in order to either

substantiate or refute our stance.

Observation 2 (Reinstatement). Argumentative reinstatement

is not validated in naive threshold-based approaches for

selecting arguments. This motivates other types of selections,

since in specific reasoning scenarios, such as the formation

of explanatory hypothesis, reinstatement is a reasonable

argumentative principle.

Since threshold-based selection does not allow for

reinstatement we will also study other selection types, in particular

those introduced by Dung (1995) for abstract argumentation.

Definition 7 (Argumentation Semantics, Dung, 1995). Given an

AF = 〈Arg(K),Def〉 and a set of arguments E ⊆ Arg(K) we

define

• E is conflict-free iff (E × E) ∩ Def = ∅.
• E defends some a ∈ Arg(K) iff for every defeater b of a there is

a c ∈ E that defeats b.

• E is admissible iff E is conflict-free and it defends every a ∈ E .

• E is complete iff E is admissible and it contains every a ∈

Arg(K) it defends.

• E is grounded iff it is the unique ⊆-minimal complete

extension.

• E is α-accepted in case E = {a ∈ Arg(K) | str(a) > α} (where

α ∈ [0, 1], typically α = 0.5).

• E is preferred iff E is a⊆-maximal complete extension.

• E is stable iff E is conflict-free and E ∩ Arg(K) defeats every

a ∈ Arg(K) \ E .

In the remainder of this section we show that naively applying

these semantics to AFs leads to various problems. In the next

section we present an alternative approach to resolve (some of)

these issues.

Let us first highlight differences between the two types of defeat,

rebut and undercut.

3.2.2. Selecting arguments with inconsistent
support with some semantics
Example 14 (The possibility of inconsistent supports.). This

example is similar to Example 3, where K = 〈A :{p,¬p}, C :{p →

q},P :{P}〉, except for the probability function P which is adjusted

as described in Table 13 (left). On the right hand of the figure we

describe the arguments and their respective strengths. It seems clear

that the argument ap in favor of¬p is preferable to the argument ap
in favor of p, given that P(‖¬p‖) = 4/7 > 3/7 = P(‖p‖). What

about aq in favor of q, though? On the one hand, it is based on the

assumption p, since only if p we know for certain that q. On the

other hand, it comes with HOU, since for the case¬pwe are under-

informed about q: q is possible (and so is¬q). Thus, q seems to have

more in its favor than ¬q and a reasoner committing to q seems

not irrational, possibly even so when also selecting ap and therefore

committing to¬p. Note that such a reasoner will not be committed

to an inconsistent set of arguments (since {¬p, q} is consistent). In

the following, we will show how some attack types support this kind

of selections, while others do not.

Observation 3 (Possibility of inconsistent supports.). In

probabilistic argumentation, when situations of HOU arise,

we can rationalize selections of arguments with mutually

inconsistent supports (but consistent conclusions).

It should be mentioned, though, that this observation is

normatively cautious. We do not claim that from a normative

philosophical perspective such selections are permissible (although

they may be), we merely claim that agents are in a position to

rationalize such selections. A formal framework modeling such

selections is therefore at least attractive from a descriptive cognitive

perspective (but possibly also from a normative philosophical

perspective).

Let us now consider the different defeat-types in combination

with our various argument strength measures, in order to see

how they model the example. The underlying argumentation

frameworks are illustrated in Table 13 (right, bottom).

Rebut. The argumentation framework based on rebut is in

conformity with the rationale underlying Observation 3. Despite
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TABLE 13 The state space, probabilities (left), arguments, and argumentation frameworks for di�erent attack forms (right), Example 14 for

K = 〈A :{p,¬p},C :{p → q},P :{P}〉.

State p q P

s1 1 1 3/7

s2 0 3 4/7

bstm<4(a) bstm>4(a)

Argument Mean(a) (= convexα<2/3) (= convexα>2/3)

ap :〈{p}, p〉 3/7 3/7 3/7

ap :〈{¬p},¬p〉 4/7 4/7 4/7

aq = 〈{p}, q〉 5/7 > 4/7 < 4/7

ap∨q :〈{p}, p ∨ ¬q〉 5/7 > 4/7 < 4/7

ap∨q :〈{p}, p ∨ q〉 5/7 > 4/7 < 4/7

rebut ap ← ap aq ap ← ap aq ap ← ap aq

undercut ap ← ap aq ap ← ap aq ap ← ap → aq

undercut′ ap ← ap → aq ap ← ap → aq ap ← ap → aq

the fact that aq is based on the support p and ap attacks ap, ap, and

aq are selected.

Undercut. In case str(aq) > str(ap) (e.g., where str = mean
or str = bstm withm < 4, see Table 13), the latter is not sufficiently

strong to defeat aq leading to a selection analogous to the one based

on rebut. Conceptually, however, undercut creates a tension in this

and similar examples. While the rationale underlying undercut is

that arguments with inconsistent supports should not both end up

in the same selection, in our example they do since ap is not strong

enough to undercut aq (while condition (2) of Definition 5 is met,

condition (1) is not, which renders undercut unsuccessful in this

case). This incoherence is resolved with our variant undercut′.

Undercut′. In contrast to undercut, for undercut′ for ap to

attack aq it merely needs to be at least as strong as ap. Therefore, in

all scenarios the attack is successfull (see right column in Table 13).

Therefore, undercut′ does not allow for a selection of arguments

with mutually inconsistent supports (We prove this impossibility

in Section 3.4 after solving some other problems.).

3.2.3. Problem 2: selecting arguments with
inconsistent conclusions with rebut

When only working with rebut, we run into problems with

inconsistent arguments, as the following example shows.

Example 15 (Inconsistent conclusions with rebut.). ConsiderK =

〈〈Vp :{p},Vl :{q}〉,A :{p,¬p}, C : ∅,P :{P}〉 where P(p) = 0.5. We

have, for instance, the following arguments: a⊤ = 〈∅,¬(p ∧

¬p)〉, ap = 〈{p}, p〉, ap = 〈{¬p},¬p〉, aq = 〈{p,¬p}, q〉 and

aq = 〈{p,¬p},¬q〉. In an approach based on rebut, we get, for

instance, a complete extension E containing the arguments a⊤,

ap and aq. The latter argument, or any argument for q based on

K, is problematic in that it is based on an inconsistent support.

Rebut does not effectively filter out such arguments. We also

note that [dsp(a⊤), dps(a⊤)] = {1} while [dsp(aq), dps(aq)] =
[0, 1] = [dsp(aq), dps(aq)]. So, for any strength measure

respecting Domain Restriction, str(a⊤) ≥ str(aq) = str(aq) and
so a⊤ undercuts aq and aq. This shows that with undercut-based

attacks inconsistent arguments are “automatically” filtered out.

In order to deal with the problem of inconsistent arguments

when using rebuts, we can either manually sort out inconsistent

arguments (as proposed in Wu and Podlaszewski, 2014), or use

inconsistency-undercuts (as proposed in Arieli and Straßer, 2020)

in addition to rebuts.

Inconsistency Undercut. Where a, b ∈ Arg(K), Sup(b) ⊢C ⊥,
a = 〈∅,¬

∧
Sup(b)〉 inconsistency-undercuts b.

Lemma 2. Let str satisfy Domain restriction. If a inconsistency

undercuts b, then (i) a undercuts [resp. undercuts′] b, (ii) str(a) =
1, and (iii) there is no argument that defeats a (according to rebut,

undercut, undercut′, or inconsistency undercut).

Proof: Suppose a inconsistency undercuts b. Since Sup(a) =
∅, by Domain restriction, str(a) = dsp(a) = dps(a) =
infP∈P P(‖⊤‖C) = supP∈P P(‖⊤‖C) = 1. This is (ii). For (i) it is

sufficient to show that str(a) ≥ str(b). This follows trivially from

(ii). For (iii) assume toward a contradiction that some c defeats

a. Since Sup(a) = ∅, this cannot be an undercut, undercut′,

or inconsistency undercut. Suppose c rebuts a. So, Con(c) ⊢C∧
Sup(b) and therefore Con(a) ⊢C ¬Con(c). Moreover, ∅ ⊢C

¬Sup(c). So, dsp(c) = dps(c) = 0 since ‖Sup(c)‖C =

‖3Con(c)‖C = ∅. Therefore, str(c) < str(a), a contradiction.

3.2.4. Problem 3: (n>2)-conflicts and selecting
arguments with inconsistent conclusions

The following example illustrates that even in scenarios with

exclusively precise probabilities (so, all arguments have precision

1) all discussed types of attack lead to problems.

Example 16 ((n>2)-conflicts and inconsistent selections.). Let

K = 〈〈Vp :{p1, p2},Vl : ∅〉,A :℘(Ŵ) \ Ŵ, C : ∅,P :{P}〉 where Ŵ =

{p1, p2,¬(p1 ∧ p2)}, P is given in Table 14 (right). There we also list

arguments (left) with their corresponding strengths and an excerpt

of the underlying argumentation framework (center), relative to

any of the defeat-types, rebut, undercut and undercut′. As the

reader can easily verify, there is a complete extension (highlighted)

containing a1, a2, and an. The problem with this selection is that it

contains inconsistent conclusions, namely p1, p2, and ¬(p1 ∧ p2).

The same problem occurs with α-selections for, e.g., α ≤ 0.54.
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TABLE 14 The state space, probabilities (right), arguments and argumentation framework (left) for K = 〈〈Vp :{p1,p2},Vl : ∅〉,A :℘(Ŵ) \ Ŵ,C : ∅,P :{P}〉,

Ŵ = {p1,p2,¬(p1 ∧ p2)}, and any of the defined strength measures str, Example 16.

Argument str Attack diagram

a1 = 〈{p1}, p1〉 0.55 0.55

a2 = 〈{p2}, p2〉 0.55 0.55 a1 an a2

an = 〈{¬(p1 ∧ p2)},¬(p1 ∧ p2)〉 0.85 0.85 ↓ ↓ ↓

ab = 〈{p1 , p2}, p1 ∧ p2〉 0.15 0.15 a1 ab a2

a1 = 〈{p2 ,¬(p1 ∧ p2)},¬p1〉 0.40 0.425

a2 = 〈{p1 ,¬(p1 ∧ p2)},¬p2〉 0.40 0.425

State p1 p2 P

s1 0 0 0.05

s2 0 1 0.40

s3 1 0 0.40

s4 1 1 0.15

In simple scenarios such as the one above, one may reasonably

expect a reasoner to make a consistent selection of arguments.9

Observation 4 (Inconsistency with regular AFs). Naively

applying argumentation semantics in the context of

probabilistic argumentationmay lead to inconsistent selections,

even for simple scenarios only including two probabilistic

variables and no higher-order uncertainties. We consider this

a serious problem, which we try to accommodate in the next

section.

3.3. Using hyper-arguments: a refined
method for argument selection

Given a knowledge basedK, in order to enforce the consistency

of the set of conclusion of a given complete extension we will make

use of what we call hyper-arguments (collected in the set HArg(K),

see Definition 8 below), i.e., arguments written as [a1, . . . , an]

(where a1, . . . , an ∈ Arg(K)). Hyper-arguments express the

idea that if one were to accept each a1, . . . , an then one cannot

accept a regular argument b ∈ Arg(K) for which {a1, . . . , an, b}

is conflicting. For this a specific type of hyper-argument based

defeat, so-called h-defeats, are introduced. From the argumentation

theoretic perspective hyper-defeats express themeta-argumentative

consideration that a reasoner should not commit to an inconsistent

set of arguments. Therefore, hyper-arguments do not contribute to

the content-level of a discussion, but rather they express constraints

on argument selection.

In the following, we will make this idea formally precise,

illustrate it with examples and study meta-theoretic properties in

9 However, there may be limitations to the requirement of consistency.

As is well-known from cases such as the lottery paradox (Kyburg, 1961) or

the preface paradox (Makinson, 1965), complex scenarios may give rise to

inconsistent belief states, possibly even for rational reasoners. Although this

is, as the reader may expect, a deep philosophical problem, see Douven

and Williamson (2006) for a critical discussion. Clearly, though, in the simple

examples included in our paper it should be considered irrational to hold

inconsistent beliefs andwe also don’t expect it to be descriptionally adequate.

A discussion of the mentioned paradoxical scenarios in the context of the

formalism presented in this paper is left for future occasions.

Section 3.4. As we will see, working both with normal and hyper-

arguments, as well as both with h-defeats and defeats, suffices

to ensure the consistency of the set of conclusions of complete

extensions (and some other properties) and therefore avoids the

problem pointed out in Observation 4.

Definition 8 (Hyper-arguments.). Given a knowledge base K and

a1, . . . , an ∈ Arg(K), [a1, . . . , an] is a hyper-argument (based

on K). We call a1, . . . , an the components of [a1, . . . , an]. We

let Sup([a1, . . . , an]) =
⋃n

i=1 Sup(ai) and Con([a1, . . . , an]) =∧n
i=1 Con(ai). We denote by HArg(K) the set of all hyper-

arguments a based onK.

In the following we will use the convention to use sub-scripted

variables ai, bi, etc. for regular arguments (in Arg(K)) and non-

subscripted variables a, b, etc. for both regular arguments and

hyper-arguments. We use ‘argument’ as a generic term covering

both regular and hyper-arguments.

Attacks are generalized to the level of hyper-arguments

by letting, for instance, [a1, . . . , an] h-rebut b in case

Con([a1, . . . , an]) ⊢C ¬Con(b). A hyper-argument is defeated

resp. h-defeated by another regular argument resp. hyper-argument

if one of its component arguments ai is defeated resp. h-defeated

(see Definition 9 below). While defeat is a relation on the domain

Arg(K) × (Arg(K) ∪ HArg(K)), h-defeat is a relation on the

domain HArg(K)× (HArg(K) ∪ Arg(K)).

Definition 9 (h-defeat.). Let K be a knowledge base. h-defeats

define a relation on HArg(K) × (Arg(K) ∪ HArg(K)). Let a =

[a1, . . . , an], b = [b1, . . . , bm] ∈ HArg(K) and c ∈ Arg(K).

• a h-rebuts c iff Con(a) ⊢C ¬Con(c).
• a h-rebuts b iff there is an i ∈ {1, . . . ,m} for which a h-rebuts

bi.

• a h-undercuts c iff Con(a) ⊢C ¬
∧

Sup(c).
• a h-undercuts b iff for some i ∈ {1, . . . ,m}, a h-undercuts bi.

Note that unlike regular defeats, h-defeats do not consider

argument strength. The reason is that h-defeats encode meta-

argumentative considerations concerning the consistency of

selections of arguments. For such considerations, argument

strength is of no concern.

Definition 10 (Regular defeats). Let K be a knowledge base.

Defeats define a relation on Arg(K) × (Arg(K) ∪ HArg(K)) where

the part on Arg(K) × Arg(K) is defined as in Definition 5, and
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TABLE 15 A list of argumentation properties.

Property Definition

Component closure [a1 , . . . , an] ∈ E iff a1 , . . . , an ∈ E .

Direct consistency If a1 , a2 ∈ E then Con(a1),Con(a2) 0C ⊥.

Indirect consistency If a1 , . . . , an ∈ E then

Con(a1), . . . ,Con(an) 0C ⊥.

Weakening If a1 ∈ E and Con(a1) ⊢C φ then also

〈Sup(a1),φ〉 ∈ E .

Support consistency If a1 , . . . , an ∈ E then
⋃n

i=1 Sup(ai) 0C ⊥.

Dir. support closure If a1 ∈ E then for every a2 for which

Sup(a2) ⊆ Sup(a1), a2 ∈ E .

Ind. support closure If a1 , . . . , an ∈ E and b1 ∈ Arg(AF) is
s. t. Sup(b1) ⊆

⋃n
i=1 Sup(ai), then b1 ∈ E .

Logical closure If a1 , . . . , an ∈ E , 〈
⋃n

i=1 Sup(ai),φ〉 ∈ E for all φ

for which
⋃n

i=1 Sup(ai) ⊢C φ.

A property P in the left column of the table holds for an argumentation semantics sem in

case for every (hyper) argumentation framework AF and every sem-extension of AF the

right column holds.

some a ∈ Arg(K) rebuts [resp. undercuts, undercuts′] some b =

[b1, . . . , bn] ∈ HArg(K) iff a rebuts [resp. undercuts, undercuts′]

some component bi of b.

Fact 5. Let K be a knowledge base, a ∈ Arg(K) ∪ HArg(K)

and b ∈ HArg(K). a defeats [resp. h-defeats] b (according to

rebut, undercut, undercut′ and consistency undercut) iff a defeats

[resp. h-defeats] some component bi of b.

Having defined regular and hyper-arguments and different

notions of defeat among them, we are now in a position to

generalize our notion of argumentation frameworks to include

hyper-arguments.

Definition 11 (Hyper AF, h-AF). A hyper-argumentation

framework based on a knowledge base K is a pair

〈〈Arg(K),HArg(K)), 〈Def,Hdef〉〉 where Def is a relation of

regular defeat and Hdef a relation of hyper-defeat based on rebut

and/or undercut and/or undercut′ and/or inconsistency undercut.

In the remainder, we consider three types of frameworks:

(1) rebut-based h-AFs, where Def = {rebut, cons.undercut} and
Hdef = {h-rebut}

(2) undercut-based h-AFs, where Def = {undercut} and Hdef =
{h-undercut}

(3) undercut′-based h-AFs, where Def = {undercut′} and Hdef =
{h-undercut}

Argumentation semantics are adjusted to the case with hyper-

arguments as expected. We only need to adjust the notion of

defense: defeats need to be counter-defeated, while h-defeats need

to be counter-h-defeated.

Definition 12 (Argumentation Semantics). Given an h-AF AF =

〈〈Arg(K),HArg(K)〉, 〈Def,Hdef〉〉 and a set of arguments E ⊆

Arg(K) ∪ HArg(K) we say

• E is conflict-free iff (E × E) ∩ (Def ∪ Hdef) = ∅.

• E defends some a ∈ Arg(K) ∪ HArg(K) iff for every defeater

[resp. h-defeater] b of a there is a c ∈ E that defeats [resp. h-

defeats] b.

• E is admissible iff E is conflict-free and it defends every a ∈ E .

• E is complete iff E is admissible and it contains every a ∈

Arg(K) ∪ HArg(K) it defends.

• E is preferred iff E is a⊆-maximal complete extension.

• E is stable iff E is conflict-free and E ∩ Arg(K) defeats every

a ∈ Arg(K) \ E .

Our definition requires that only h-defeats can defend from h-

defeats. In Appendix C.1 (Supplementary material), we show that

allowing regular defeats to defend from h-defeats leads to the same

complete extensions (see Preposition 18).

Example 17. Let K = 〈A :{p,¬p}, C : ∅,P :{P}〉 where P(‖p‖) =

0.6 (and P(‖¬p‖) = 0.4). Let ap = 〈{p}, p〉, ap = 〈{¬p},¬p〉.

Let defeat be rebut (or undercut). In Figure 2 (left), we see an

excerpt of an hyper-argumentation framework based on K. With

the above definitions there is a slight redundancy in that every

regular argument a has a hyper-argument [a] as counter-part. Note

that ap is defended from the hyper-attack by [ap] by its hyper-

argument counterpart [ap]. Unlike ap and [ap], ap and [ap] are part

of the unique preferred extension. Note that ap and [ap] cannot be

defended from the defeat by ap.

In the following examples we will omit hyper-argumentative

counterparts of regular arguments in the attack diagrams. For

instance, Figure 2 (left) will be simplified to Figure 2 (center). In

Appendix C.2 (Proposition 19), we show that it is possible to work

without hyper-arguments of the form [a], i.e., to identify them with

their regular counterparts. In our example this variant also results

in Figure 2 (right).

We have omitted the grounded extension from Definition 12.

Example 17 illustrates why. While we would expect ap to be

contained in the grounded extension, it is not since it is in need

to be defended from the h-defeat by [ap], but no non-attacked

argument is able to do so. So, in many cases the grounded extension

will not be informative since it will only contain arguments without

h-attackers (e.g., those with tautological conclusions).10

Example 18 (Example 16 cont.). In Figure 3, we show excerpts

of the argumentation frameworks for Example 16, now enriched

with hyper-arguments. We have three preferred extensions, E1 =

{a1, an, [a1, an], . . . } (left), E2 = {a2, an, [a2, an], . . . } (center) and

E3 = {a1, a2, [a1, a2], . . . } (right). We note that the problematic

complete extension from Example 16, including arguments a1, a2
and an is not anymore admissible in the setup with hyper-

arguments. One of the reasons is that the h-defeat from [a2, an] on

a1 cannot be defended. Indeed, the defeat from [a2, an] expresses

the consistency constraint that if we accept a2 and an then we shall

10 A similar observation can be made for stable semantics. While these

need not exist in frameworks with odd defeat-cycles in regular AFs, the

situation worsens in hyper-argumentation frameworks due to the presence

of h-defeats (see Example 18). We include stable semantics nevertheless in

Definition 12 since they satisfy some rationality postulates that don’t hold for

preferred semantics (see Table 16).
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FIGURE 2

Illustration for Example 17. Dotted arrows indicate h-defeats, solid arrows regular defeats. (Left) Detailed presentation. (Center) Compact

presentation omitting simple hyper-arguments. (Right) The presentation obtained by the variant defined in Appendix C.2 (Supplementary material).

FIGURE 3

Excerpt of the hyper-argumentation frameworks for Example 18 with rebut, undercut, resp. undercut′. Highlighted are three preferred extensions

(from left to right). As mentioned above, for the sake of compactness of presentation we identified simple hyper-arguments (i.e., hyper-arguments

with only one component) with their component and omitted symmetric h-defeats between arguments whenever there are regular defeats present

between their components (e.g., the h-defeat between [a1] and [a1] is omitted since a1 is defeated by a1).

not accept a1. We also note that neither of these three extensions is

stable, e.g., a2 /∈ E1 and a2 is also not defeated by E1.

3.4. Rationality postulates for
hyper-argumentation frameworks

We now study meta-theoretic properties of hyper-

argumentation frameworks. Table 15 contains various properties,

often called “rationality postulates” (see Caminada and Amgoud,

2007; Arieli et al., 2021). We will investigate these for our different

attack types and for argument strength measures that satisfy

Weak Epistemic Sufficiency and Domain Restriction. We consider

two general scenarios: a naive one without hyperarguments (as

discussed in Section 3.2) and a hyper one with hyperarguments.

Table 16 provides an overview of our results. Proofs are provided

in Appendix B (Supplementary material). We summarize:

Observation 5 (Key observations.). Our results show that

hyper-argument based probabilistic argumentation satisfies the

desiderata discussed in Observations 1, 3, and 4.

Concerning Observation 1 we employ argument strength

measures that satisfy weak epistemic sufficiency to do justice to

the intuition that an argument such as hybrid is stronger than

an argument such as wave due to the presence of higher-order

uncertainty.

In order to model the intuition underlying Observation

3 one may use hyper-argumentation frameworks based on

rebuttals: in such frameworks both ap and aq can be present in

the same complete extension, without causing an inconsistent

conclusion set.

Finally, we overcome the problem of the existence of

complete extensions with inconsistent conclusion sets identified

for regular argumentation frameworks in Observation 4: all

of the studied hyper-argumentation frameworks satisfy the

postulate of Indirect Consistency.

In the remainder of this section we illustrate the lack of some

properties from Table 16 with examples. For this we first take

another look at Example 14, this time with hyper-arguments.

Example 19 (Example 14 cont.). In Figure 4, we show excerpts

of the argumentation frameworks for Example 14 for rebut (left),

undercut (center), and undercut′ (right), now enriched with hyper-

arguments. In each figure we highlight a preferred extension. We

note that the one on the right is unique.

Example 20 (Counter-examples, Rationality Postulates.). In

Figures 3, 4, we observe the following violations of rationality

postulates.

Support Consistency. Support consistency is violated for rebut

in Figure 4 (left). There both ap and aq are contained in the given

preferred extension, although Sup(ap),Sup(aq) ⊢C ⊥.
Logical Closure. Logical closure is violated for rebut, undercut

and undercut′ for complete and preferred extensions, as can be

seen in Figure 3 (left). Although a1 and an are accepted in the given

preferred extension, the argument a2 = 〈{p1,¬(p1 ∧ p2)},¬p2〉 is

not (it is and cannot be defended from the defeat by a2 since by

Definition 12 a defense from a regular defeat must be in terms of a
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TABLE 16 Overview: rationality postulates.

Method Naive Naive Naive Hyper Hyper Hyper
Arguments Arg(K) Arg(K) Arg(K) HArg(K) HArg(K) HArg(K)
Attack form(s) Rebut Undercut Undercut′ Rebut Undercut Undercut′

cons. u.cut (cons. u.cut) (cons. u.cut) cons. u.cut (cons. u.cut) (cons. u.cut)

Component closure n.a. n.a. n.a. X [Corollary 1] X [Corollary 1] X [Corollary 1]

Direct consistency X [Proposition 11] X [Proposition 11] X [Proposition 11] X [Proposition 11] X [Proposition 11] X [Proposition 11]

Indirect consistency ✗ [Example 16] ✗ [Example 16] ✗ [Example 16] X [Proposition 12] X [Proposition 13] X [Proposition 13]

Weakening X[Proposition 10] X [Proposition 9] X [Proposition 9] X[Proposition 10] X [Proposition 9] X [Proposition 9]

Support consistency ✗ [Example 16] ✗ [Example 16] ✗ [Example 16] ✗† X [Proposition 15] X [Proposition 15]

Logical closure ✗ [Example 16] ✗ [Example 16] ✗ [Example 16] ✗† ✗† X
⋆[Proposition 17]

Dir. support closure ✗ [Example 14] ✗ [Example 14] ✗ [Example 14] ✗† ✗† X[Proposition 14]

Ind. support closure ✗ [Example 16] ✗ [Example 16] ✗† ✗† ✗† X
⋆[Proposition 16]

All propositions and corollaries are to be found in Appendix B (Supplementary material). Properties marked by X⋆ apply only to stable semantics. Counter-examples for other semantics can

be found in Example 20, as well as counter-examples for properties marked with †.

FIGURE 4

Hyper-argumentation frameworks for Example 14 with rebut (left), undercut (center) and undercut′ (right) (where m < 4 in case of str = bstm
resp. α < 2

3
in case of str = convexα , see Table 13). Highlighted are preferred extensions. We use the same conventions as in Figure 3 to avoid clutter.

regular defeat and therefore the hyper-defeat of [a1, an] on a2 is not

sufficient to defend a2 from a2).

Support Closure. Direct support closure is violated for both

rebuts and undercuts. For rebuts we have in the preferred extension

of Figure 4 (left), aq selected, but not ap although Sup(ap) =
Sup(aq). Similarly for undercuts, in Figure 4 (center). The violation

of indirect support closure is an immediate consequence.

As for undercut′ and indirect support closure we consider

Figure 3 (right): although a1 and a2 are selected, ab = 〈{p1, p2}, p1∧

p2〉 is not since it cannot be defended from the undercut′ from

an. Note that the h-undercut on an by the selected [a1, a2] is not

sufficient to defend ab from a regular undercut′: Definition 12

requires a defense from a regular defeat in terms of a regular defeat

(i.e., an undercut′ in this case).

4. Empirical study

In this section, we discuss a small empirical study we conducted

on evaluating argument strength in the context of higher-order

uncertainty.11 Our main objective was to investigate the following

research questions:

RQ1. Is argument evaluation more context-sensitive than our

logical model predicts? To answer this question we consider two

reasoning contexts: an abstract one where participants have to

reason about the probability to draw balls from an urn, and

one practical medical context. In both scenarios, the participants

face arguments of the same underlying logical form in our

representation (see Appendices D, E in Supplementary material

for details) but with different informal interpretations. For such

arguments our model calculates the same degrees of support and

possibilities, and therefore it predicts the same argument strengths.

Similarly, we want to know whether across different contexts

arguments of the same logical form are evaluated equally by our

participants.

RQ2. How do the different argument strength measures from

Section 3.1 predict the participants’ answers? In particular, which

values of the parameters m for bstm resp. α for convexα are

11 We leave empirical studies concerning argument selection/semantics

(Section 3) for a future occasion.
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empirically adequate (possibly relative to fixed reasoning contexts,

see RQ1)?

RQ3. Which rationality postulates from Section 3.4 are met

resp. violated by the participants’ answers? In particular, is the

intuition behind our Observation 1 empirically adequate?

The study was conducted in the context of three university

seminars on the Bachelor and Master level of philosophy

programs. Altogether 42 students participated. The questionnaire

encompasses 19 questions and is structured into 3 reasoning

scenarios. Each scenario comes with a number of arguments built

on the basis of the available information. For each argument, the

participants were asked to rate its strength in a scale with 10

subdivisions, reaching from very weak to very strong (see Figure 5

for two arguments in the context of the second scenario). We

list all scenarios of the questionnaire in detail in Appendix C

(Supplementary material).12

The three reasoning scenarios covered by the questionnaire

are: (S1) one of the well-known Ellsberg scenarios (Ellsberg, 1961,

see Example 2), (S2.1) a less abstract re-phrasing of the Ellsberg

scenario in terms of a medical investigation, (S2.2) a variant of

(S2.1) in which more emphasis is given to imprecise probabilistic

information, as discussed in Section 2.3 (similar to Example 6).

Table 17 gives an overview on our results. We now evaluate our

findings.

4.1. Concerning RQ1

We first observe that the reasoning context is crucial for the

assessment of argument strength. We note that scenarios 1 and 2.1

have the same formal structure and therefore our model predicts

the same argument strength assessments for arguments of the same

logical form (indicated by α,β , γ , δ and ǫ in Table 17). Indeed,

within scenario 2.1, the evaluation of the strength of arguments of

the same logical form (Q10 and Q12 resp. Q11 and Q13) remained

relatively stable (max. variance is 0.02 between the mean values)

among our participants. However, if we compare arguments of

the same logical form between scenario 1 and scenario 2 we see

clear differences. For instance for arguments of type α we have a

difference of 0.13 in the mean, for arguments of type ǫ a difference

of .02. In particular, the evaluation of α in the context of Q1 is 0.45

and in the context of Q9 it is 0.32. What is also striking is that

for imprecise arguments there is basically no variance between the

two scenarios. This asymmetry is surprising and we don’t have an

explanation for it.

4.2. Concerning RQ2

When averaging over all questions the optimal value form is≈

2.05 and the one for α is ≈ 0.51. In view of this the mean measure

is a good approximation of the empirical results. However, when

zooming into the different types of arguments we observe that the

12 In this study, we did not randomize the order of presentation for each

participant in order to avoid priming.

m (resp. α) value is contextual, depending on where the [dsp, dps]-
interval is situated. With Table 18 we observe the tendency that m

grows the more the weight of the [dsp, dps]-interval moves toward

1. This means that the reasoning becomes more cautious resp. risk

averse in such cases. For instance, the average strength estimation

of arguments of type γ with [dsp, dps] = [1/3, 1] is 0.58 (closer

to the dsp), while the average strength estimation of arguments of

type µ with [dsp, dps] = [0, 1/3] is 0.29 (closer to the dps).

4.3. Concerning RQ3

Epistemic sufficiency could be generally verified in the study.13

This reflects positively on our Observation 1 which can be

considered empirically verified in view of our small study.

Participants show typically Risk tolerant reasoning and therefore

violated Risk aversion. Upper compensation could not convincingly

be verified in our questionnaire. Strict precision sufficiency,

Precision necessity and compensation only fare slightly better. In

contrast, the acceptance rates for Lower compensation and for

Precision sufficiency are in average high.

Before moving to Domain restriction and Moderation, we

make two methodological remarks of caution. First, the scale of

the questionnaire was not numerical and therefore it does not

directly represent the interval [0, 1] in which our technical notions

such as dsp, dps, etc. are measured. Therefore, a validation of

criteria such as Domain restriction based on this questionnaire

has to be interpreted with caution, since we naively mapped

the interval in questionnaire to the interval [0, 1] (preserving

scaling). Second, we interpreted the answers of the participants

charitably, e.g., when evaluating Domain restriction we checked

if the answer is “roughly” within the corresponding interval.

Despite these methodological hurdles we consider the empirical

study informative also for these criteria since it allows us to see

discrepancies between the replies concerning logically equivalent

arguments (indicated by types α, . . . , ǫ in Table 17) in different

settings. We observe that Domain Restriction is violated for the

types α and δ (even under a charitable interpretation of the

answers). Interestingly for the imprecise arguments (so, arguments

for which dsp(a) < dps(a)) Domain Restriction could be

empirically verified. It is again the precise arguments as opposed

to the imprecise ones, for which we find violations of Moderation.

We see some divergence for arguments of type α between to

two scenarios (in S2.1 and S2.2 Moderation is verified for α-type

arguments, not in S1), while for arguments of type δ Moderation

fails in more than 50% in both scenarios. One explanation may be

13 We note that the only case with a low acceptance rate is Scenario 2.1

for Weak epistemic su�ciency (34%). However, this value is due to the fact

that there are 12 di�erent pairwise argument combinations (e.g., Q8 and Q9,

Q10 and Q11, etc.) in which participants could violate the criterion. The 34%

feature only participants who validated weak epistemic su�ciency for every

pair. If we consider each such pair separately, the acceptance rate per pair

is rather high. In most of the pairs we see a very high acceptance rate for

Weak epistemic su�ciency, only when comparing Q11 and Q13 resp. Q10

and Q12 our participants struggle. The reason is that for these particular pairs

Weak epistemic su�ciency would demand equal strength attribution.
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FIGURE 5

The second scenario of the questionnaire with two arguments.

that disjunctive claims may lead to over-estimating their associated

probabilities. For imprecise arguments the observed shifting of the

optimal m-value (see RQ2) has the effect that for arguments (such

as γ ) for which the weight of [dsp, dps]-interval is toward 1 a

more risk-averse reasoning takes place and thereforeModeration is

validated. The opposite applies to arguments (such as µ) for which

the weight of [dsp, dps]-interval is toward 0, where Moderation is

typically violated.

5. Discussion, conclusion, and outlook

Having presented our framework and results, we are in a

position to situate this work in the context of probabilistic and

formal argumentation. Our framework builds on Haenni’s account

of probabilistic argumentation (Haenni, 2009) and enhances it in

several ways.

First, we adjust the representational form of argument

to premise-conclusion pairs. This renders our approach a

generalization of deductive argumentation (where the base

logic is classical logic) and situates it in the tradition of

formal argumentation. Also, our formalism generalizes Hunter’s

probabilistic argumentation (Hunter, 2013) in that it allows for

HOU. Indeed, our framework inhabits the continuum between

deductive argumentation (where Vp = ∅) and Hunter’s

probabilistic argumentation (where Vl = ∅). This mirrors a

similar observation of Haenni for his original framework which

is situated in the continuum between classical and probabilistic

logic (Haenni, 2009, p. 165). Moreover, modeling arguments

as premise-conclusion pairs (unlike Haenni, 2009) allows for

capturing scenarios with different arguments that have the same

conclusion but different supports and therefore possibly different

strengths.

Second, we introduce several notions of argument strength and

study them based on postulates. Our postulates are targeted at

studying the role of HOU. This distinguishes it from the postulate-

based study (Hunter, 2022) (which is based on probabilistic

argumentation combined with defeasible logic). Argument strength

has also been studied in Bayesian probabilistic argumentation

(Hahn, 2020) and applied as a model of argumentative fallacies

(Hahn and Oaksford, 2007). The idea that probability intervals

can be utilized to model the actual reasoning of humans when

confronted with scenarios such as Ellsberg’s (see Example 2) is not

new. Pfeifer and Pankka (2017) run an empirical study similar to

ours to test the argument strength measure that has been dubbed

precision mean in our paper (see also Pfeifer, 2013 for a motivation

of this measure). Since the latter violates the desideratum strict

epistemic sufficiency motivated in Observation 1 and instead opts

for precision sufficiency, we included in our empirical study a

scenario (S2.2) to test these postulates. Indeed, for the evaluation

of argument strength our study indicates that strict epistemic

sufficiency is more adequate than precision sufficiency. It seems to us

that the latter more readily fits measures of argument quality than

measures of strength (and, consequently, these two notions should

be treated differently). Among the argument strength measures

proposed in this paper are convex combinations of the degree

of support and the degree of possibility. Convex combinations

have also been used in formal epistemology as models of belief

update, e.g., in context in which agents get information from

other agents and an independent “truth signal” (Douven, 2010)

or in which they are confronted with higher-order evidence

(Henderson, 2021).
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TABLE 17 Overview on the results from the empirical study on argument strength.

Scenario scenario S1 (Ellsberg) Scenario 2.1 (Medical) S2.2 (Impr. Prob.)

Question Q1 Q2 Q3 Q4 Q5 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

Argument type α β γ δ ǫ δ α γ β γ β ǫ α λ µ

dsp 1/3 0 1/3 2/3 1 2/3 1/3 1/3 0 1/3 0 1 1/3 1/3 0

dps 1/3 2/3 1 2/3 1 2/3 1/3 1 2/3 1 2/3 1 1/3 2/3 1/3

Claim type at at ∨ ∨ ∨ ∨ at ∨ at ∨ at ∨ at at at

Average Strength 0.45 0.4 0.6 0.69 0.97 0.7 0.32 0.58 0.34 0.56 0.35 0.99 0.33 0.56 0.29

ordering β < α < γ < δ < ǫ α(<)β < γ < δ < ǫ µ < α < λ

Domain restr. 0.31 0.98 1 0.38 0.67 0.37 0.51 0.98 0.95 0.95 0.88 0.80 0.53 0.67 0.7

Moderation 0.36 0.36 0.64 0.45 - 0.41 0.76 0.78 0.68 0.78 0.61 - 0.76 0.5 0.29

Weak Ep. suff. 0.6 0.34 0.73

Str. Ep. suff. 0.57 0.73 0.68

Ep. risk tolerance 0.74 0.66 0.32

Upper

compensation

0.52 0.5 0.24 0.54 0.24 0.54 0.24 0.54 0.97 1

Lower

compensation

0.79 0.88 0.88 0.63 0.88 0.63 0.88 0.63 0.97 1

Precision suff. 0.79 0.88 0.88 0.63 0.88 0.63 0.88 0.63 -

Str. precision suff. 0.48 0.5 0.63 0.38 0.63 0.38 0.63 0.38 -

Precision nec. 0.48 0.5 0.63 0.38 0.63 0.38 0.63 0.38 0.03

Prec. compensation 0.48 0.5 0.63 0.38 0.63 0.38 0.63 0.38 0.03 1

Listed are the different scenarios (S1, S2.1, and S2.2) and their respective questions. Each question is concerned with the evaluation of the strength of an argument presented in an informal

way. Some of these arguments share the same type w.r.t. their degrees of support and possibility (indicated by α, . . . , ǫ). Precise arguments (i.e, arguments a for which dsp(a) = dps(a)) are
underlined. The exact logical form is presented in Appendix E (Supplementary material). We also list the type of claim (atomic “at” vs. disjunctive “∨”). Below we list the average strength

assessment of the participants and an empirical evaluation of the properties from Section 3.1. In the first block we present properties concerned with arguments in isolation (Domain Restriction

and Moderation, but note our cautious remarks concerning the evaluation of the survey with respect to these criteria in the main text). The second block concerns properties where arguments

are compared. In these cases we analyse the two main scenarios S1 and S2 separately. For the desiderata weak/strong epistemic sufficiency and epistemic risk tolerance we compared the

answers block-wise according to the scenarios 1, 2.1, and 2.2., i.e., 60% of participants validated weak epistemic sufficiency for all questions in scenario 1. For the rest of the criteria we picked

out paradigmatic pairings of arguments. A number below two questions indicates that the arguments corresponding to those two questions were compared to each other according to the

desideratum, e.g., the first value 0.52 for upper compensation means that w.r.t. the arguments in Q1 and Q2 52% of the participants answered in accordance with upper compensation. In

scenario 2.1 whenever questions have the same number, it means those were compared to each other according to the desideratum, i.e., 24% of participants fulfilled upper compensation when

comparing questions 8, 10, and 12 to each other. The hyphen ‘-’ indicates that the criterion is not applicable.

TABLE 18 Optimalm values for di�erent argument types.

Type [dsp,dps] Optimal m Average strength

µ [0, 1/3] 1.15 0.29

λ [1/3, 2/3] 1.46 0.56

β [0, 2/3] 1.84 0.36

γ [1/3, 1] 2.63 0.58

Third, we show how abstract argumentation semantics (Dung,

1995) can be applied to our framework given different (standard)

notions of attack (versions of undercut and rebut). It is well-

known from deductive argumentation that violations of rationality

postulates can occur if one proceeds too naively. We proposed

a solution based on hyper-arguments, which express consistency

constraints. Given that our framework generalizes deductive

argumentation and Hunter’s probabilistic argumentation, the

solution applies also there. In the context of probabilistic

argumentation Dung’s semantics are rarely applied. For example,

Haenni (2009) does not propose any rationale for selecting

arguments for selection, while Hunter (2013) uses threshold

semantics. We consider Dung’s semantics attractive for several

reasons. First, they are widely applied and well-researched in

formal argumentation (Baroni et al., 2018); second, being based

on notions such as conflict-freeness and defendability, they are

very intuitive; and third, they allow for reinstatement, a principle

that is not (in general) validated by threshold semantics. The

latter is in particular interesting when generating explanatory

hypotheses (see Example 13 and Observation 2). In this context

we note that it is sometimes distinguished between an epistemic

and a constellations approach (Hunter, 2012). While in the

former probabilities express a doxastic attitude toward arguments,

in the latter they express how likely it is that arguments

belong to and/or are relevant to a certain discursive situation.

Our approach clearly belongs in the epistemic camp. We note

that the interpretation of argument strength and defeat in

structured non-probabilistic argumentation seems more in line
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with the epistemic approach and it is where reinstatement is

often applied.14

The paper presents only a first step to systematically integrate

reasoning with HOU in abstract argumentation. In future work, we

intend to enhance the empirical study, both in terms of the number

of participants and also in scope, by a stronger focus on the impact

of context on argument strength, and by including questions of

argument selection (e.g., is reinstatement used by participants

when generating hypotheses and explanations?, etc.). Another

application of our framework is to study in more detail reasoning

in the context of multiple agents (e.g., considering testimony,

higher-order evidence, and dialogue15). According to (Elkin and

Wheeler, 2016; Elkin, 2021; Henderson, 2021) situations of peer

disagreements and/or where higher-order evidence matters (e.g.,

evidence provided by expert panels, etc.) should not be modeled by

naively aggregating beliefs, since this may overstate precision, but

it should be modeled in terms of credal sets, i.e., in terms of HOU.

Our framework provides some of the basic ingredients to model

argumentation in such contexts. In the present work we restricted

the focus on purely epistemic reasoning by not considering other

practical utilities. A possible enhancement of our study is to widen

the focus and incorporate decision theories under HOU (such as

Gilboa and Schmeidler, 2004).
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