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The genetic code is textbook scientific knowledge that was soundly established

without resorting to Artificial Intelligence (AI). The goal of our study was to

check whether a neural network could re-discover, on its own, the mapping links

between codons and amino acids and build the complete deciphering dictionary

upon presentation of transcripts proteins data training pairs. We compared

di�erent Deep Learning neural network architectures and estimated quantitatively

the size of the required human transcriptomic training set to achieve the best

possible accuracy in the codon-to-amino-acid mapping. We also investigated

the e�ect of a codon embedding layer assessing the semantic similarity between

codons on the rate of increase of the training accuracy.We further investigated the

benefit of quantifying and using the unbalanced representations of amino acids

within real human proteins for a faster deciphering of rare amino acids codons.

Deep neural networks require huge amount of data to train them. Deciphering

the genetic code by a neural network is no exception. A test accuracy of 100%

and the unequivocal deciphering of rare codons such as the tryptophan codon or

the stop codons require a training dataset of the order of 4–22millions cumulated

pairs of codons with their associated amino acids presented to the neural network

over around 7–40 training epochs, depending on the architecture and settings. We

confirm that the wide generic capacities and modularity of deep neural networks

allow them to be customized easily to learn the deciphering task of the genetic

code e�ciently.

KEYWORDS

Artificial Intelligence, genetic code deciphering, codon usage, codon embedding, deep

neural network, data e�ciency, natural language processing

1. Introduction

Artificial Intelligence (AI) can be used to try to unravel possible links in yet unexplored

domains with the help of computers that are trained on data. The produced knowledge is

data-driven and, in the best case scenario, the delivered knowledge is supported by a causal

model and not by just a mere stochastic association. The results of this data-driven inference

are sometimes difficult to interpret for human beings.
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Deep Learning (DL) is a subset ofMachine Learning (ML). Both

DL and ML are part of the broad field of Artificial Intelligence.

Deep Learning is more generic and more complex than Machine

Learning. Deep Learning uses a generic layered structure of

algorithms called an artificial neural network. The design of such a

network is inspired by the biological neural network of the human

brain, leading to a process of learning that is far more capable than

that of the standard Machine Learning algorithms. The specific

workflow in Machine Learning requires that relevant features

most useful in describing the data for classification or regression

purposes are first determined. Deep Learning skips the manual step

of feature extraction and directly uses the raw data. However, this

reduction in human intervention is offset by increased data needs

and complexity. The deep in Deep Learning stands for the number

of layers in the neural network architecture. The larger the number

of layers, the deeper the neural network.

A large number of studies have combined omics (genomics,

transcriptomics, and proteomics) and deep learning for years. Deep

learning still holds great promise for genomic research due to its

capacity of learning complex features in omics data and to infer

complex relationship with responses (gene function, molecular

structures, phenotypes, and disease outcome). A number of reviews

on the application of Deep Learning in omics and in genome wide

association studies (GWAS) have been published elsewhere (Li

et al., 2018, 2019; Zhang et al., 2018; Eraslan et al., 2019;Munir et al.,

2019; Rajkomar et al., 2019; Shen et al., 2022). DL technology has

also been used with omics data in precision medicine applications

together with information from medical imaging and clinical data

(Martorell-Marugan et al., 2019). Whatever its successes in terms of

prediction performance, applying DL technology to omics research

or precision medicine still faces a number of difficulties. Two of

them are (i) the “black box” problem and (ii) the data quality and

availability problem. The black-box like algorithm obtained by deep

learning cannot be understood or accepted by most people in the

biomedical community. The self-learned algorithm which finally

makes the predictions after training cannot help understand the

mechanistic causal link between the data and the predictions. For

example, in cancer gene expression profiles, the results of a cancer

association to a gene expression profile do not explain why the

gene profile expresses the cancer profile. In omics, this ability to

explain is crucial for the biomedical research community (Zhang

et al., 2018). The data quality and data availability problem is

often underestimated by the community of end users having great

expectations from DL technologies. The essence of DL is to learn

rules according to the input data. The learning process requires

huge amount of high quality curated data. Most of the data in omics

are obtained through a large variety of experimental protocols.

It is not guaranteed that the data are all produced under the

same controlled conditions, are accurate, or are identically curated.

Our study is a pedagogical contribution to address the black-box

problem while controlling for the data quality and availability.

One of our target audience is the biological research community.

First, we think that our toy showcase provides a self-learned

model after training, which will not be perceived as a black box.

Indeed, the biological community can make immediate sense of the

produced self-learned algorithm. The inferred rules were already

known upfront, before they were re-deciphered by the Artificial

Intelligence algorithm, as these rules happen here to be truly

causal and simply reflect the textbook knowledge of the genetic

code known to everybody. Our showcase should help the end-

user community to gain trustfulness in DL technology. Our study

aims at showing the audience that incorporating DL technology in

biomedical research practice requires the research community to

accept a trade-off betweenmodel complexity (or understandability)

and the data efficiency (amount of data needed to produce the

inferred rules with a chosen accuracy). The omics datasets that we

used are very well-known to the biological research community

audience. The toy showcase of the genetic code deciphering can be

used has a benchmark problem to help the audience appreciate and

assess the data size requirements when DL is applied to the field

of omics. It also illustrates how using prior knowledge in the omics

data structure compares with DL complexity (neural network depth

and capacity) for improving the data efficiency to solve the problem

at hand.

The genetic code is textbook scientific knowledge that was

soundly established without resorting to Artificial Intelligence (AI).

The purpose of this Technology and Code article is to showcase,

using the genetic code as an illustrative toy project, how Deep

Learning architectures can crack the code and unravel the correct

knowledge. This showcase advocates the potential power and

performance of self-learning algorithms. Additionally, our study

aims at monitoring dynamically how the genetic code deciphering

table is learned by the machine during the computer training.

Watson and Crick (1953) and others showed that nucleic

acids (DNA and RNA) are the information-rich molecules that

act as repositories and carriers of genetic information and that

this information is encoded with only four nucleotides A, T, C

and G in DNA (U replacing T in messenger RNA). Afterwards,

it took 13 years for human researchers to understand how genes,

with an encrypted message written with these four characters,

could be translated into proteins for which there are 20 different

amino acids characters. In those years, no sequence information

was available. Using synthetic homopolymers like poly-A or poly-

U, followed by copolymers with a defined sequence like poly-

GUA as messengers, Nirenberg and Khorana progressively and

laboriously cracked the genetic code, after Holley found the causal

link (Nirenberg, 1968; Stryer, 1981). All three received the 1968

Nobel Prize in Physiology or Medicine. One of the salient feature of

this translation mechanism is that it relies on chemical translators

who speak the two languages i.e., nucleic acid (DNA/RNA) and

protein languages. These translators, were discovered by Holley

et al. (1965) and are called the transfer RNAs, tRNAs for short. The

point is simply that two languages exist at the molecular biology

level with molecules of two different chemical compositions. All

living organisms use the two languages and use a lot of their

energy to carry out translation, i.e., the synthesis of proteins. The

genetic code is the universal translation rule mapping the sequence

of characters for the sentence in one language (DNA/RNA) to

the sequence of characters for the sentence in the other language

(proteins). The sentences in both languages are made of words. In

any natural language processing, the words are defined as N-grams

(a particular sequence of N characters). The length N of the words

are generally not specified. In the genetic code, the words in the

source language (DNA/RNA nucleic acids) are trigrams (3-grams),
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i.e., three characters or one triplet of nucleotides. The words in

the target language (protein language) are unigrams (1-grams), i.e.,

single amino acid characters. Themapping is not a bijection and the

genetic code is said to be degenerate because multiple words (called

synonymous codons) can map to the same amino acid word in the

target language.

In this study, we built Deep Learning (DL) architectures to

tackle this problem for which human beings already know the link.

The goal was to check whether a deep neural network could re-

discover, on its own, the link between codons and amino acids,

and also maybe surprise us with its own representation of the

data. Neural networks would not normally be used to decipher

the genetic code. A more simple and direct approach of building

and updating a dictionary through dynamic programming would

provide a solution in an execution time shorter than tens of

milliseconds and would not require a dataset with a large number

of pairs of mRNAs with their associated proteins. Actually, the

minimal dataset sufficient for the genetic code learning would be

the list of the 64 mappings between codons and the amino acids.

The structure of the dictionary linking codons to amino acids

would have to be defined upfront. We, instead, want to resort

to a self-learning process with as little human intervention as

possible and we want to challenge and make use of the generic

capacities of neural networks. Cracking the genetic code might

appear to be a trivial task in natural language processing for a

neural network. It is actually not so simple for three reasons. First,

the number of classes in the target vocabulary is 21 (stop mark

included), which is more than twice as much as the number of

classes in the canonical MNIST digits classification problem, well-

known to data and computing science engineers (LeCun et al.,

1998; Deng, 2012). Moreover, in the MNIST digits classification,

the inputs belong to a continuous 728-dimensional space while

the input space in the genetic code deciphering problem has 64

discrete categories, making it more difficult. Second, both the input

and target training datasets are inherently highly unbalanced due

to the uneven distribution of codons within the transcript group

and uneven distribution of amino acids within the protein group.

Third, the purpose of cracking the code is not just to get a high

accuracy translation, i.e., above 95%, according to state of the art

common standards in ML/AI, but to determine the exact complete

translation dictionary (stop codon included), which means an

accuracy of 100%. The successful output of the training is to provide

the full translation dictionary.

We compared the performance of different neural network

architectures in cracking the genetic code upon training on the

real human genome wide transcriptomic and proteomic dataset.

For a given architecture, we varied the number of hidden layers

(depth) and their capacity (width). Moreover, we investigated the

effect of pre-processing the data on the networks performance.

To that end, we compared the effect of the tokenization method

(one-hot encoding vector size) and the effect of including or not a

codon embedding layer for which we changed the dimension. For

the different settings, we evaluated the cumulated minimal amount

of data (number of codon/amino acid training pairs) required to

decipher the code unequivocally, rare stop codons included, and

to reach a training accuracy of 100% or an arbitrary small loss

function. Additionally, we quantified how the use of the prior

knowledge about the unbalanced amino acid frequency distribution

could reduce this minimal data size.

2. Methods

The task of the neural networks that we implemented is to

find the minimal dictionary that will map the set of the 64

unique triplets of contiguous characters (3-grams of nucleotides or

codons) in the input space (DNA/RNA nucleic acid language) to

the set of unique amino acid characters (unigrams of amino-acid

characters) of the output space (protein language), including stop

codons. The mapping will be a many-to-one to account for the

degeneracy of the genetic code and the existence of synonymous

codons. We compared different neural network architectures such

as a fully connected multilayer perceptron (MLP), a Recurrent

Neural Network (RNN) in its Elman network implementation

(Elman, 1990; Amidi, 2019), its improved variants such as the

Gated Recurrent Unit (GRU) and the Long Short Term Memory

(LSTM; Hochreiter and Schmidhuber, 1997) and showed how they

performed on discovering the genetic code. The MLP was chosen

because it is the most fundamental neural network architecture.

The RNN immediately comes to mind of data science engineers as

soon as the input data are referred to as sequences.

Training: the models have been trained with transcript samples

(mRNAs samples) as input data, and the predicted translated

protein sequences (made up of amino acids) as output. The idea

was to train the network on a mapping of mRNA sequences to their

protein sequences and from there tomap the codons to amino acids

and get the neural network to find the correct decoding table.

Input data: we restricted ourselves to Homo sapiens data.

The raw data used were downloaded from the public genomic

repositories (Sayers et al., 2021), Ensembl (2022). The selected raw

data are the whole human transcriptome i.e., all known mRNA

sequences that are associated to approximately all 23, 000 human

genes. These raw data have been pre-processed to extract only the

full open reading frames (ORFs), meaning sequences that start with

a “start” (AUG”) codon, end with a “stop/non-sense” (UAA”, UAG”,

and UGA”) codon and entail a number of nucleotides which is an

integer multiple of three. We did not include the so called 5′− or

3′− untranslated regions (UTRs) that are known to flank the ORFs

respectively to the left and to the right. We also filtered out possible

non-sense codon inserts or even possible inserts of a multiple of

(three) independent single unread nucleotides, where frameshifts

in the reading could be programmed and could occur. It must

be emphasized here that we started from mature mRNAs (mature

transcripts with exons only) for which alternative splicing had been

fully achieved: we did not use immature mRNA sequences with

introns, which are the intervening sequences in eukaryotic genes

that are not translated.

Output data: for each and every ORF sample, we did associate

synthetically the ground truth sequence sample of the translated

mRNA, i.e., the produced protein.

We collected 69, 768 ORFs as input, and their 69, 768 protein

sequence samples as output (ground truth). Both the input and

output data are character sequences of variable lengths. The average

size of a transcript is around 1, 200 nucleotides (characters), so
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the total number of nucleotides for which we have sequence

information is around 83.7 million (or equivalently 27.9 million

codons and thus around 27.9 million single amino acid characters).

The redundancy in the available information was large enough and

we had leverage to split the data into training and test sets. Due the

nature of the problem addressed here, the test set and training set

have very similar structures and we did not necessarily need a large

fraction of the data to be used as test set. The input and ground

truth output datasets are available on the GitHub project repository

(github.com/MasterCube, 2022). We implemented a dataloader to

split the data into a training set (90% sampling fraction) and a test

set (10% sampling fraction). The input features and target features

are fed to the models by batches (batch length = 64).

2.1. Implemented deep neural networks

The workflows are represented in Figures 1, 2 and entail a data

pre-processing step (one-hot encoding), a codon embedding layer

(optional) and the neural network layers with learnable parameters

that will be optimized to minimize a loss function at each iteration

on the training data.

To have our networks decipher the genetic code, we enforced

the same assumptions as were historically stated by Nirenberg and

coworkers (Nirenberg, 1968): (i) not less than three nucleotides are

needed to code for the set of 20 amino acids (basic combinatorial

calculus) and many N = 3−grams of nucleotides can map a single

amino acid character; (ii) the code is non-overlapping and the

3-grams reading frame is provided and frameshifts do not occur;

(iii) there are no punctuation marks inside the code; (iv) the first

(three) nucleotides in each sequence form a “start codon;” (v) the

last (three) nucleotides in each input sequence form a punctuation

full stop mark i.e., a “stop codon.”

2.1.1. Data pre-processing: One-hot encoding
Tokenization and One-Hot Encoding (OHE) convert the text

characters to numerical values. This is required to allow the neural

network to perform operations on numerical tensors representing

the alphabet letter input data. Each unique character is assigned

a unique numerical ID. When the tokenizer runs, it creates a

word index (a numerical dictionary) which is used to convert each

word as a vector of numerical values (a tensor). The length of the

vector is the same as the length of the input sample. The One-Hot

Encoding (OHE) is the process by which categorical variables (the

four unique nucleotide characters A, U, C, and G) are converted

into numerical values. The OHE of the alphabet of the nucleotide

characters represents each nucleotide as a vector of four bits all set

to zero except for a one corresponding to the alphabet index of the

nucleotide character, e.g., the OHE of nucleotide A is (1, 0, 0, 0), U

is (0, 1, 0, 0), C is (0, 0, 1, 0), and G is (0, 0, 0, 1).

We used two tokenization strategies for the one-hot encoding

of the input data and we compared their impact on the training

scores and the final accuracy.

64 bit OHE: OHE of each codon directly on 64 bits (Figure 1A).

As there are 64 different codons, the codons vocabulary has a length

of 64 and each word (codon) is indexed in this vocabulary set. The

index is the position of the 1, all other elements in the vector are set

to zero.

12 bit OHE: OHE of each codon as the concatenation of 3

nucleotides with aminimal OHE of the nucleotide alphabet, namely

3× 4 bits= 12 bits (Figure 1B).

The amino acid ground truth data are always tokenized with a

21 bits OHE as the amino acid vocabulary has 20 amino acid plus

one full stop mark.

2.1.2. Codon embedding layer
The shortcoming of the one-hot encoding representation,

besides just how huge it can get if the vocabulary size is huge, is

that it treats all words (codons) as independent entities with no

relation to each other. The OHE is chosen once and for all in

the tokenization process. Codon embeddings, on the other hand,

allow to incorporate semantic similarity in the words (codons):

two synonymous codons coding for the same amino acid are

more semantically similar to each other than to a codon coding

for a different amino acid. The codon embedding process is

similar to the one-hot encoding in that it maps the words to

vectors but the vectors are dense (not sparse) and the vector

elements can have any real values. The codon embedding can

be part of the neural network and the embedding layer weights

can be parameters of the model, i.e., the embedding weights

are learnable parameters which can be trained. The embedding

attributes are the vocabulary size and the dimensionality of the

embeddings (word-embeddings tutorial, 2022). We investigated

the effect of two embedding strategies on the performance of

the network and investigated how similar the embedding weights’

graphical representations are to the genetic code table. Two ormore

synonymous codons have a semantic similarity and should cluster

together in the graph.

Embedding dimensionality d = 2. With two dimensions, the

embedding features weights are tuples that can be represented

in 2D and the Euclidean distance between the codons in the

embeddings space directly reflects the semantic similarity and is

easy to interpret.

Embedding dimensionality d = 10. With 10 dimensions, the

embedding features may not have a direct interpretation but we

still can represent the first pair of embedding weights graphically

and investigate the learned semantic (2D projected) similarity.

The codon embedding layer included in the neural network is

schematically represented in Figure 1C.

2.1.3. Neural networks architectures
A feed-forward fully connected neural network, also called

multilayer perceptron (MLP), could provide a first simple reference

architecture to solve the problem, given that the codons are

translated independently of each other once the 3-gram reading

frame is known. A recurrent neural network (RNN) architecture

allows to introduce a memory effect (or “sequential” effect) in

the learning process (Karpathy, 2015; Amidi, 2019). We used this

property in the genetic code learning architecture by implementing

the successive reading of characters as unigram inputs, building a

sequence length of 3 contiguous unigrams, defining a codon. The

RNN produces an output only after a sequence of three nucleotide
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FIGURE 1

Multilayer perceptron (MLP) neural networks architectures. (A) Linear MLP with 64 bit OHE. (B) Linear MLP with 3× 4 bit OHE. (C) MLP with

embedding layer (dimension = d) and rectifying linear unit ReLU activation functions. The Ws are the matrices whose elements are the learnable

parameters. y, ground truth value. ŷ, predicted value.

characters has been read (Figure 2). The RNN entails two stacked

cells for which we compared two different sizes of the hidden

layers: 64 and 256. To try to further improve the RNN architecture,

we also used GRU and LSTM architectures. For each of these

architectures, initialization and linearity were set as detailed below

(Figures 1, 2).
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FIGURE 2

Schematic representation of the Recurrent Neural Network (RNN): baseline architecture showing a single RNN layer, adapted from Karpathy (2015).

The Ws are the matrices whose elements are the learnable parameters. yt, ground truth value at t. ŷt, predicted value at t.

Initialization: for the RNNs, GRU, and LSTM, we

explicitly initialized the hidden cell states enforcing matrix

orthogonality to prevent vanishing or exploding gradients

issues.

Linear or non-linear models: for the fully connected MLP

architectures, we used complete linear models, without any

activation function except for the final Softmax needed after the

last layer for the multinomial classification, where the Softmax

is a non-linear multivariate function mapping any set of real

numbers on a set of probability values all summing up to one (L1-

norm). For the MLP with an embedding first layer, we used the

rectifying linear unit, ReLU, compared to the non-linear hyperbolic

tangent, tanh, as activation functions. The architectures of the

neural networks are shown schematically in Figure 1. The number

of hidden layers was varied from 1 (shallow) to 2 (deep) and

the size (width) of the hidden layers was varied from 64, 128,

to 1,024. This was done in order to increase the capacity of the

neural networks and assess the impact of both depth and width

on the data efficiency, i.e., the minimal amount of training data

needed to reach an arbitrary small fixed value of the loss function

or the complete deciphering of the genetic code. Figure 2 shows

the RNN like architectures. The RNN was configured with two

stacked cells (two layers) and with hidden size fixed to 64 or 256.

By construction, the Elman architecture of RNNs, GRU, and LSTM

entails hyperbolic tangent tanh activation functions and all these

models are non-linear.
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2.2. Loss function and learning metrics

The multinomial cross-entropy loss was the objective function

to be minimized during training. The cross-entropy loss used the

predicted probabilities for the 21 classes as the first simplex vector

argument pŷ ∈ 1c=21 and the ground truth simplex vector was used

as the second argument ytarget ∈ 1c=21. The argmax was applied

on the predicted probabilities for the 21 classes, pŷ ∈ 1c=21, to

obtain the predicted class as a new first simplex vector argument

ŷ ∈ 1c=21 and the ground truth simplex vector, ytarget, was still

used as the second argument. The accuracy (both training and

test) was calculated by summing the dot product of these last two

simplex vectors, i.e., ŷ · ytarget, within a batch, cumulating for the

whole training set (or test set) and dividing by the training (or test)

set sample size. The ultimate evaluation is to confirm the correct

genetic code dictionary is discovered. The measure of success of

the training is not as much in predicting correctly the protein target

sequence as it is in providing the full translation dictionary that the

learning process determined. The deciphered genetic tables were

produced dynamically andmonitored during training by tabulating

a heatmap of the softmax output vector for all codons in a given

batch, at each iteration, and for three different batches within each

iteration. This was used to produce the dynamic heatmaps in the

.gif format available on github.com/MasterCube (2022).

2.2.1. Weights as optional argument
The frequency distribution of the codons and specifically the

synonymous codons is not uniform in the input training dataset

(Figures 3A, B). Similarly, the amino acid frequency distribution in

the corresponding target dataset is not uniform either (Figures 3C,

D). For instance, the histograms show that the most frequent codon

in the whole transcriptome is GAG which codes for the glutamate

amino acid (symbol E in single letter amino acid convention), even

though glutamate is not the most frequent amino acid in the target

proteome, while leucine is. Furthermore, these distributions are

also protein family dependent. For instance, the histograms for the

76 human ribosomal proteins are different of the histograms for the

whole human proteome as can been seen by comparing (B) to (A)

and (D) to (C) in Figure 3. For the 76 human ribosomal proteins,

the most frequent codon is AAG, and the most frequent amino

acid is lysine K. As AAG codon codes for K, in this case, the most

frequent codon and amino acid are matching. Transcriptome-wide

or proteome-wide, this is generally not the case.

This inherent unbalanced property of the training set (also

true for the test set) hampers the fair improvement of the genetic

table dictionary upon training. Indeed, more frequent amino

acids have a higher sampling rate, favoring the class of a highly

abundant amino acids. For a rare amino acid, the learning is

slower. To adjust for the unbalanced class distribution, it is

possible to increase the loss function more when a minority class

is misclassified compared to a majority class. To adjust for the

underrepresentation/overrepresentation of the minority/majority

classes, different weights (specific to each class) can be used to alter

the loss function accordingly, so that the wrong predictions of rare

amino acids are more penalized than for frequent amino acids.

We optionally incorporated weights in the inverse proportion

of the class frequency distribution. The weight vector used was

the inverse of the amino acid distribution known for the human

proteome shown on Figure 3C.

We investigated how the weight option in the cross entropy loss

function impacted the training profile, the final accuracy and the

exhaustiveness of the genetic decoding table.

2.3. Optimization, learning rate, and
number of iterations

The optimizer used in our training was the adaptative moment

estimation (Adam) with a learning rate set to 0.05 (MLP) and 0.005

(RNN, GRU, and LSTM). The number of epochs (iterations) was

set in the range 10–50. We did not use GPU/cloud computing

allocation.

3. Results

The accuracy and loss functions are shown in Figures 4, 5 for

different settings and different neural network model training and

testing. The elapsed computing times on a single GPU NVIDIA

Quadro P320 were in the range of 9 min to more than 3 h per

training, depending on the neural network architecture and the

number of epochs. The fastest training was obtained with the

complete linear multilayer perceptron with or without a codon

embedding layer. When codon embedding was implemented,

the best performance was achieved with the linear rectifying

activation function ReLU. The dynamic heatmaps showing the

updates of the genetic code deciphering table during training

are available on github.com/MasterCube (2022). Direct links to

seven instances of the dynamic heatmaps are provided here

(Supplementary Videos 1–7). Figure 4E shows an instance of an

heatmap at epoch 16 that was obtained for the two hidden layers

MLP for which the codons were tokenized with 64 bits one-hot

encoding and with an embedding layer of dimension d = 2.

Figure 5E shows the heatmap at epoch 3 that was obtained for the

RNN with two stacked hidden layers of size 256. This instance of

the heatmaps shows that, at epoch 3 of the training process, the

stop codons have not been unequivocally deciphered yet, although

the decoding accuracy is already 99.99%. UAA is confused between

a stop codon and tyrosine, Y. UAG has not been deciphered and

UGA is confused between a stop codon and two rare amino acids

cysteine, C, and tryptophane, W.

Table 1 compares, for the different architectures and settings,

the number of training iterations (epochs) and the minimal data

size required at training to achieve a complete and unequivocal

genetic code table deciphering, i.e., including the rare stop codons

UAG, UAA, and UGA. The architecture unequivocally deciphering

the genetic code with the smallest amount of training data was the

deep MLP having two hidden layers (64 and 1,024 in size) without

activation functions, see first line in Table 1. The same architecture

with the extra codon embedding layer of dimensionality d = 10

was the second best performing architecture without adjusting

the unbalanced amino acid frequency distribution. However,

the latter neural network architecture outperformed all other

architectures after amino acid weights adjustment, see right column

in Table 1.
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FIGURE 3

Histograms of the codon distribution in human transcriptome (A). Codon frequency distribution in human ribosomal proteins transcripts (B). Amino

acid frequency distribution in all human proteins (C). Amino acid frequency distribution in human ribosomal proteins (D). Pink bars: most frequent

codon in (A, B) or most frequent amino acid in (C, D). The red dots show hypothetical uniform distributions for comparison with the observed

distributions.

3.1. Impact of codon embedding and
graphical interpretation of codon
embedding features

The incorporation of the codon embedding layer with

dimensionality d = 10 allowed the MLP to achieve an unequivocal

deciphering after 30 epochs, to be compared to the more than 40

epochs required for the completely linear MLP without embedding

layer, with a single hidden layer of limited capacity of size 64.

The dimensionality d = 2 was not sufficient to unequivocally

decipher the rare stop codons after 40 epochs even with weights

adjustment. Extending the capacity of the hidden layer to a size

of 128 or 1,024 and with rectifying linear activation functions

replacing the non-linear hyperbolic tangents, the stop codons

were deciphered after 17 epochs. Adjusting for weights further

improved the genetic code deciphering performance as the code
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FIGURE 4

Impact of embedding layer and dimensionality on accuracy and loss: (A) Training and test accuracies. (B) Training and test losses. (C) d = 10

embedding first two features after 40 epochs. (D) d = 2 embedding features after 40 epochs. (E) Genetic code table as deciphered at epoch 16 for

MLP OHE 64 bits with two hidden layers of size 64 and 128 and with codon embedding layer d = 2.

was cracked after nine epochs (size = 128) or even two epochs

(size = 1024).

These results show that a deeper network had a much better

data efficiency to crack the code than a shallow network: the
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FIGURE 5

Impact of one-hot encoding size and network architecture on training accuracy and loss. One-Hot encoding 64 or 3 × four bits with and without

weights adjustment: (A) Training and test accuracies. (B) Training and test losses. (C) Training and test accuracies comparing architecture and hidden

size. (D) Training and test losses comparing architecture and hidden size. (E) Genetic code table as deciphered at epoch 3, for RNN two stacked

layers of hidden size 256. Note that the stop codons (UAA, UAG, and UGA), tryptophane (UGG), cysteine, and tyrosine have not yet been

unequivocally deciphered.
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TABLE 1 Minimal training data size in codon/amino acid pairs required for a neural network architecture to achieve complete unequivocal genetic table

deciphering.

Neural network architecture Without weights adjustment With weights adjustment

GPU time Data pairs GPU time Data pairs

Ep. (min.) Codon/aa Ep. (min.) Codon/aa

MLP with one-hot encoding, depth and width

MLP64 2 hidden layers 64× 64× 1024× 21 8 14.8 4, 032, 000 38 71.4 21, 312, 000

MLP64 1 hidden layer 64× 64× 21 40 64.5 22, 464, 000∗ 24 40 13, 248, 000

MLP12 2 hidden layers 64× 64× 1024× 21 18 35.7 10, 368, 000 7 13.5 3, 456, 000

MLP12 1 hidden layer 64× 64× 21 39 71.7 21, 888, 000 24 44, 8 13, 248, 000

MLP with codon embedding layer and width

MLP64 d = 2, 2× 64◦ × 64◦ × 21 (tanh) 40 158.4 22, 464, 000∗ 40 159.5 22, 464, 000∗

MLP64 d = 2, 2× 64• × 128• × 21 (ReLU) 17 63.8 9, 216, 000 9 27.0 4, 416, 000

MLP64 d = 10, 10× 64◦ × 64◦ × 21 (tanh) 30 179.0 16, 704, 000 34 196.0 19, 008, 000

MLP64 d = 10, 10× 64• × 1024• × 21 (ReLU) 17 129.3 9, 216, 000 2 9.9 384, 000

RNNs with hidden cells states and size

RNN† 2 hidden layers 12× 256× 256× 21 22 77.6 11, 904, 000 17 60.9 8, 832, 000

RNN† 2 hidden layers 12× 64× 64× 21 22 77.8 12, 096, 000 30 100.4 16, 704, 000

GRU† 2 hidden layers 12× 64× 64× 21 29 103.7 16, 128, 000

LSTM† 2 hidden layers 12× 64× 64× 21 40 150.4 22, 464, 000∗

A ∗ superscript indicates that the rare stop codons are still not unequivocally deciphered at this training epoch. ◦A tanh activation function is included in each hidden layer. •A ReLU activation

function is included in each hidden layer, see Figure 1C. †RNN, GRU, and LSTM have two stacked cells. Weight adjustment was not investigated for GRU or LSTM.

cumulated number of codon/amino acid data training pairs was

reduced by more than 80%, from 22.5 to 4 million data pairs, when

the fully linear MLP had two hidden layers instead of one and with

a hidden size of 1,024 instead of 64. Additionally, the non-linear

activation functions, tanh, were squashing the gradients and slowed

down the deciphering of the code. As expected, the rectifying

linear unit activation function prevented vanishing gradients to

occur. Finally, adjusting for the amino acid frequencies’ unbalanced

distribution was more profitable for deeper fully linear networks

(more hidden layers) or having larger hidden size, than for non-

linear shallow networks.

The embedding features plot is shown for the d = 2

dimensionality embeddings and hidden layer capacity of size =

128 (Figure 4D). It is compared to the genetic code table that was

deciphered at epoch 16. The semantic similarity of the synonymous

codons that are correctly deciphered are indeed close to each other

in the embedding features plot. For instance, GAU and GAC (blue)

are the two synonymous codons for aspartate, D, and are close

to each other in the plot. GGG, GGA, GGC, and GCU (light green)

are the four synonymous codons for glycine, G, and are clustered

colinearily in the plot. The first two embeddings features are shown

after training at epoch 40 for the embedding dimension d = 10 and

hidden layer capacity of size 1,024 (Figure 4C). With a complete

unequivocally deciphered genetic code table after 17 epochs, the

obtained embedding features’ graphical representation, at the end

of the training, can be considered trustful. For instance, arginine

R has been exhaustively and exclusively decoded by the six codons

CGU, CGC, CGA, CGG, AGA, and AGG (red). Except for CGU, these

codons are colinearly clustered at the left most edge of quadrant

2 and 3, even in the 2D projected space out of the d = 10

dimensions. CGU, however, is located at the right edge of the plot.

The interpretation of the embedding features plot with d = 10

dimensionality is more difficult for all codons as compared to d = 2

dimensionality.

3.2. Impact of OHE and class weight
adjustment of the loss function on training
scores

The impact of the one-hot encoding OHE settings is shown in

Figures 5A, B. Comparing the fully connected linear MLP with 64

bit OHE with the fully connected linear MLP with 12 bit OHE

shows that the training loss decreases faster for the OHE in 12

bits than in 64 bits. For the test loss, however, it is the opposite. A

training accuracy of∼ 100% is achieved within two epochs in both

cases. This ∼ 100% excellent accuracy is only apparent because

the training set did not necessarily include rare stop codons within

these two epochs. An unequivocal genetic code table deciphering,

including the rare stop codons, is achieved only at epoch 39 for

the 12 bit OHE and over epoch 40 for the 64 bit OHE (Table 1).

The neural network keeps learning even after a 100% accuracy was

reached because the optimizer keeps minimizing the cross entropy

loss. Figures 5A, B furthermore show that the weight adjustment

compensating for the uneven distribution of the amino acid classes

dampens the decrease in the training and test losses and the

accuracy increase rate. It is worth noticing that without weight
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adjustment, the misclassifications in the deciphering of the genetic

code occur more often on the stop mark ∗ (codons UAA, UAG, and

UGA) or on the rare amino acids such as methionine (M, AUG)

and tryptophane [W, UGG; Figure 5E and dynamic heatmaps in

GitHub project repository (github.com/MasterCube, 2022)]. For

networks with limited layer capacity, the stop codons are better

(sooner) resolved upon weight adjustment as can be observed on

the heatmaps for the last epochs (Table 1). The target classes weight

adjustment reduced the minimal required training data pairs by 40

to 65%. In the context of this study, for a very high capacity neural

network, the weight adjustment is not beneficial as can been seen

by comparing the two main columns in the first line of Table 1.

Using the prior knowledge of the unbalanced representation of

amino acids in the training dataset and in the human transcriptome

and proteome in general significantly shrinks the required amount

of training data to achieve a complete deciphering of the genetic

code by a fully linear multilayer perceptron (with 64 or 12 bit

OHE) as can be seen by comparing the two main columns in

Table 1. Indeed, both with the 12 or 64 bit OHE, the total minimal

number of codon/amino acid pairs to be presented to the MLP

neural network to completely crack the code decreases from∼ 22.4

million to ∼ 13.2 million. Similarly, with the codon embedding

layer and the linear activation function, ReLU, where it decreased

from∼ 9.2 million to∼ 4.4 million and even 0.38 million.

3.3. Impact of architectures

The performance of the four architectures (MLP, RNN, GRU,

and LSTM) is compared in Figures 5C, D and in Table 1. The

training loss decreases faster with the deep MLP with two hidden

layers of size 64 and 1,024 than with the RNN having two stacked

cells layers of size 64 or 256, or with the MLP with a single hidden

layer of size 64. A 100% accuracy both for training and testing is

reached within two epochs. The GRU and LSTM require four and

six epochs to reach similar accuracies.

The best performance in cracking the genetic code with the

minimal amount of training data is achieved by the deep MLP

with two hidden layers of size 64 and 1,024. Indeed, the complete

genetic code is already deciphered after eight epochs, when only

4 millions of codon/amino acid data pairs have been presented to

the network, and without using weight adjustment. The hidden

state of an RNN cell allows to incorporate a memory effect while

processing the codon input sequence. For instance, two of the rare

stop codons UAA and UAG start with UA and they share this feature

with only two other codons, UAU and UAC, coding for the single

amino acid, tyrosine (Y). Having noticed this and the fact that

an RNN can keep the memory of the first two nucleotides, it can

discriminate earlier between a reduced subset of target amino acids

during the learning process. This sequenced memory ability of the

RNN is valuable for the deciphering of all codons. It comes at a

price of a longer GPU execution time (time complexity) but allows

to achieve the deciphering of the code upon training with almost

only half as much the amount of training data, when compared to a

classical fully connectedmultilayer perceptron having similar depth

and size.

The forget gate specific feature of GRU and LSTM and the

additional cell state effect that can be brought about by the GRU and

LSTM appear not to be valuable for the decoding task of the short

sequence within a triplet (codon). In general, for this particular

genetic code deciphering task, the RNN, GRU and LSTM suffer

from the presence of the hyperbolic tangent as imposed activation

function. The non-linear activation function shrinks the gradient

of the loss with respect to the learnable parameters and the rate of

learning is slower. This hyperbolic tangent does not appear to be

a smart choice in these architectures in the context of the task of

deciphering the genetic code.

The weight adjustment is most beneficial to the simple fully

linear MLP networks with respect to the required amount of data

pairs in the training set, when the network actually has a relatively

limited capacity. Indeed, when the size of the hidden layers is

large, there is no benefit of weights adjustment. A recurrent neural

network does not reduce much further the required amount of

training data upon using amino acid weight adjustment.

4. Discussions

To our knowledge, cracking the genetic code using neural

networks has never been done before or at least not been published.

Our pedagogical showcase confirms that the genetic code can,

indeed, be deciphered using a completely data-driven approach.

Self-learning algorithms, when trained upon presentation of a large

number of codon/amino acid pairs taken from pairs of transcripts

with their associated proteins, can build the complete dictionary,

correctly mapping the 64 codons to the 20 amino acid plus the stop

mark.

Deep neural networks require large amount of data to train

them. Deciphering the genetic code by a neural network is no

exception. Two situations need to be distinguished: (i) if the

network is shallow, i.e., with a small number of hidden layers

and/or with a small capacity, the training is prone to have a

poor data efficiency, meaning the required training data size will

be large to achieve an arbitrarily given small loss. We showed

that, with a shallow single hidden layer of width equal to 64, the

minimal number of data pairs was in the range 12–22 million

codon/amino acid pairs. The human transcriptome has around

73,000 transcripts and a total cumulated length of around 29

million codons. This means that a task as simple as deciphering

the genetic code, resorting to a shallow neural networks required

to use at least between 40 and 75% of the human transcriptome

total information. If we had chosen a species with a much smaller

genome or transcriptome, e.g., bacterium, a single species dataset

would not have been sufficient. The union of several individual

species datasets would have been necessary. On the contrary, (ii)

if the network is deeper, i.e., with a larger number of hidden

layers and/or with a higher capacity (width = 1, 024 instead of 64

for instance), the training is more data efficient and the minimal

training data size to achieve the same result can be reduced. With

the neural network settings we investigated in this study, the

minimal number of required training data pairs to unequivocally

crack the code was 4 million. So, the reduction in the training data

size to decipher the genetic code was 80% with the deep neural

network as compared to a shallow neural network.
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For human beings, a deeper neural network may appear to be

less comprehensible than a shallow one. Deciphering the genetic

code is a fully linear problem as it comes down to simply determine

a matrix R
21×64 projecting the space of codons to the space of

amino acids. Intuitively, we would expect that a shallow neural

network limited to a single layer implementing such a 21 by 64

matrix would be sufficient and would be data efficient. It works

indeed but it is very far from the optimal data efficiency.

The lesson we can draw from this pedagogical showcase is that

deeper neural networks of larger widths (capacity) will be prone

to learn with less data. In the biomedical field, where biological

data are sometimes very laborious or expensive to obtain, going

for deeper neural network architectures is valuable even if it is at

the cost of computer time complexity or even at the cost of losing

direct human mind intuition or comprehension.

The use of the weights to adjust the penalization of the cross

entropy loss to compensate for the class unbalanced distribution

helped earlier decoding the rare amino acids by shallower neural

network or with smaller capacity. The required training data

size decreased by around 40%. This confirms a general rule in

Statistics, that, the better the structure of the dataset is known,

the more information can be retrieved from it or the less data

is needed to retrieve the same amount of information. However,

in this genetic table deciphering showcase, the data savings was

the most significant upon resorting to deeper neural network

than upon using the prior knowledge of the structure of the

data.

The literature about embeddings schemes is numerous. In

the field of natural language processing (NLP), text sequences

with a similar linguistic contexts are identified by exploiting a so

called word embedding. In the word2vec embedding approach,

words or phrases are mapped to vectors of real numbers in a

low dimensional space. By training a neural vector over a large

text corpus, words with similar linguistic context correspond to

vectors that are close points in the Euclidean space of the chosen

dimensionality. In the field of Bioinformatics, FastText or FastDNA

are extensions ofword2vec, where instead of using individual words

to train the neural network, words are broken into several n-grams

used to train the network (Bojanowski et al., 2017; Menegaux

and Vert, 2019). The identification of a similarity signature in a

sequence exploited the Lyndon factorizations (Bonizzoni et al.,

2021). It was used in the development of bijective Burrows-

Wheeler Transform (Köppl et al., 2020). This latter algorithm is

implemented in the alignment of overlapping reads of different

lengths to be mapped on a given genome. DNABERT is another

NLP model for DNA general embeddings (Ji et al., 2021). It

uses the Bidirectional Encoder Representations from Transformers

(BERT). Such transformers are relevant when context must be

investigated on text sequences that are spatially or temporally

further apart from each other. Recently, Bonizzoni et al. used some

variants of the Lyndon factorization and developed an embedding

features extraction method, lyn2vec, that is based on combinatorial

properties providing compact embedding representations able to

preserve similarities but without requiring a previous training

(Bonizzoni et al., 2021, 2022).

Protein synthesis and mRNA translation can be directly related

to the field of NLP and to the problem of language translation

in general where the research literature is huge and still in fast

development, especially with respect to theoretical developments in

mathematical logic and to the introduction of new concepts in data

processing such as RNN Turing complete theorem (Siegelmann

and Sontag, 1991), Siegelmann and Sontag (1995), Carmantini

et al. (2015), LSTM, encoder/decoder, variational auto-encoders

(Kingma and Welling, 2019), and transformers (Wolf et al., 2020).

One of the most recent and valuable breakthroughs in language

processing was the introduction of the concept of attention

to incorporate textual context in order to improve translation

accuracy (Vaswani et al., 2017). In our project to decipher the

genetic code, we used basic neural network architectures and did

not require to capture the context of distant codon words or space

correlation between them. The new contributions such as attention

were not relevant for our problem. Contextual methods beyond

the codon would be beneficial with longer space correlation within

mRNA sequences incorporating untranslated regions (UTRs) or

introns/exons. It should be noted that Machine Learning methods

such as hidden Markov models are widely used in bioinformatics

to infer whether or not a DNA sequence is coding a gene or not

and to discriminate from non-coding DNA (Jones and Pevzner,

2004).

The showcase is an example of data-driven inference able

to establish links (strong correlations) between two datasets

but it did not unravel the detailed mechanisms by which a

codon is actually translated into an amino acid, involving the

full biochemical processes occurring in cells. Indeed, the neural

network architectures we implemented did not possess the capacity

to discover the transfer ribonucleic acids (tRNA) agents or the

ribosome as the true causal biochemical links between codons and

amino-acids. To make sense of a data-driven inferred knowledge,

a mechanistic model can help to further unravel the underlying

causal links. In a foreseeable future, the biomedical community will

still have to investigate the underlying biochemical causes beyond

the possible achievements of data-driven inference. There is an

increasing trend in the biomedical sciences community to combine

both mechanistic and data-driven technologies, depending on the

availability of data and mechanistic knowledge (Viceconti et al.,

2015; Eriksson et al., 2022).

We conclude that the wide generic capacities and modularity

of deep neural networks allow them to be customized easily to

learn the deciphering task of the genetic code efficiently. We

meant to show that generic self-learning algorithms could learn and

unravel the known genetic code scientific textbook knowledge by a

completely data-driven approach. We also provided an idea of the

amount of data required to train deep learning neural networks in

the context of this specific task that could serve as a benchmark in

the field of molecular biology. This showcase can be used by the

biomedical community as a pedagogical example supporting the

interest, possibilities and limitations of Artificial Intelligence in its

research practice.
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