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Retail banks use Asset Liability Management (ALM) to hedge interest rate risk
associated with di�erences in maturity and predictability of their loan and deposit
portfolios. The opposing goals of profiting from maturity transformation and
hedging interest rate risk while adhering to numerous regulatory constraints make
ALM a challenging problem. We formulate ALM as a high-dimensional stochastic
control problem in which monthly investment and financing decisions drive the
evolution of the bank’s balance sheet. To find strategies that maximize long-term
utility in the presence of constraints and stochastic interest rates, we train neural
networks that parametrize the decision process. Our experiments provide practical
insights and demonstrate that the approach of Deep ALM deduces dynamic
strategies that outperform static benchmarks.
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1. Introduction

1.1. Background

Recently, deep learning-based techniques have successfully been applied to stochastic
control problems in finance. As opposed to classical approaches that rely on the analytical
tractability of the problem, recent approaches such as deep stochastic control feature a
high flexibility. Intricate impediments such as constraints, frictions, and arbitrarily complex
stochastic dynamics can be accounted for without further ado. The field of Asset Liability
Management (ALM) can particularly profit from the flexibility of this new modeling
paradigm. In the context of retail banking, ALM has the task of managing the bank’s interest
rate risk, which arises from the maturity mismatch of loans and deposits. To this end, banks
invest their customers’ funds, raise money to finance lending, and enter into interest rate
derivatives such as swaps. At the same time, banks have to adhere to regulatory constraints
and follow several concurrent objectives. ALM is consequently a challenging problem to
both model and solve. This article approaches these two tasks: we develop a modeling
framework for ALM and use deep learning techniques to find optimal investment and
financing decisions.

Retail banks face interest rate risk because cash flows that originate from their loans on
the asset side and deposits on the liability side differ in terms of their maturity structure and
predictability. If the term structure of interest rates changes, the economic value of the bank’s
assets might change to a different extent than that of its liabilities, leading to a change in the
net position: the bank’s equity. Banks do not want to be susceptible to the volatility of interest
rates and use ALM to reduce interest rate risk. This involves reducing the discrepancy in
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the cash flow characteristics of assets and liabilities, and modeling
how interest rates might change in future. Yield curve modeling
becomes particularly important when applying deep learning-
based techniques to the problem. These techniques are ’data-
hungry’ in the sense that their optimization requires a large bundle
of scenarios that specify how interest rates might evolve in future.
For this purpose, this article discusses different models for yield
curve simulation including a method that generates a variety of
yield curve shapes and paths within the HJM framework; see Heath
et al. (1992). Figure 1 depicts the historical development of the CHF
yield curve1 over the last couple of decades.

The yield curve scenarios are used to optimize an ALM
strategy that is parametrized with neural networks (Deep ALM).
This deep learning-based optimization approach, as presented by
Han and Weinan (2016) in a general stochastic control setting, is
motivated by the success of deep hedging (Buehler et al., 2019),
which uses neural network-based strategies to hedge financial
derivatives. Deep ALM focuses on the problem of hedging interest
rate risk of the asset and liability portfolios of banks. In the case
of hedging a runoff portfolio, Krabichler and Teichmann (2020)
demonstrate that their deep learning-based strategy outperforms
a static replication approach as commonly used in practice. This
article expands on their approach of hedging a single portfolio and
applies deep stochastic control in a more comprehensive model of
the ALM problem. This comprises bond portfolios on either side
of the balance sheet, decisions on investments and financing, and
more realistic constraints. The Deep ALM framework has been
developed in collaboration with a Swiss retail bank, hereafter simply
referred to as the bank. Because the numerical experiments use
data provided by the bank, results are sometimes presented in
aggregation or on a relative scale.

1.2. Asset liability management

The core business of retail banks consists of borrowing and
lending funds from and to customers at a variety of maturities.
This means that a majority of the bank’s assets and liabilities, the
so-called banking book, consists of long and short positions in
future cash flows. The economic value2 of this portfolio is given
by discounting the cash flows based on the current term structure
of interest rates. The value of a bank is thereby largely driven by
the external factor of the prevailing yield curve, which can be quite
volatile. It is not in the interest of banks and their investors that
equity as the net position of assets and liabilities is susceptible to
a high market volatility. Instead, banks aim to hedge this interest
rate risk. This is the core responsibility of ALM. At the same time,
banks often keep some exposure to interest rate risk, which allows
them to profit from upward slopes in the yield curve. Managing
this exposure while adhering to constraints and expectations from
different stakeholders makes ALM a challenging problem.

1 Data Source: Swiss National Bank, https://data.snb.ch/en/topics/ziredev/

cube/rendopar.

2 In the entire article, all balance sheet items are valuated in economic

terms. For other accounting standards, the framework would have to be

adjusted accordingly.

Interest rate risk occurs because cash flows from assets and
liabilities differ in several characteristics. First, cash flows occur
at different times, and contracts are entered into for different
maturities. For instance, mortgages are usually granted for long
maturities while deposits are a source of short-term financing. This
maturity mismatch leads to a duration gap between assets and
liabilities. A second fundamental difference lies in the predictability
of future cash flows. For most assets in the banking book, banks
know what future interest payments they supposedly receive. For
instance, interest payments of fixed-rate mortgages are determined
when the mortgage is granted to the customer. On the other side of
the balance sheet, future interest rates on deposits are unknown.
They relate to market interest rates (such as interbank rates)
through competition between banks. If interbank rates increase,
some banks will offer higher interest rates to their customers,
forcing other banks to follow until an equilibrium is reached. In
times of positive interest rates, this equilibrium rate is typically
lower than that from the interbank market. During the recent
negative interest rates regime, customer rates were often floored
at 0%, implying that customers essentially held a real option on
interest rate payments. Furthermore, most deposits are not placed
for a fixedmaturity and can be withdrawn by customers at any time.
Regarding non-maturing deposits, future interest rates are not only
unknown but also the timing of when the notional becomes due.
This imbalance of deterministic (or at least ’foreseeable’) cash flows
from assets and stochastic cash flows from deposits is one of the key
challenges of ALM.

A common ALM approach for hedging interest rate risk is
found on the notion of replicating portfolios. Liabilities in the
banking book with undetermined cash flows are invested in a
bond portfolio that replicates the interest rate sensitivity of the
liability portfolio, such that the net interest rate risk is minimal.
Similarly, assets with undetermined interest rate payments can
be financed with matching replicating portfolios. The difficulty of
this approach lies in selecting a suitable mix of maturities in the
replicating portfolios. For instance, to replicate the deposit position,
the bank should choose maturities such that the interest earned
on the replicating portfolio moves parallel with the interest paid
to customers. The risk of rising interest rates can be mitigated by
investing in short maturities; higher interest payments on deposits
can be financed from the replicating portfolio that is renewed
continually. Nonetheless, investing in longer maturities usually
offers higher yields (at the cost of a more pronounced interest rate
risk).

Banks typically keep some interest rate exposure to exploit
spreads that banks charge customers when lending and borrowing
money. Most often, banks keep a higher duration3 on their assets
than on their liabilities; long-term investments through rolled over
short-term funding. If the yield curve features a positive slope,
it allows banks to lend funds at the far end of the curve while
borrowing funds at short maturities with smaller rates. If yields stay
relatively constant over time, this carry trade generates a profit for

3 Duration denotes the cash flow weighted time in years to the settlement

dates. Mathematically, it coincides with the valuation sensitivity toward

interest rate changes; see Mazzi (2013, Appendix D). The capital commitment

period is not necessarily identical to the fixed-interest period.
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FIGURE 1

Historical CHF term structures—The optimal balance sheet structure and the interest rate exposure of a bank highly depend on the current and future
states of the yield curve. Historically, the term structure featured extremely high and inverted yields in the early 90s. Since the mid 90s, there has been
a long-term trend of falling yields with presumed trend reversal during the year 2022.

the bank. But this maturity transformation is subject to the risk of
rising interest rates. If the yield curve shifts upwards, refinancing at
the short end becomes more expensive while the interest earned
on previously issued loans remains unaffected. This leads to an
obliteration of projected revenue.

1.3. Deep learning for stochastic control
problems

The following introduces a general stochastic control problem
in discrete and finite time with time instances t ∈ {0, 1, 2, . . . ,T}
on the filtered probability space (�,F ,F,P). The observable
information that characterizes the control problem at time t

is summarized via the Ft-measurable and d-dimensional state

variable xt . The state xt evolves to state xt+1 according to a
transition function bt . If the control problem is Markovian, as in
the setting of Han and Weinan (2016), bt maps the current state
xt ∈ Rd, the control at ∈ Rm, and a random shock εt+1 to the
next state xt+1. We assume a slightly more general setting, where
the transition might also depend on the history ht of the previously
attained states.4 At each time step, the function ut :R

d × Rm → R

assigns utility or a reward with the current state-action pair. The
optimization aims to optimize the cumulative utility in expectation
while respecting potential inequality constraints gi :Rd ×Rm → R

4 This is done becauseHJM yield curve dynamics are generally not required

to be Markovian. In our experiments, we simulate Markovian yield curve

dynamics, which makes this technicality irrelevant.

and equality constraints ki :Rd ×Rm → R. In summary, this gives
the stochastic control problem

max
{at}t=0,1,...,T−1

E

[
T−1∑

t=0
ut(xt , at)+ uT(xT)

]
(1a)

subject to xt+1 = bt(ht , xt , at , εt+1), (1b)

ht = {x0, x1, . . . , xt−1}, (1c)

gi(xt , at) = 0, ∀ i = 1, 2, . . . , I, (1d)

kj(xt , at) ≤ 0, ∀ j = 1, 2, . . . , J. (1e)

Deep learning can be used to approximately solve stochastic
control problems. By parametrizing controls with neural networks,
these controls can be optimized using gradient descent. This
method, hereafter referred to as deep stochastic control (DSC)5, is
the basis of deep hedging (Buehler et al., 2019), deep replication
(Krabichler and Teichmann, 2020), and the Deep ALM approach
developed in this article.

Let L,N1,N2, . . . ,NL ∈ N with L ≥ 2, σ : R → R and let
Wl : R

Nl−1 → RNl be an affine function. A feedforward neural

network is a function g : RN0 → RNL such that

g(x) =WL ◦ gL−1 ◦ · · · ◦ g1,
gl = σ ◦Wl,

Wl = Alx+ bl,

5 Variants of this type of algorithm appear in many applied machine

learning fields under di�erent names. In the field of deep hedging, it is

sometimes referred to as periodic policy search (Buehler et al., 2022b).
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for the layers l = 1, 2, . . . , L−1. The activation function σ is applied
componentwise. The entries of the matrices {Wl}l=1,2,...,L−1 and
vectors {bl}l=1,2,...,L−1 are called the weights of the neural network.
These weights are referred to as θ and the dependence of the neural
network on its weights is highlighted via the notation gθ .

The key idea behind DSC is to parametrize the action at at each
time instance t with a neural network gθt that determines the action
based on the relevant and available information at time t. Assuming
this information can be captured by the state xt and a memory cell
ht ∈ Rt , the neural network maps the concatenated input to the
action space, i.e., gθt :Rd+t → Rm. The objective (Equation 1a) can
now be formulated as a maximization over the parameters of all
neural networks {gθt }t=0,1,...,T−1, i.e.,

max
{θt}t=0,1,...,T−1

E

[
T−1∑

t=0
ut
(
xt , g

θt (xt , ht)
)
+ uT(xT)

]
. (2)

Assuming knowledge and differentiability of the transition
dynamics {bt}t=0,1,...,T−1, the optimization can be approached
using techniques based on gradient descent. First, parameters
{θt}t=0,1,...,T−1 are initialized randomly. Subsequently, given the
initial state x0 and the ability to sample the random shocks
{εt}t=1,2,...,T , one can collect complete roll-outs, i.e., paths of states,
actions, and rewards that have occurred over the entire model
period. This is achieved by chaining the forward passes through
the decision networks {gθt }t=0,1,...,T−1 as well as the transitions
{bt}t=0,1,...,T−1 in their temporal order. Utilizing the collected
rewards {ut}t=1,2,...,T , one can calculate a loss signal for each path
that is backpropagated through the entire computational graph.

Simply optimizing for the cumulative reward would generally
neglect the constraints of the stochastic control problem, if they are
not accounted for otherwise.6 In that case, one prevalent approach
for dealing with constraints is to consider negative reward signals,
whenever those are violated. The cumulative loss or cost until and
including time t is then given by

Ct : =
t∑

τ=0

{
−uτ

(
xτ , gθτ (xτ , hτ )

)
+

I∑

i=1
λiPe

(
gi(xτ , aτ )

)

+
J∑

j=1
σjPie

(
kj(xτ , aτ )

)


 (3)

for suitable penalty weights λ, σj ≥ 0 and penalty functions Pe(·)
and Pie(·) that monitor the occurrence and magnitude of breaches.
The final loss signal to be minimized is then given by CT .

Han and Weinan (2016) illustrate that the concatenated
computations to calculate a single roll-out can be regarded as a
single deep neural network where the transitions {bt}t=0,1,...,T−1
are differentiable layers without trainable parameters (see Figure 2).
As outlined later, it might make sense to share weights between
the neural networks, i.e., setting gθt ≡ gθ . In that case, the
computational graph reminds one of the computations in a
recurrent neural network with the addition of the transition layer.
In this context, backpropagating the final error signal by unfolding

6 Simple constraints (e.g., on the output range of the controls at ) can often

be accounted for by adding a scaling operation (e.g., softmax) to the final

output.

the recurrent structure (as illustrated in Figure 2) is referred to as
backpropagation through time; see Werbos (1990). This connection
becomes noticeable when applying DSC to ALM, where gradients
are found to be vanishing (see, Hochreiter, 1998). This is a common
problem in training recurrent neural network architectures and is
not surprising considering the computational similarities.

Generally speaking, reinforcement learning is about training
agents to execute action sequences that maximize cumulative
rewards in a possibly non-continuous, non-differentiable, partially
observable environment (see, Faccio et al., 2022). In this sense,
the stochastic control setting presented earlier is a reinforcement
learning problem with the particularity that the dynamics of the
environment are known and differentiable. The lack of these two
properties motivates most of reinforcement learning, where the
environment is either assumed to be a black box (model-free

paradigm) or has to be learnt (model-based paradigm). Being able
to immediately take the gradient of the reward with respect to
the policy’s parameters eliminates the need to reparametrize the
gradient (Williams, 1992) or resort to purely correlating actions
with rewards; see Lillicrap and Santoro (2019) for a discussion.

1.4. Machine learning in finance

Particularly for applications arising in finance, it is certainly
meaningful to tackle intricate optimization problems with the
efficiency and natural simplicity of the DSC algorithm. It can be
implemented by utilizing the amenities of automatic differentiation
engines in modern deep learning libraries that handle all gradient
computations. Instead of solving the full problem for all points
in time and space (and being exposed to the so-called curse of

dimensionality, under which the running time of an algorithm
grows exponentially in the number of dimensions), one learns
a convincing strategy with respect to an initial state x0 and a
bundle of scenarios. This trades off generality as models have to be
retrained once the initial state, the transition logic, or the scenario
generator have changed. Whereas, this might be undesirable
in some applications, e.g., when deep-hedging many different
derivatives on different underlyings issued recurringly (Buehler
et al., 2022b), it is less problematic in the case of Deep ALM
since, in practice, there is indeed only one entity subject to a single
initial state.

Deep hedging (Buehler et al., 2019) has received significant
attention from both academics and practitioners because it
often outperforms classical methods relying on tractable models.
As opposed to the classical modeling and problem-solving
paradigm, deep hedging offers a generic approach for finding an
approximately optimal hedging strategy: parametrization of the
hedging strategy with neural networks and training thereupon
to minimize the hedging error on a set of simulated market
trajectories. The modeling task is split into a simulation task
and an optimization task, that is conditional on the simulated
paths. This allows for using all kinds of techniques for generating
scenarios; e.g., see Buehler et al. (2020) and Wiese et al. (2020).
The flexibility of the deep hedging framework does not only lie
in the choice of the market simulator but also in the simple
adaptability to arbitrary (possibly path-dependent) payoffs and in
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FIGURE 2

Computational flow (DSC)—This figure illustrates the order of computations made in the DSC algorithm to reach the final state xT from the initial
state x0. The figure is largely based on Figure 1 from Han and Weinan (2016), but extended by the memory cells h0,h1, . . . ,hT−1.

the extensibility to account for market frictions such as transaction
cost and liquidity squeezes. Even a fundamental change to the
problem such as replacing a Markovian market simulator with
non-Markovian dynamics can be accounted for by replacing the
feed-forward neural networks with recurrent neural networks (see,
Horvath et al., 2021).

While most of the work on deep hedging focuses on managing
financial derivatives, Krabichler and Teichmann (2020) apply the
DSC approach to the problem of funding and hedging a runoff
portfolio. Exemplarily, it represents a not yet unwound liability on
the balance sheet of a property and casualty insurance company.
Practitioners do not want to keep these positions unhedged and
look rather for a strategy to maximize risk-adjusted returns of
the net portfolio (i.e., equity). Investment decisions become high-
dimensional because at each point in time, a whole series of
bonds with different maturities is issued along the term structure.
Krabichler and Teichmann (2020) demonstrate that applying the
DSC approach in due course leads to a dynamic strategy that
outperforms a static replication scheme which is commonly used in
practice. Since the replication of a bond portfolio is a fundamental
task within ALM on either side of the balance sheet for investment
and financing decisions, the success of deep replication motivates
the application of DSC to a full description of the ALM problem,
which we denote as Deep ALM. Incorporating all components of
the ALM problem while finding the right balance between all the
different goals without adversely affecting the robustness of the
learning process entails some engineering work; see Krabichler
and Teichmann (2020). In this article, we pursue this engineering
work, develop a realistic ALM framework, and apply the DSC
approach within it. We expand on the stylized replication problem
because wemake investment decisions for non-maturing portfolios
involving stochastic depreciation, extend the hedging instruments
to swaps, and replace the simple liquidity constraint by more

realistic counterparts. More precisely, these comprise a minimum
reserve, standard liquidity measures, a leverage constraint, risk
limits in terms of an interest rate sensitivity, and a minimum
target return.

Other ALM problems that have been approached with machine
learning and reinforcement learning techniques are different from
our setting. There is an extensive literature on the use of deep
learning for mere investment portfolio optimization (whereby
funding and other intricacies of ALM are not treated); e.g., see
Zhang et al. (2020). Fontoura et al. (2019) consider the problem of
determining the allocation of funds toward asset classes such that
a portfolio of liabilities can be paid off using these assets. Their
problem setting is different from ours as they consider a runoff
setting (no going concern), only optimize relative investment
decisions (not the scale), do not consider financing decisions
or constraints, and use a binary objective of whether assets are
sufficient to pay all debts or not. Cheridito et al. (2020) use neural
networks to approximate the value and thereby the risk of a liability
portfolio consisting, for instance, of options or variable annuities.
This deviates from our setting since we face asset and liability
portfolios that consist mainly of bonds and other deterministic as
well as stochastic cash flows.

1.5. Structure of the article

Section 2 elaborates on the ALM problem. Subsequently,
the Deep ALM approach and its implementation is outlined in
Section 3. Section 4 presents the main results and a comprehensive
set of in-depth analyses. Section 5 provides a brief summary
of the key findings and lists remaining issues before deploying
Deep ALM. An overview of all variables and parameters is attached
in the Appendix.
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2. The ALM optimization problem

2.1. States and actions

2.1.1. Setting the scene
To apply deep learning techniques to ALM, one needs a

comprehensive mathematical description of the balance sheet roll-
forward. In this section, ALM is formulated as a stochastic control
problem. This inevitably involves simplifying assumptions on
components of ALM that are potentially much more complex in
reality. Many of the simplifications (e.g., deterministic depositing
behavior) can be replaced by more complex models in a
straightforward manner such that the Deep ALM approach is still
feasible. To obtain convincing results after refining the problem
setting, additional work such as the incorporation of additional
features may well be required.

While many reinforcement learning problems can be
formalized as Markov decision processes (MDP), we do not frame
the ALM problem as an MDP as we do not restrict the transition
function to be Markovian. Still, the following sections describe—
analogously to the description of an MDP—what variables are
modeled (state), what decisions can be made (actions), how these
decisions impact the model state (transition), and how given states
are evaluated (rewards) to optimize the actions. Since we are going
to introduce a considerable number of variables, we provide a
comprehensive overview of the notation in the Appendix.

This section provides a brief overview of the model variables.
They consist of positions on an aggregated and simplified balance
sheet of a bank, the so-called banking book as specified in Table 1,
other variables that impact the bank’s income statement, and the
yield curve. Each variable is modeled over H equidistant time
steps t ∈ T : = {0,1t, . . . ,T} with T = (H − 1)1t on
the filtered probability space (�,F ,F,P), where F = (Ft)t∈T.
The time discretization is chosen such that the step size 1t =
1/12 corresponds to 1 month. We distinguish between variables
representing nominal cash flows and variables representing the
value of a cash flow (i.e., the discounted cash flow). At any time t, a
nominal cash flow is tracked up to N time steps 1t into the future
and modeled as an N-dimensional (random) vector, where the ith

entry refers to a cash flow at the global time step t + i, i.e., a cash
flow being due after i steps when viewed from time t. A cash flow
being settled i time steps has consequently a maturity of τ = i1t

and the set of all maturities is denoted as T : = {1t, . . . ,N1t}.
Some of the nominal cash flows are assumed to be deterministic,
while all discounted cash flows are random variables due to their
dependence on the yield curve.

2.1.2. Yield curve and discount factors
In our formulation of the ALM optimization problem, the yield

curve is the most important component because it is the only
source of randomness. The yield curve determines bond prices (or
rather coupons), discounted values of nominal cash flows, as well
as additional effects on the bank’s income such as depreciation
and penalties on cash. The yield curve is modeled as the random
vector Yt :� → RN , where the ith entry of Yt denotes the yield
prevailing at time t for a maturity of i1t. We sometimes refer
to this yield as Y(i1t). As the yield curve is the single source of

randomness in this model, it is Ft-measurable by the definition
of Ft : = σ (Y0,Y1, . . . ,Yt). The yield curve Yt determines the
discount factors Dt :�→ RN for all maturities τ ∈ T as

Dt(τ ) = e−τ1Yt(τ ). (4)

The discount factors are used to value nominal cash flows. The
value of a nominal cash flow Xt ∈ RN at time t is denoted as V(Xt).
It is given by the inner product with the discount factors at time t,
i.e., V(Xt) = 〈Dt ,Xt〉.

2.1.3. Balance sheet items
2.1.3.1. Cash and cash equivalents

This position represents all highly liquid assets of a bank. It
changes at eachmodel step as loans are issued and paid out, deposits
are posted and withdrawn, and costs are settled. It decreases
with additional bond investments and increases when raised by
issuing bonds. It is highly dependent on the exact decisions made
and thus modeled as a random variable Ct :� → R. The cash
position essentially represents cash flows of maturity zero such
that V(Ct) = Ct .

2.1.3.2. Loans

The bank issues two types of loans: mortgages and loans to
enterprises. The number of new loans that the bank grants each
period is assumed to be driven by demand and not influenced by
any decision made by the bank. Loan defaults occur whenever the
yield curve shifts significantly over a single year. The cash flows
of mortgages and loans to enterprises outstanding at time t are
modeled as random vectors RPt :� → RN and REt :� → RN ,
respectively. Aggregated loans are referred to as Rt : = RPt + REt .

2.1.3.3. Investments

We assume that the bank can only invest in bonds. At the
beginning of the model period, the bank has a legacy portfolio
of bonds. At each model step, the bank has the opportunity to
invest in several newly issued bonds with different maturities
up to a maturity of N steps. We assume that bonds cannot be
sold (including no short-selling) and are always held-to-maturity.
The aggregated cash flows of all outstanding bonds the bank has
invested in up to and including time t are denoted by the random
vector Bt :�→ RN . We further distinguish this bond portfolio Bt ,
that includes payoffs from bonds bought in period t, from the bond
portfolio B

pre
t :� → RN which does not include payoffs from the

period t investments.

2.1.3.4. Deposits

Customers can make two types of deposits: non-maturing and
term deposits. Deposits are assumed to be driven by deterministic
demand and not influenced by decisions made by the bank.7

While cash flows originating from term deposits naturally have
a maturity associated with them, cash flows from non-maturing
deposits technically do not have a maturity. Customers can simply
withdraw their money whenever they want.8 At the same time, it

7 In reality, inflows are indirectly influenced via the economic circle as well

as the bank’s interest rate policy. Another importantmodel extension includes

the consideration of stress scenarios concerning deposits.
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TABLE 1 Economic balance sheet—Loans and deposits are demand-driven, whereas investments and borrowings are subject to the control of the bank.

Assets 100% At Liabilities (without
Equity)

90% Lt

Cash 20% Ct Deposits 50% V(St)

Investments 5% V(Bt) Non-Maturing Deposits 10% V
(
SDt
)

Loans 75% V(Rt) Term Deposits 40% V
(
SFt
)

Mortgages 55% V
(
RP
t

)
Borrowings 40% V(Kt)

Loans to Enterprises 20% V
(
RE
t

)
Equity 10% Et

The relative weights roughly specify the initial distribution. The loan portfolio includes positions with a maturity of up to 15y, but the majority of loans have a much shorter maturity such that

the loan portfolio has a duration of fewer than 5y. Deposits are modeled with maturities of up to 10y, but most of the deposits are associated with a much shorter maturity. The deposit portfolio

has a duration of fewer than 3y. The exact composition of these portfolios is not reported for data privacy.

is unlikely that all non-maturing deposits are withdrawn in any
single period. Hence, we assume a maturity structure for the non-
maturing deposits. “Outstanding” cash flows from non-maturing
deposits at time t can then be modeled as a deterministic vector
SDt ∈ RN . Similarly, cash flows from term deposits due at time t are
given by SFt ∈ RN , and aggregated deposits St ∈ RN are defined as
St : = SDt + SFt .

2.1.3.5. Financing

In addition to the funding from deposits, we assume that the
bank can only raise additional capital by issuing bonds, which are
modeled analogously to those on the asset side. Correspondingly,
the bank has at each model step the opportunity to issue several
new bonds and to add them to its existing financing portfolio.
The financing portfolio is modeled analogously to the investment
portfolio. Financing positions are always held-to-maturity and
cannot be unwound prematurely. The random vector K

pre
t :� →

RN denotes the aggregated cash flows originating from all
outstanding bonds, that the bank has issued before time t, and
Kt :� → RN denotes the financing portfolio including the bonds
issued at time t.

2.1.3.6. Aggregation

Cash, investments, and loans constitute the bank’s assets. Its
value At :�→ R is thus given by At : = Ct +V(Rt)+V(Bt). With
an abuse of notation, liabilities consist of deposits and financing.
The value of liabilities is referred to as Lt :� → R and given by
Lt : = V(St) + V(Kt). Consequently, the bank’s equity Et :�→ R

is the residue Et : = At − Lt . The final value of equity ET is
the quantity that the optimization aims to maximize. Note again
that we only keep track of the economic balance sheet and ensure
that the balance sheet is indeed balanced under this valuation
regime. We leave out other accounting aspects such as accruals and
amortized cost, which are typically considered in ALM depending
on the accounting standard and legislation.

2.1.4. Actions
As previously mentioned, the bank faces investment and

financing decisions each period. It can invest in bB bonds and
borrow from bK bonds that all trade at par and have different

8 Some banks impose maximal allowances and waiting periods for the

withdrawal of large volumes.

maturities.9 Once bought or issued, bonds must be held until
maturity. Short-selling is not allowed, which includes that the
bank cannot invest in its own issued bonds. Both investment and
financing can be done fractionally. We denote the actions made
at time t by the vector at ∈ RbB+bK

≥0 . Its first bB entries represent
the number of bonds bought at each of the available investment
maturities, also referred to as aBt ∈ RbB

≥0. Its last b
K entries represent

the number of bonds issued at each of the available financing
maturities, also referred to as aKt ∈ RbK

≥0.

2.2. Transition of decision-independent
variables

The model state at a given time t ∈ T is captured by the
variables introduced earlier. The next two sections describe how the
state transitions from time t to the next discretized instance t+1t.
In the language of DSC, we specify how the transition function
bt acts on the state xt . Because the state in our setting is quite
high dimensional and the transition function is a concatenation of
many calculations, we omit this notation in the following. Instead,
it is more comprehensible to directly describe the evolution of the
model variables that make up the model state. We structure the
description of the transitions based on whether the transition of
a model variable depends on the decisions or not. For decision-
independent variables, transitions can later be calculated outside of
the optimization. We start by introducing some notation following
Krabichler and Teichmann (2020). Let

U : =

[
0 IN−1
0 0

]
, (5)

where 0 ∈ RN−1 is the zero vector and IN−1 ∈ R(N−1)×(N−1) the
identity matrix. When applied to an N-dimensional vector X, U
shifts all entries up by one, eliminates the first entry, and appends a
zero as the new last entry. Moreover, let π (k)

:RN → R denote the
projection onto the kth component of an N-dimensional vector.

9 In our experiments, we choose bB = 13 corresponding to investment

maturities of 3y–15y and bK = 16 corresponding to financing maturities of

3m and 1y–15y.
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2.2.1. Yield curve, discount factors, and bonds
The transition of the yield curve can generally be given by

any term structure model, such as those presented in Section 2.7.
Discount factors are then recalculated via (Equation 4). In each
period, bB new investment bonds and bK new financing bonds are
issued. Following the setup in Krabichler and Teichmann (2020),
bonds pay a semi-annual coupon that is chosen such that bonds
trade at par at issuance. The corresponding coupon payments are
calculated as follows. For a given investment bond i ∈ {1, 2, . . . , bB}
issued at time t, we denote its payout structure as Z̃t

B,i ∈ RN with
semi-annual coupon α

B,i
t ∈ R. Denoting with Z̃t

B,i
(k1t) the kth

entry of Z̃t
B,i
, the payout structure is defined for all τ ∈ T as

Z̃t
B,i
(τ ) : =





α
B,i
t if the bond has coupon payment date at τ ,

1+ α
B,i
t if the bond redeems at τ ,

0 else.
(6)

As indicated, αB,i
t is chosen such that the bond trades at par, i.e., it

is the solution to the linear equation

〈
Dt , Z̃t

B,i
〉

!= 1. (7)

Note that the bank actually receives less than this fair coupon α
B,i
t

on this investment as it faces an annualized spread of κB = −15 bps.
10 The cash flow adjusted by spreads is in the following referred to as
ZB,i
t . Financing bonds are treated analogously: the spread-adjusted

(κK = 15 bps) cash flow of the ith financing bond issued at time t,
where i ∈ {1, 2, . . . , bK}, is referred to as ZK,i

t .

2.2.2. Loans
The initial loan portfolios for both mortgages and loans to

enterprises are provided by the bank and assumed to evolve
according to a simple growth scheme. In each period, loans mature
leading to repayments of the loaned amount which increases cash.
At the same time, new loans R̃t ∈ RN are granted such that
Rt+1t = URt+ R̃t . Granting new loans leads to a reduction in cash.
The total amount of new loans granted in period t is assumed to be

‖R̃t‖1 = π (1)(Rt)+
ρL

12
‖Rt‖1. (8)

The loan position grows by slightly more than ρL = 3% per year.
The amount of new loans ‖R̃t‖1 is split over several maturities.
For the loans to enterprises, new loans are assumed to be granted
equally for maturities of 1m–3m. New mortgages are attributed
to 11 different maturities of 2y–12y based on a distribution
provided by the bank that mimics realistic customer behavior. This
distribution is assumed to be deterministic and the same for each
model period, which corresponds to the assumption that there is
neither stochastic nor interest rate sensitive borrowing behavior of
the bank’s customers. Mortgages are assumed to be default-free,
whereas loans to individuals have some default risk in times of
quickly increasing yield curves: at the end of the year, the bank

10 1 basispoint (bps) refers to as 0.01%. The considered retail bank is a price

taker, in contrast to a market maker. The spread constitutes the service fee

that the bank has to bear for any transaction.

has to depreciate loans to enterprises by a factor of (k − 2%), if
the 6m interest rate has increased by k > 2% over the past year.
The depreciation amount is split proportionally over the current
portfolio of loans to enterprises. The dependence of depreciation
on the yield curve makes the loan portfolio stochastic.

All loans are assumed to bear fixed interest payments. The
monthly interest payment on a loan issued at time t with time to
maturity τ is calculated based on Yt(τ ), i.e., the yield prevailing at
time t for time to maturity τ . In addition, the bank is assumed to
charge its customers an annual spread of κL > 0 and never offers
its customers negative interest on loans. The latter assumption is
reasonable as most Swiss banks did not offer loans with negative
coupons in recent years. Finally, the monthly interest rate payment
r for a loan granted at time t with maturity τ is calculated as

r =
(
eYt(τ )+κL − 1

)+
. (9)

The sum of all interest payments that the bank receives at time t

on its loans is denoted by rt . For simplicity, interest payments from
loans in the legacy portfolio are calculated in the same way using
the initial yield curve Y0, as opposed to calculating them from the
yield curve history. Once a loan has been depreciated, it does not
pay interest any longer.

2.2.3. Deposits
As mentioned earlier, we assume a maturity structure for

non-maturing deposits such that non-maturing and term deposits
are treated equivalently from the computational viewpoint. The
distribution of deposits over different maturities is simulated via

a rolling scheme. Each deposit is associated with a maturity of
τ ∈ { 112 ,

1
6 , 1, 10} years. Once a deposit with face amount A

and reference maturity τ matures, the amount gets reinvested in
equal parts into monthly tranches up to the maturity τ . Thus,
A
τ
1t gets assigned to each maturity 1t, 21t, . . . , τ in the total

deposit portfolio. The initial assignment of deposits to the reference
maturities is provided by the bank. In addition, new non-maturing
deposits S̃Dt ∈ RN with face amount

‖̃SDt ‖1 =
ρSD

12
‖SDt ‖1, (10)

where ρSD = 4%, are placed with the bank. They are assigned to the
reference maturities via the same distribution used for the initial
deposits portfolio. Term deposits increase analogously by S̃Ft ∈ RN

with growth rate ρSD = 1%. New total deposits are then given by
S̃t : = S̃Dt + S̃Ft . Interest paid on deposits varies with the level of a
reference rate. The latter is defined as the 3mmoving average of the
6m-yield Yt(0.5). This approximates the 6m-CHF-OIS, a relevant
reference swap rate in practice. In addition, the bank imposes caps
(and floors) on the paid interest rates depending on the type of the
deposit. The time t interest rates for non-maturing deposits uDt and
term deposits uFt are given by

uDt = min{60%× Y t(0.5), 3%} (11a)

uFt = min
{
max{85%× Y t(0.5),Yt(0.5)− 0.25%}, 5%

}

(11b)

Y t(0.5) : =
(
Yt−1(0.5)+ Yt−2(0.5)+ Yt−3(0.5)

)

3
(11c)
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The interest on non-maturing deposits is less than the interest on
term deposits because non-maturing deposits are more liquid than
term deposits. The time t interest payment on a non-maturing
deposit (analogous for term deposits) with nominal 1 is then given
by

IDt = eu
D
t /12 − 1. (12)

Interest payments are assumed to be reinvested rather than paid
out. The reinvestment of interest payments is treated in the same
way as the reinvestment of maturing deposits. Deposits are the
equivalent of loans on the right-hand side of the balance sheet as
they can be seen as short positions in loans. The reinvestment of
interest on deposits introduces an asymmetry between these two
items, as interest on loans is assumed to be paid out.

2.2.4. Decision-independent cash flow
All other costs that impact the bank’s income are summarized

as personnel and material costs. These have to be paid at each time
step. Material costs are assumed to be the same for each time step,
whereas personnel costs grow by 2% annually. The total costs paid
at time t are denoted by ct ∈ R. Cash flows resulting from changes
in loans and deposits, interest received on loans rt , and costs are
independent of model decisions. Hence, the aggregated cash flow

CFt : = π (1)(Rt)− ‖R̃t‖1 + rt + ‖̃St‖1 − π (1)(St)− ct (13)

Can be calculated outside of the training loop.

2.3. Transition of decision-dependent
variables

This section describes the evolution of model variables that
depend on the investment and financing decisions made. This
includes the value of the bank’s equity at the final model step,
which determines the reward (loss) assigned to a given set of
actions. Consequently, the decision-dependent model variables
have to be recalculated during the training to optimize the actions.
The transitions of model variables in this section follow logically
from fundamental relationships of double-entry accounting. The
decision-dependent variables are the cash position, the investment
portfolio, the financing portfolio, and consequently, the bank’s
assets, liabilities, and equities. Their transition can be split into
the following iterative scheme: in each period, the balance sheet is
rolled forward, investment and financing decisions are made, and
the balance sheet gets restructured based on those decisions.

2.3.1. Income statement
On the one hand, the balance sheet is always with respect to

a snapshot in time and can be interpreted as a state variable. On
the other hand, the income statement is always with respect to a
certain time period and builds the bridge from the initial to the
final balance sheet of that period. While all revenues and most
costs result from cash flows of the balance sheet items listed earlier,
operational costs such as personnel and material costs have to be
accounted for in each model step. Furthermore, profit distributions

are made annually to shareholders. Thus, it is essential to monitor
equity over time. For our purpose, we do not need to break down
the profit & losses (P&L) into explanatory components such as
net interest income, depreciations, and operational costs. Instead,
we simply track the gross and net P&L before and after dividends,
respectively, on an aggregated basis; see later.

2.3.2. Roll-forward step
At the beginning of each period, the cash flows associated with

all balance sheet positions are realized. This step does not occur in
period t = 0, implying that the initial balance sheet is given with
no outstanding settlements. Recall that the cash flow resulting from
maturing and newly issued loans and deposits, interest received on
loans, and other costs has already been computed as the quantity
CFt outside of the training loop; see Equation (13). Furthermore,
cash flows resulting from coupon and nominal payments in both
the investment and borrowing bonds are realized. While the cash
position is assumed not to earn positive interest, the bank might
have to pay interest on its cash: in times when the short end of the
yield curve is negative, the bank is granted a maximal allowance to
deposit cash at the central bank which is exempted from negative
interest. This amount is limited based on the minimum reserves
MR of the bank; see Equation (24b) in the following for the exact
terms. If the bank exceeds this limit in cash, it has to pay the
market interest rate at the short end of the yield curve (i.e., for the
maturity 1t). This mechanism is modeled by charging the bank a
cash penalty cpt that corresponds to the negative interest the bank
has to pay, namely

cpt : = (Ct − 30×MR)+
(
min

{
1

Dt(1t)
, 1

}
− 1

)
, (14)

which, due to its dependence on Ct , is decision-dependent. Thus,
during the roll-forward step, all cash flows together result in the
cash update

C
pre
t+1t = Ct + CFt + π (1)(Bt)− π (1)(Kt)− cpt , (15)

where pre indicates that C
pre
t+1t is not yet the cash at the end of

period t+1t, but rather an intermediate quantity as it has not been
updated yet by the bond transactions initiated at time t +1t.

As cash flows are realized, balance sheet positions have to
be updated. Loans and deposit portfolios evolve as discussed in
Section 2.2. Investment and borrowing bond portfolios also have to
be rolled forward: the due amounts (i.e., the first entry in the vectors
Bt and Kt) are removed and all other payoffs are moved forward in
time (entries in vectors are shifted up by one position), restoring
the interpretation that the kth entry of the vector Bt+1t represents
cash flows being settled in period t + (1 + k)1t. Finally, all cash
flows need to be reevaluated under the prevailing yield curve at time
t + 1t. Therefore, the state of the balance sheet positions after the
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roll-forward step is thus given by

B
pre
t+1t = UBt , (16a)

K
pre
t+1t = UKt , (16b)

V
(
B
pre
t+1t

)
=
〈
Dt+1t ,B

pre
t+1t

〉
, (16c)

V
(
K
pre
t+1t

)
=
〈
Dt+1t ,K

pre
t+1t

〉
, (16d)

A
pre
t+1t = C

pre
t+1t + V

(
B
pre
t+1t

)
+ V(Rt+1t), (16e)

L
pre
t+1t = V(St+1t)+ V

(
K
pre
t+1t

)
, (16f)

E
pre
t+1t = A

pre
t+1t − L

pre
t+1t . (16g)

2.3.3. Restructure step
With the roll-forward of the balance sheet, the new period

t + 1t has now started, and the bank can make its investment
decisions aBt+1t and financing decisions aKt+1t . These decisions
could be the result of any policy the bank wants to pursue,
including one that directly parametrizes the actions with neural
networks, i.e., the Deep ALM approach as presented in Section 3.2.
The restructure step updates the balance sheet according to the
investment and financing decisions made. This involves updating
the bond portfolios by adding the cash flows of the newly bought
and issued bonds to the existing portfolios at the correct maturities,
i.e.,

Bt+1t = B
pre
t+1t +

bB∑

i=1
π (i) (aBt+1t

)
ZB,i
t , (17a)

Kt+1t = K
pre
t+1t +

bK∑

i=1
π (i) (aKt+1t

)
ZK,i
t . (17b)

Consistently, cash is updated as

Ct+1t = C
pre
t+1t − V

(
ZB,i
t

)
+ V

(
ZK,i
t

)
. (18)

Bond transactions affect bank’s equity since transaction costs need
to be borne (in terms of a spread). This implies that the decision-
making and restructuring steps are not income-neutral, and we
generally have Et+1t 6= E

pre
t+1t . The value of equity at the end of

the period can be calculated as

V(Bt+1t) = 〈Dt+1t ,Bt+1t〉 , (19a)

V(Kt+1t) = 〈Dt+1t ,Kt+1t〉 , (19b)

At+1t = Ct+1t + V(Bt+1t)+ V(Rt+1t), (19c)

Lt+1t = V(St+1t)+ V(Kt+1t), (19d)

Et+1t = At+1t − Lt+1t . (19e)

The last restructure step is conducted at time T −1t. It is followed
by a terminal roll-forward, whose resulting equity component will
be decisive in the optimization exercise.

2.3.4. Annual closing step
At the end of each year, the bank distributes a dividend

δt amounting to 50% of its profits over the present year. The
distributed cash directly decreases the bank’s equity. On the

monthly time scale, this translates into performing every 12th time
steps an additional update

δt =
(Et − Et−1)

+

2
, (20a)

C
post
t = Ct − δt , (20b)

E
post
t = Et − δt , (20c)

where t ∈
(
T \ {T}

)
∩ N and post indicates that these are the cash

and equity values after the dividend has been paid out.

2.4. Constraints

The bank operates in a highly regulated environment that
imposes constraints on the bank’s decisions. We are seeking for
optimized control when adhering to all rules. We already restricted
the bank’s behavior inherently via the assumptions that all bonds
are held-to-maturity and that short sales are not allowed. In
addition, we take into account five regulatory constraints inspired
by Basel III (see Basel Committee on Banking Supervision 2011),
whose compliance is controlled whenever the balance sheet has
been restructured. The weights below were determined in close
collaboration with the bank to reflect the real weighting based on
a more detailed accounting basis as closely as possible.

2.4.1. Leverage constraints
To limit the leverage of banks, the Basel III framework divides

the bank’s capital into different tiers and places leverage constraints
on each tier of capital. For model tractability, we summarize these
constraints into a single leverage constraint on the ratio between
equity Et and risk-weighted assets RWAt . The latter is a weighted
sum of the bank’s assets, where the weights reflect the risk associated
with each class. The constraint is defined as

Et

RWAt

!
≥ 17%, (21a)

RWAt : = 10%× V(Bt)+ 35%× V
(
RPt
)
+ V

(
REt
)
. (21b)

2.4.1.1. Liquidity constraints

As opposed to previous regulations, the introduction of the
Basel III framework placed a significant focus on liquidity risks that
became particularly apparent during the financial crisis in 2008.
In our framework, liquidity risks are monitored by two ratios,
the liquidity coverage ratio (LCR) and the net stable funding ratio

(NSFR). The LCR ensures that the bank has enough liquidity to
cover the net cash outflow during a 30d stress period, denoted by
NO30

t . This outflow is approximated as a linear combination of
the outstanding deposits and financing. High-quality liquid assets

(HQLA) are required to exceed the net outflows by a buffer of at
least 5%. More precisely,

LCRt : =
HQLAt

NO30
t

!
≥ 105%, (22a)

HQLAt : = 71%× Ct + 89%× V(Bt), (22b)

NO30
t : = 17.6%× V

(
SDt
)
+ 13.0%× V

(
SFt
)
+ 1.0%× V(Kt).

(22c)
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The NSFR aims to enforce liquidity over a longer horizon. It
considers the ratio between the available stable funding (ASF) and
the required stable funding (RSF) of the balance sheet. Similarly,

NSFRt : =
ASFt
RSFt

!
≥ 105%, (23a)

ASFt : = 95%× V
(
SDt
)
+ 90%× V

(
SFt
)
+ 60%× V(Kt)

+ 100%× Et , (23b)

RSFt : = 12%× V(Bt)+ 71%× V(Rt). (23c)

In addition to LCR and NSFR, Swiss banks have to hold aminimum

reserve at the SNB. In times of negative interest rates, the SNB
demands higher reserves than usual. We frame this constraint via
the cash to minimum reserve ratio (CMR) as

CMRt : =
Ct

MRt

!
≥ 100%, (24a)

MRt : = 2.5%×
(
V
(
SDt
)
+ V

(
SFt
)(
1− 80%× 1{Yt(1/12)≥0}

))
.

(24b)

2.4.1.2. Interest rate sensitivity

The final constraint that is motivated from a regulatory
perspective restricts the interest rate risk. To this end, one calculates
the sensitivity of the bank’s equity toward a parallel shift of the
yield curve by ±100 bps. Let Ẽt denote the residual equity if all
other balance sheet items are reevaluated under the discount factors
implied by the shifted yield curve. It is imposed that

IRSt : =
|̃Et − Et|

Et

!
≤ 8.5%. (25)

2.4.1.3. Minimum annual return

Finally, we impose a lower bound on the annual revenue, which
the bank is not supposed to undercut. It is motivated by preventing
losses under any circumstances. The profit ought to exceed at least
the basic operational cost plus an additional buffer of mCHF 6.
Formulated in terms of the excess yearly return-on-equity (EYR),
it reads

EYRt : =
(Et − Et−1)− 6

Et−1

!
≥ 0. (26)

This constraint is calculated on an annual basis during the annual
closing step for t ∈

(
T \ {T}

)
∩ N.

2.5. Objective

Formulating reward functions for real-world reinforcement
learning applications is challenging, since one has to capture
human preferences on the policy and its outcomes via a single
number. ALM involves many stakeholders that have detailed
and potentially different preferences on the ALM policy and
the resulting evolution of balance sheet positions. Even the
fundamental goal of ALM is ambiguous because the bank must
trade off profitability versus hedging; see Spillmann et al. (2019,
Chapter 2). As profits are recognized in equity, we act as if
preferences in the ALM problem could actually be reduced to
characteristics of the bank’s equity distribution at the horizon

T. The prerequisite that constraints should not be violated is
additionally incorporated into the loss signal.

The assumption of solely focusing on the value of the bank’s
equity at time T might not truly capture preferences in this setting.
Indeed, not all paths with the same final equity value ET are valued
equally from a practical perspective. Banks prefer their equity to be
steadily increasing along its path to time T and are concerned with
its maximum drawdown. This path preference is to some extent
accounted for in the constraints; Equation (26) implies that equity
paths with elevated drawdowns feature a higher loss provided
that the minimum annual return has ever been violated at all.
Otherwise, two equity paths will be evaluated as indifferent if they
have the same final equity value. A possible remedy could entail
to replace the single reward with compounded rewards based on,
e.g., E1,E2, . . . ,ET . We restrict our analysis to loss functions based
only on ET because even rewarding intermediate equity values
does not entirely solve the more pressing issue of neglecting how
well the bank will do after time T. Ignoring long-term success
is not in alignment with true preferences as the bank will not
be liquidated after time T but is a going concern. Ideally, this
should not be problematic as all balance sheet items are valued
fairly. If the cash flow structure of balance sheet positions is
determined to be suboptimal for the bank after time T, it could
simply be restructured without decreasing the bank’s equity. In
the presence of market frictions and short-selling constraints, it
becomes questionable whether restructuring at negligible cost is
possible. The experiments presented below indicate that the time
horizon T has an impact on the learnt strategies. Furthermore,
the bank seeks to avoid significant restructuring within short time
periods.

The going concern principle motivates modeling the problem
as an infinite decision problem, in which discounted rewards are
issued periodically. DSC, as presented earlier, is not well suited
for a problem with an infinite time horizon. We would require a
different type of algorithm. Therefore, we restrict our formulation
of the ALM problem to a finite time horizon T. If cutting off the
problem leads to degenerate behavior toward the end of the model
period, increasing the horizon T might make it less relevant: as long
as there is enough time between today and time T, current actions
might be unrelated to this behavior, and thus still be useful. We
will investigate this issue later by comparing strategies for different
model horizons T.

2.5.1. Constant relative risk aversion
If preferences are rational11, maximizing preferences on the

distribution of ET becomes equivalent to maximizing the expected
utility E

[
u(ET)

]
, where the so-called Bernoulli utility u(x) :R→ R

assigns a real value to a given realization x of ET . The assumption
that investors are risk averse translates into the requirement that
u is concave and non-decreasing. Since the underlying preference
structure of the bank’s shareholders is elusive, it is unclear what
Bernoulli utility u describes the risk appetite most accurately. This
problem is commonly approached by restricting u to be from a
specific class of utility functions that are characterized by a small

11 In the sense of von Neumann and Morgenstern (1947).
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number of parameters. This includes the class of utility functions
with constant relative risk aversion (CRRA), where u is of the form

u(x; γ ) =





x1−γ − 1

1− γ
if γ 6= 1,

log x if γ = 1.
(27)

As indicated by the name, relative risk aversion, defined by
−xu′′(x)/u′(x), equals γ for all x > 0. For DSC, the parameter γ is
reverse engineered such that the terminal equity distribution of the
learnt strategies is balanced. Because the ALM problem is framed
as a minimization problem, we define the utility loss component ℓu

as the negative utility of the equity ratio, i.e.,

ℓu (ET | E0; γ ) : = −u
(
(ET)+ + ε

E0
; γ
)
; (28)

The equity ratio is floored at 0 < ε/E0≪1 to ensure that the CRRA
utility remains well defined.

2.5.2. Target return
Alternatively to the formulation as a utility maximization

problem, Krabichler and Teichmann (2020) suggest framing the
ALM problem as a hedging problem. Given an annual return target
µ, this approach aims at minimizing the difference between the
bank’s final equity and the implied target value. This target loss is
defined as

ℓt (ET | E0;µ) : =
(
ET − (1+ µ)TE0

)2
. (29)

Economically, this loss function encodes a preference for
adequate risk-adjusted returns. It has the advantage that the
hyperparameter µ is easily interpretable as opposed to the abstract
notion of the risk aversion coefficient.

2.5.3. Penalties
The bank aims to maximize investor utility while sticking

to several constraints. We encode this in the loss function by
penalizing any violation of one of the six constrained quantities
from Section 2.4. Denoting by xit the constrained quantity (e.g.,
LCRt) at time t and by β i the bound corresponding to the constraint
(e.g., 105% for LCR), the extent of the ith breach at time t is
calculated as

Pit : =

{(
1+ (xit − β i)+

)2 − 1 if i ∈ {1, 2, 3, 4, 6},
(
1+ (β i − xit)

+)2 − 1 if i = 5,
(30)

where i = 5 in the order of Section 2.4 corresponds to the interest
rate sensitivity constraint. Taking the square of the violations
encodes the preference that large violations are “more than linearly”
worse than small violations. The intuition is that slight violations
of a specific constraint are bad for the bank, while significant
violations are detrimental.

Input: Initial state x0

x← x0, p← 0

for i← 0 to H − 1 do
if i > 0 then x← RollForward (x) a← Policy (x)

x← Restructure (a, x)

p← p + ConstraintViolations (x)

if (i mod 12) = 0 then x← AnnualStep (x)

end for

x← RollForward (x) // no restructuring in final

period

L← LossFunction (x, p)

return L

Algorithm 1. ALM.

The accumulated penalty p is defined as the weighted sum of
all violations Pit . It is used to calculate the loss component for
constraint violations

ℓp(p) : = (1+ p)2 − 1, (31a)

p : =
6∑

i=1
σi

T−1∑

t=0
Pi(x

i
t). (31b)

The penalty is squared again, implying that large violations over
the entire model period are “more than linearly” worse than small
violations. The weights σi can be chosen to adjust for different
magnitudes of the constrained quantities. Moreover, one can use
these weights to encode preferences over the relative importance
of different constraints. For instance, the weight of the penalty
for violations of the minimum return is relatively small as this
constraint is less binding than the regulatory constraints.12

2.5.4. Loss
Finally, the loss associated with a single path i is given as a

weighted sum of the utility loss and the penalty loss, i.e.,

ℓ(ET , p | E0; γ , λ) = ℓu(ET | E0; γ )+ λ ℓp(p), (32)

where λ > 0 determines the impact of the penalty on the total loss.
The ALM problem is given by

min
{at}t∈T\{T}

E
[
ℓ(ET , p | E0; γ , λ)

]
, (33)

where ET and p result from the transition dynamics outlined in this
section. Calculating the loss concludes the forward computations
in the ALM framework. Algorithm 1 provides an overview in which
order the presented steps are executed to obtain the final loss signal.

12 This does not mean that theminimum return constraint has the smallest

impact on the penalty component of the loss. On the contrary, we will later

find that this constraint is more di�cult to comply with than others; see

Section 4.1.
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2.6. Swaps

This section describes a model refinement by additionally
incorporating plain-vanilla interest rate swaps into the
decision process. Interest rate swaps are contracts between
two counterparties that exchange floating payments for fixed
payments. At predetermined times, one party (payer) pays a
fixed payment and receives a floating payment, and the other
party (receiver) receives the fixed payment and makes the floating
payment. The fixed payments are called fixed as their amount
is determined when the contract is entered into. The floating
payments are determined throughout the duration of the contract
based on a floating rate (e.g., LIBOR, up until recently, and
compounded overnight rates). A brief and relevant introduction to
swaps can be found in Filipović (2009, Chapter 1).

The basic ALM framework presented above is limited by the
assumption that the bank can only invest in bonds and issue bonds.
This neglects the bank’s ability to control its interest rate exposure
via swaps. In a second step, we extend the ALM framework by
the introduction of interest rate swaps. Each period, the bank can
additionally enter into s = 6 payer and receiver swaps, respectively,
with maturities 5y–10y. Similarly to bonds, swaps cannot be sold
in the secondary market and must be held until expiration. Swap
payments occur on an annual basis starting exactly 1 year after
issuance. The floating payments are determined 1 year before their
payment and are given by the simple 1y spot rate prevailing at that
time. The fixed payments are chosen such that the initial value
of the swap is zero. The bank has to pay an annual spread of
κS = 0.02% on both payer and receiver swaps. In absolute terms,
the spread on swaps is smaller than the spread on bonds.

Recall that we keep track of bond positions by simply adding
the entire cash flow of a bought or issued bond to the aggregated
cash flow of the bond portfolio. This mechanism does not work for
swaps as the cash flows of the floating leg are not known at issuance
and are scenario-dependent. Instead, the position in each swap has
to be kept separately. Computationally, this is done by keeping
track of the holding portfolios h

pay
t ∈ R

s(H−1)
≥0 and hrect ∈ R

s(H−1)
≥0

that denote the number of payer and receiver swaps, respectively,
that are owned at a given time t ∈ T. The first dimension of h

pay
t is

the number of payer swaps that exist over the entire model horizon.
Hence, each entry of the h

pay
t denotes the volume with which a

specific payer swap has been entered into at time t. The holding
portfolios are initialized with zeros at all entries, i.e., we assume
that there are no legacy swaps. At any time step t, the bank can
then decide on the number of new payer swaps a

pay
t ∈ Rs

≥0 and new
receiver swaps arect ∈ Rs

≥0 it wants to enter into. In the restructuring

step, a
pay
t (arect ) is added to h

pay
t (hrect ) at the correct indices.13 Also

note that a
pay
t and arect have to be included in the control at . In

the extended setting, at is therefore of dimension 2(b + s) and a
concatenation of aBt , a

K
t , a

pay
t , and arect .

The change in cash within the roll-forward step has to be
adjusted to account for payoffs originating from swaps. If a swap
i ∈

{
1, 2, . . . , s(H − 1)

}
has an exchange of cash flows in period

t and the fixed payoff is given by ki, the net cash flow ηit from the

13 We use the convention that a
pay
0 is added to the first s entries of h

pay
t , a

pay
1

is added to entries s+ 1 until 2s, and so forth.

position in this swap is given by

η
payi
t : = h

payi
t

((
1

Dt−1(1)
− 1

)
− ki − κS

)
, (34a)

η
reci
t : = h

reci
t

(
−
(

1

Dt−1(1)
− 1

)
+ ki − κS

)
(34b)

depending on whether we are dealing with a payer or receiver swap.
The cash flows η

payi
t , ηrecit from all swaps i ∈ {1, 2, . . . , s(H − 1)

}

have to be added to the cash update in Equation (15). While the
initial value of any swap contracts is zero (with the exception of a
spread), swap positions have to be reevaluated in every roll-forward
(Equation 16) and restructuring step (Equation 19). The fixed leg,
the floating leg, and the associated spreads of each swap are valued
using standard techniques involving the forward rate curve. The net
value of all swap positions is considered to be an asset or liability for
the bank if it is positive or negative, respectively. To calculate the
required replacement values, we define the net swap assets NA and
net swap liabilities NL as

NA
: =

(
V(h

pay
t )+ V(hrect )

)+
(35a)

NL
: =

(
V(h

pay
t )+ V(hrect )

)−
(35b)

and add NA to the asset calculation and NB to the liability
calculation in the valuation step (Equation 16) and restructuring
step (Equation 19), respectively.

We assume that the general calculation of constraints from
Section 2.4 does not need to be adjusted in the extended setting.
In particular, the impact of swaps on LCR, NSFR, and RWA is
negligible. Still, the inclusion of swaps in the balance sheet impacts
the leverage constraint on the ratio Et/RWAt . Furthermore, the
interest rate sensitivity constraint is of course significantly impacted
by the inclusion of swaps. The value of the swap portfolio impacts
both the value of equity Et and the value of equity under the shifted
yield curve Ẽt . In the presence of swaps, this constraint becomes
particularly important as the model could otherwise enter into
positions with large exposures to interest rate risk.

While most balance sheet constraints remain unchanged, the
number of payer swaps (a

pay
t ) and receiver swaps (arect ) that the

bank can enter into in each period is constrained. Next to the solely
computational requirement that these must be non-negative14, we
place the liquidity constraint that ‖apayt ‖1 ≤ 100 and ‖arect ‖1 ≤ 100.
This implies that each month, the bank can only enter into payer
and receiver swaps involving a notional amount up to mCHF 100.
Finding counterparties for larger swap positions may not be easily
possible in due course. Moreover, the total sum of outstanding
payer and receiver swaps is required to be less than mCHF 3 800
andmCHF 2 800, respectively. More precisely, the constraints

t∑

s=0
‖apayt ‖1 ≤ 3 800, (36a)

t∑

s=0
‖arect ‖1 ≤ 2 800 (36b)

14 A short payer swap is a receiver swap, and vice versa. This restriction is

imposed to prevent redundancies in the action space.
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must be satisfied for all t ∈ T \ {T}. This is a simplification
of a typical requirement from hedge accounting. The volume
of payer and receiver swaps should not exceed the volume of
unhedged assets and liabilities, respectively, at a given maturity.
Correspondingly, swaps are intended to hedge outstanding interest
rate risk, in contrast to taking on interest rate risk. The upper
bounds were provided by the bank. They represent approximatively
the volume of unhedged assets and liabilities that have maturities
between 5y and 10y. While a dynamic recalculation of such limits
would be more precise, we suspect that it should not impact
results heavily, considering that loans and deposits evolve almost
deterministically.

2.7. Term structure models

All approaches make use of a Monte Carlo approximation of
the expected loss (Equation 33). This requires simulating a set
of scenarios for the evolution of the yield curve, as discussed in
Section 2.7. In principle, the approaches presented later can be
applied to any set of yield curve scenarios. This general applicability
does not mean that the “performance” of the different approaches
does not differ based on the choice of simulated yield curves.
Indeed, the contrary is the case: our experiments demonstrate how
the yield curve simulator induces a bias in the model’s decisions.

While treating the yield curve as a function R(t, ·) :[t,∞)→ R

is mathematically convenient, prices are observed in practice for
several types of bonds, but only for a limited number of maturities.
For the Deep ALM framework, we need to model the yield curve
at only N maturities. We therefore refer to the N-dimensional
vector Y as the yield “curve”, where the kth entry of Y is equal
to R(t, t + k1τ ) for a maturity step size 1τ . Apart from the last
paragraph in Section 2.7.4, the following can be skipped by the
knowledgeable reader.

2.7.1. Simulation
We approach the ALM problem with a Monte Carlo-based

deep learning method. The method uses a collection of scenarios
to optimize the ALM decisions. Each scenario specifies the future
development of variables that are relevant to the ALM problem.
While some of those variables evolve deterministically, others
are stochastic, i.e., differ between scenarios. The most important
stochastic variable in ALM is the yield curve as it determines the
rates at which the bank can lend and borrow money from both
customers and investors. In fact, in our model of the ALM problem,
the yield curve is the only source of randomness. Yield curve
scenarios can be obtained by specifying a model for interest rate
dynamics and then sampling from it. Ideally, this model satisfies
the following criteria. First, it is financially reasonable to impose
absence of arbitrage in the simulated bond market. Even statistical
arbitrage is undesirable when using the simulation for training deep
learning-based traders. They are likely to find and exploit risk-free
profits that exist under the training distribution. But the simulated
training distribution relies on an estimation of the mean returns of
the traded assets (here bonds). If the estimation is flawed, trading
strategies that were profitable under the simulated distribution are

certainly not guaranteed to be so in practice; for a discussion in the
related context of deep hedging, see Buehler et al. (2022a).

In the ALM framework developed in Section 2, the bank faces
significant trading restrictions. This means that even if there exists
arbitrage in the market, the bank might not be able to exploit this
opportunity (at all, or at least on an arbitrarily large scale). This
is pointed out similarly in the context of deep hedging by Buehler
et al. (2019). First, the bank faces spreads when interacting with the
market. Hence, an arbitrage opportunity can only occur when the
payoff of this trading strategy net of the initial transaction costs is
almost surely non-negative. Second, the bank is restricted to long-

only buy-and-hold-strategies in its bond portfolios. This naturally
restricts the set of trading strategies available to the bank.

When training a deep learning model on these paths, it is
likely beneficial, if not necessary, to have a sufficiently rich class of
yield curve scenarios; see also Reppen and Soner (2023). Having
variability among scenarios helps the model explore the space of
future attainable yield curves. This likely helps the performance of
the deep learning model at inference on the real-world scenario.
From an empirical perspective, it might be desirable to have a
yield curve simulator that reproduces patterns observed in the past.
Such stylized facts include that the yield curve tends to be shaped
upwards, that short-maturity yields tend to fluctuate more than
long-maturity yields, and that yield curve inversions usually happen
when short-term rates are high; see Pedersen et al. (2016, p. 11).

The Deep ALM method splits the optimization into two parts:
simulating a set of yield curve scenarios and then solving the
optimization conditional on the simulated data. This means that
irrespective of what model is chosen to simulate yield curves, the
choice itself represents a source of model risk in the Deep ALM
framework. This type of model risk is not unique to the Deep ALM
framework but is present in many deep learning applications in
quantitative finance; see Cohen et al. (2021).

2.7.2. Svensson model
While for some maturities one might observe multiple prices

in real-world fixed income markets as bonds are issued by different
institutions, for other maturities they might not observe any bond
prices at a given point in time. Hence, to obtain ’the’ yield curve,
some form of interpolation (or even extrapolation) is necessary.
To this end, central banks such as the ECB or the SNB fit
specific exponential-polynomial functions with a parsimonious
parametrization to observed market yields. A popular choice is the
model proposed by Svensson (1994), where the yield for a maturity
m > 0 is given by

R(t, t +m) = β0 + β1


1− e

(
−m
τ1

)

m
τ1




+ β2


1− e

(
−m
τ1

)

m
τ1

− e

(
−m
τ1

)


+ β3


1− e

(
−m
τ2

)

m
τ2

− e

(
−m
τ2

)
 . (37)
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The six parameters β0,β1,β2,β3, τ1, and τ2 are calibrated to fit
observed market yields. Both ECB and SNB provide daily data of
the fitted parameters from which historical yields for any maturity
can be obtained. This is useful in the Deep ALM framework when
calibrating a yield curve simulator to historical yield curves.

2.7.3. Principal component analysis
From the previous analysis it is obvious that, at least for a

fine grid size 1τ , the yield curve is a high-dimensional random
vector with high dependencies between its elements. For modeling
yield curve dynamics, it is natural to consider a lower-dimensional
representation of the increments via a dimensionality reduction
technique like principal component analysis (PCA); e.g., see
Murphy (2012, Chapter 12). The yield curve dynamics can often be
sufficiently described via its first three principal components; e.g.,
see Litterman and Scheinkman (1991). In this article, the approach
to simulate yield curves is slightly different compared to classical
PCA models. First, we apply a PCA on historical CHF forward
curves and infer a deterministic, term-dependent volatility of a
three-dimensional, risk-neutral HJM-type term structure. Second,
PCA is utilized directly on simulated yield curves to obtain a
low-dimensional representation of the yield curve as a feature for
Deep ALM.

2.7.4. Heath-Jarrow-Morton framework
Let the stochastic basis be a filtered probability space

(�,F , (Ft)t≥0,P) in continuous time. Heath et al. (1992) proposed
modeling the term structure of interest rates by specifying the
stochastic evolution of the entire instantaneous forward rate

curve. Under the no-arbitrage condition, these dynamics are fully
specified by the volatility structure. A brief to the HJM framework

can be found in Filipović (2009, Chapter 6).
Let α and σ be two stochastic processes, taking values in R and

Rd that depend on two indices t and T, i.e., α = α(ω, t,T) and
σi = σi(ω, t,T) for all i = 1, 2, . . . , d. The forward rate process{
f (t,T)

}
t≥0 for 0 ≤ t ≤ T is assumed to follow the dynamics

df (t,T) = α(t,T) dt + σ (t,T) dW(t), (38)

where W denotes a d-dimensional Brownian motion under the
objective measure P. Equation (38) is well defined under some
measurability and integrability assumptions; see Filipović (2009,
Chapter 6) for further details. The initial forward curve f (0,T) is a
model input and can be chosen to reflect the prevailing yield curve
in the market. Heath et al. (1992) show that under an equivalent

local martingale measure Q for the discounted bond price process,
the forward rate dynamics 0 ≤ t ≤ T are given by

df (t,T) =

(
σ (t,T)

∫ T

t
σ (t, s)⊤ds

)
dt + σ (t,T) dW∗(t), (39)

where W∗ is a d-dimensional Brownian motion under Q. The
HJM framework is very general and many classical interest rate
models can be derived within it; see Brigo and Mercurio (2007,
Chapter 5). Because the initial forward curve is a model input, HJM
models match the initial term structure without any calibration.

This is important in a practical application like ours and an
advantage over simple short-rate models such as, e.g., Vašiček
(1977). But there are also practical challenges associated with the
large degree of freedom that the HJM framework offers. This
includes the important choice of the volatility structure σ . For a
general choice of σ , the short rate r(t) = f (t, t) is not Markovian,
which, while undesirable for many practical applications, is not
necessary for the Deep ALM framework. For the simple tenor-
dependent volatility structure used in Section 2.7.5, the dynamics
of the short rate actually are Markovian with respect to a finite-
dimensional state; see Cheyette (2001).

For the remainder of this article, we make the simplifying
assumption that the real-world measure and the risk-neutral
measure coincide, i.e., P = Q. This assumption could be relaxed by
exogenously specifying the market price of risk. While this would
not change the general ALM framework developed in the next
sections, it would impact the learnt strategies and possibly lead to
different interpretations.

2.7.5. Tenor-dependent HJM model
Specifying a yield curve model that meets all the requirements

from Section 2.7.1 is not trivial. Simple short rate models, such as
Vašiček (1977), are not well suited as their few degrees of freedom
have to be used for calibration to the initial yield curve. The HJM-
type model that we use to simulate yield curves assumes a simple
structure of the instantaneous volatilities. These are assumed to be
constant over time and tenor-dependent. The method matches the
initial yield curve inherently and generates a variety of shapes.

In the following, the forward curve refers to the random N-
dimensional vector Ft instead of the function f (t,T). The jth entry
of Ft is equal to f (t, t + j1τ ) for some discretization size 1τ .
Similarly, At ∈ RN denotes the vectorized version of α(t,T) and
Vt ∈ RN×d denotes the vectorized version of σ (t,T). Note that
the latter is a matrix as σ (t,T) already is a d-dimensional vector.
Evaluating (38) at all the tenors of Ft yields the N-dimensional
stochastic differential equation

dFt = At dt + Vt dWt , (40)

describing the dynamics of the forward curve vector. In this form,
the instantaneous volatility structure is captured by the matrix Vt ,
which fully determines the drift At under the risk-neutral measure;
see Equation (39). For modeling purposes, one has to specify the
dynamics of {Vt}t≥0. We use a particularly simple model where the
instantaneous volatility structure is assumed to be constant over
time, i.e., Vt ≡ V . This means that the forward curve is exposed
to the d-dimensional shockWt with a possibly different magnitude
at each tenor. The jth column vector ofV , denotedV(j), specifies the
tenor-dependent exposure toW

j
t . ThematrixV is fitted to historical

data by decomposing the historical forward curve increments into
its principal components. Moreover, this relies on the assumption
P = Q. The precise fitting method is as follows:

1. Estimate the covariance matrix 6̂ of weakly forward curve
changes {1Ft}t=0,1,...,T and annualize it by multiplying 6̂ by 52.

2. Apply an eigendecomposition on the scaled, estimated
covariance matrix, i.e., 6̂ = Q3Q−1, where the columns of
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Q ∈ RN×N are the eigenvectors of 6̂ and 3 ∈ RN×N is the
diagonal matrix containing the eigenvalues of 6̂.

3. Keep the first d = 3 eigenvectors and scale them by their
eigenvalues, i.e., Ṽ(j)

: = λjQ
(j) for j = 1, 2, . . . , d.

4. To regularize the estimate, approximate the vectors Ṽ(j)

as polynomial functions of the tenors. The degree of the
polynomials is a modeling choice; we use cubic polynomials.

5. Set the jth column vector of V equal to the jth fitted polynomial
evaluated at the relevant tenors.

We model σ (t,T) as a d-dimensional vector where the entries
are polynomials as functions of the tenor T− t. Following the HJM
approach, the risk-neutral drift At ≡ A is given by the drift in
Equation (39) and can be approximated using the trapezoidal rule.
Future forward curve paths can be simulated via

Ft+1t = Ft +
(
A+

∂Ft

∂τ

)
1t + V (Wt+1t −Wt) , (41)

where ∂τFt is approximated as the forward difference.15 Finally, the
kth entry of the vector of zero coupon bond prices Dt (discount
factors) is calculated by the approximation from Glasserman (2003,
Chapter 3)

Dk
t = exp


−

∑

j≤k
F
j
t1τ


 , (42)

where the superscripts refer to the components of the respective
vectors. We refer to this method as the HJM-PCA approach. The
following hyperparameters are associated with it: the start and end
date of the historical data used to fit the principal components,
the time discretization (here weekly), the number of principal
components fitted, and the degrees of the polynomials fitted to the
principal components. See Table 2 for our concrete choices.

Figure 4 shows the 1m-yields simulated using the HJM-PCA
approach. Short-term rates are increasing in most scenarios which
is roughly in line with expectations expressed by the bank on
physical realizations of future yields. In more than 95% of the
scenarios, the short-term yield stays above −1%. This is desirable
for our application as many of the modeling assumptions in
the ALM framework would be poor if yields were to fall to
historically unprecedented negative levels. The left-hand side of
Figure 5 shows entire yield curves attained using the HJM-PCA
approach to simulate 5 years into the future. Most yield curves
lie above the initial curve and there is a decent variety of yield
curve shapes. In the mean, yield curves have a slightly positive
slope that is smaller than that of the initial yield curve. According
to the bank, this is a reasonable assumption as the yield curve
has been artificially steep in times of negative interest rates.
Overall, the simulated yield curves seem reasonable and suited
for our application. While the HJM-PCA model is certainly not
perfect, yield curve simulation is not the main focus of this
article. Instead, the focus lies on optimizing an ALM policy
conditional on a set of simulated yield curves. The striking feature

15 The issue that one cannot take the forward di�erence for the last

entry of Ft is solved by starting with a higher-dimensional forward curve,

where the additional entries correspond to larger maturities, and reducing

the dimensionality of Ft step-by-step.

TABLE 2 Hyperparameters—There are many hyperparameters within the

Deep ALM framework.

Hyperparameter Value

Yield curve simulation (HJM PCA)

Number of principal components 3

Degree of polynomials 3

Yield curve data period for PCA (data source:
SNB)

01.01.2005 - 15.07.2022

Neural network parameters

Dimension of hidden encoding layers 64

Dimension of encoding 32

Dimension of hidden layers [512, 512, 256, 128]

Activation function ELU

Loss function parameters

Target parameters: [µd , µu], µeval [2%, 7%],∼ 4%∗

Penalty coefficients: σi (LCR, NSFR, CMR,
E/RWA, IRS, EYR)

[1.0, 0.2, 1.0, 2.5, 2.0, 0.002]

Penalty weight: [λd , λu], λeval [0.05, 25.0], 3.5

Training parameters

Epochs∗∗ 100

Training scenarios∗∗ 40,000

Batch size 32

Optimization parameters

Optimizer RAdam

Learning rate cyclic scheduler on [5e-4,
5e-3]

Gradient clip value 0.2

This table presents the most important ones, excluding the hyperparameters of the ALM

simulation as presented in the text and the notation tables in the Appendix.
∗Differs based on the setting. See Table 3 for the exact choices.
∗∗The best models are fine-tuned on constantly resimulated paths.

of our Deep ALM approach is that one can easily substitute
the HJM-PCA model by any other method for simulating yield
curve movements.

3. Deep ALM

In this section, we present approaches for solving the ALM
problem defined in Section 2: how should the investment and
financing decisions (at)t∈T\{T} be made to minimize the expected
loss (Equation 33)? We start by presenting simple benchmarks
(Section 3.1) and then describe the full Deep ALM approach for
tackling the basic ALM setting without swaps.

3.1. Benchmarks

Defining an algorithmic benchmark that mimics how banks
make ALM decisions in practice is virtually impossible. These
decisions are often made through a combination of simple
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FIGURE 3

Simulated 1m-Yields (HJM-PCA)—In the plot on the left-hand side, the solid line represents the median 1m-yield over all scenarios. The darker
shaded area is enclosed by lines representing the 25% quantile and the 75% quantile. The lighter shaded area is enclosed by the 5% quantile and the
95% quantile.

FIGURE 4

Simulated yield curves in 5y—The left-hand side shows a random sample of the terminal term structure simulated with HJM-PCA over a horizon of
5y. We encounter a rich family of di�erent shapes. On the right-hand side, we see a random sample generated by a Hull-White-extended Vašiček
model calibrated to the recent past; e.g., see Brigo and Mercurio (2007, Chapter 5). We chose the long-term mean time-dependent to match the
initial yield curve and left the mean reverting rate as well as the instantaneous volatility constant. Regarding Deep ALM, the encountered diversity is
not su�cient to get convincing results.

models and expert judgment. Having a strategy that can easily
be computed is of course one of the main motivations behind
Deep ALM. For benchmarking purposes, we therefore define and
optimize strategies endogenously in the ALM framework. The
benchmarks were especially valuable during the development of the
deep learning models because the benchmarks are much simpler
to optimize.

3.1.1. Equal allocation
A naive approach for choosing the investment and financing

maturities is the 1/N strategy. Each period, an amount ‖aBt ‖1
and ‖aKt ‖1 is split equally among all investment and financing

bonds, respectively. In the simplest case, this amount is the same
in each period leading to the constant policies aBt ≡ aB and
aKt ≡ aK . Hence, this policy is characterized by only two parameters
‖aB‖1 and ‖aK‖1. Having to invest or borrow the same amount
in each period is very restrictive. Instead, one can pursue a 1/N
strategy where the scales ‖aBt ‖1 and ‖aKt ‖1 are time-dependent.
This strategy has 2(H − 1) parameters, as there are H − 1 periods
where decisions are made.

3.1.2. Optimal constant allocation
A slightly more sophisticated benchmark strategy can be built

by relaxing the 1/N assumption and choosing a potentially more
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optimal distribution over the investment and financing maturities
instead. Such a benchmark strategy can be specified with different
degrees of freedom. In the simplest case, where decisions are
assumed to be constant over time, this strategy has bB + bK

parameters. When decisions are allowed to vary over time, the
number of parameters increases to

(
bB + bK

)
× (H − 1). When

investment and financing maturities differ, as it is the case in our
setup, equal allocation introduces an asymmetry in the duration
of investment and financing decisions. In our case, where the
maturities 3m, 1y, and 2y are only available for financing purposes,
investments under the 1/N strategy have a higher duration
than borrowings.

Each of these benchmarks makes the same decision in each
scenario at a given model step t ∈ T \ {T}. This is in contrast
to the Deep ALM approach presented in Section 3.2, which
tries to optimally adapt a given strategy to the current balance
sheet structure and interest rate environment. The simplicity of
the benchmark strategies makes them useful for more than just
comparison purposes. Because they are easy to interpret, these
strategies can provide valuable insights for ALM practitioners.
The parameters of the benchmark strategies are optimized using
gradient descent (see the optimizer in Table 2), i.e., in the
same way that weights of neural networks are optimized in the
DeepALM approach.While this is straightforward within our ALM
framework, it is already more complex than many prevalent tools
in practice.

The benchmark strategies, where the scale of investments
‖aBt ‖1 and borrowings ‖aKt ‖1 is constant over time, perform
poorly because legacy investments and borrowings are not equally
distributed among maturities. This implies that there are periods
where large tranches of investments and borrowings mature,
and other periods where rarely any legacy positions mature.
Considering this structure of the legacy portfolios, forcing a
constant scale among investment and financing activities is
undesirable. The default mechanism should instead be that
maturing positions in the bond portfolios are rolled over.
Consequently, we define the scale of investments in all benchmark
strategies as follows:

‖aBt ‖1 = π (1)(B
pre
t )+ θBt , (43)

where π (1)(B
pre
t ) are the investments that mature next period and

θBt becomes the learnt parameter that may be shared over time.
The scale of financing decisions ‖aKt ‖1 is defined analogously with
scale parameter θKt . The investment and borrowing scales are
then multiplied with the learnt or specified distribution over the
available maturities. Note that aBt and aBt are ensured to have no
negative entries, i.e., adhere to the long-only constraint. For the
analysis in Section 4.1.1, we restrict ourselves to comparing the
following benchmarks:

– BME: 1/N strategy with shared scale across time and two
parameters

– BMC : strategy with learnt allocation that is shared across time
and bB + bK parameters

– BMD: dynamic strategy with learnt allocation, i.e., not shared
over time, and

(
bB + bK

)
× (H − 1) parameters

3.2. DSC for ALM

Deep ALM applies the key idea fromDSC to the ALM problem.
At each t ∈ T \ {T}, the decision at is parametrized with a neural
network gθt :Rd → RbB+bK , which we call the decision network.
This means that the decision at is given by the forward pass

at = gθt (Xt), (44)

where Xt :� → Rd denotes the features passed to the neural
network. These represent the relevant and observable information
that the neural network needs to make qualified investment
and financing decisions at time t. While this parametrization is
conceptually simple, we find that to learn good strategies, details
matter. What features are important? How should the architecture
of gθt look like? How can one make the optimization stable and
robust? We discuss these questions in the following sections.

3.2.1. Features
3.2.1.1. Yield curve

By being the only source of randomness in the model,
the currently prevailing yield curve Yt is an important input
feature. To reduce input dimensionality, we use PCA to project
the high-dimensional yield curve into R3. The low-dimensional
representation of the yield curve is then used as an input feature.
The PCA is performed before training on a subset of yield curves
from the training data set. This gives similar results as using several
(more than three) points on the yield curve as input features. If
the yield curve dynamics used are non-Markovian, it might make
sense to also provide some (compressed) form of the yield curve
history to the model. Alternatively, one can let the model learn
a compression of the yield curve history. This compression can
then be passed from one decision network to the next and updated
by the currently observable yield curve (in the same way that
hidden states evolve in recurrent neural networks). When using
the HJM-PCA model for simulation, neither approach improves
model performance, which is expected as the yield curve dynamics
are Markovian.

3.2.1.2. Portfolios

The model needs to be aware of the cash flow structures
of all balance sheet positions. Knowing the current investment
and financing portfolios, B

pre
t and K

pre
t are essential, especially

because they depend on previously made decisions. The loan
portfolio Rt does not depend on previous decisions and differs
only slightly between the different scenarios due to depreciation.
The deposit portfolio St does not differ at all between scenarios as
it is assumed to be deterministic. Still, these portfolios of course
differ across time. Instead of forcing the model to remember
the portfolios, Rt and St are provided as features, which is
important when weights are shared; see later. Before passing the
portfolios to the main network, we reduce their dimensionality.
Each N-dimensional portfolio is mapped to lower-dimensional
representation via a single fully connected layer, whereby different
encoding layers for B

pre
t ,K

pre
t ,Rt , and St were used. Providing

the entire high-dimensional portfolios to the encoding layers
and using fully connected encoding layers have worked best
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in our experiments. Only providing portfolio duration or other
lower-dimensional representations (e.g., via pooling) deteriorates
performance. Replacing the linear encoding layer with other
encoding architectures using convolutions or self-attention did not
improve performance in our experiments. Similarly, training a
single encoder on the stacked vector of all portfolios did not lead
to better results.

3.2.1.3. Relative size of balance sheet items

The features also include the following ratios that fully
describe the aggregated balance sheet on an absolute and relative
scale, namely

Xsize
t = A

pre
t /A0, (45a)

Xlev
t = E

pre
t /A

pre
t , (45b)

X
liq
t = C

pre
t /A

pre
t , (45c)

Xinv
t = B

pre
t /A

pre
t , (45d)

Xfin
t = K

pre
t /A

pre
t . (45e)

3.2.1.4. Constraint features

To provide themodel with recent information on its constraints
across the network and time instances, we add the constrained
quantities xit−1 (e.g., LCRt−1), as calculated in the previous
period16, as additional features. The interest rate sensitivity is
added directly as a feature. For the other constrained variables, the
difference between their value xit−1 and the lower bound β i is added
as a feature.

3.2.2. Architecture
In this section, we describe the exact architecture of the

neural network gθt as illustrated in Figure 6. The main idea is to
conceptually split different functions within the model. First, the
model input is obtained by encoding the yield curve, encoding
the portfolios, and calculating all other features. In concatenation,
this input is passed through a feed-forward neural network; see
Table 2 for the configuration. The output of this sub-network, the
d′-dimensional final encoding et is then mapped to investment and
financing decisions via

aBt =
[
āBt + gt

sclB
(et)× gt

distB
(et)

]+
(46a)

aKt =
[
āKt + gt

sclK
(et)× gt

distK
(et)

]+
, (46b)

where āBt and āKt are the investment and borrowing decisions of
the pre-trained benchmark strategy BMD, gt

sclB
is a linear layer with

no activation function and scalar output (the investment scale),
and gt

distB
(et) is a linear layer with softmax activation and bB-

dimensional output (the investment distribution). The layers gt
sclK

and gt
distK

are defined analogously.
This output mechanism is constructed for a couple of reasons.

The pre-trained benchmark strategy BMD is leveraged to reduce
training time and to help with the scale of the model output.
The output vectors aBt and aKt might reasonably have an L1-norm

16 This choice is for computational reasons. In the previous period, the

constrained quantities have already been computed; see Algorithm 1. These

values should be reasonably close to the actual values after the balance sheet

has been rolled over.

that lies in the thousands. This has the interpretation that total
investments or borrowings exceed mCHF 1, 000 in a given period.
Learning outputs of that scale directly is more challenging than
learning only those investments or borrowings that are made in
deviation from the benchmark.17 The output scale of the neural
network thus matters at least in the sense that it makes finding
good hyperparameters easier; see also van Hasselt et al. (2016). This
further motivates splitting the excess decision into a scale decision
and a distribution decision. To adhere to the long-only constraint,
a ReLU layer is applied to the final investment and financing
decisions. Next to the output scale, scaling the input portfolios
B
pre
t , K

pre
t , Rt , and St , before passing them to the encoding layers,

further improves the learning process. Simply dividing the portfolio
positions by a factor of 100 works best in our experiments. Learning
scaling parameters of the neural network’s input or hidden state via
batch normalization (Ioffe and Szegedy, 2015) did not improve (on
the contrary, it rather deteriorated) the learning process.

3.2.3. Optimization
As with many problems in reinforcement learning, the

Deep ALM optimization is challenging and does not work well ’out
of the box’. This is likely due to the problem having many local
minima. Many decisions, such as whether to invest a given amount
into a 10y or 11y bond, can have a negligible impact on the loss.
On the other hand, if a change of parameters leads to a violation
of constraints, the loss quickly explodes due to large gradients.
Just scaling down the penalty weight λ or replacing the squared
dependencies in the penalty calculation (Equations 30, 31) with
linear dependencies does not solve this problem but simply leads
to learning solutions with more violations of constraints. Another
reason for the optimization difficulty is the recurrent structure of
the problem because gradients are vanishing when backpropagated
through time; see Hochreiter (1998). This is unsurprising due to the
computational similarity to recurrent neural networks. To improve
the learning process, several techniques from the deep learning
literature are used.

As discussed in Section 2.5, it is unclear which loss function
corresponds to underlying ALM preferences. Following Krabichler
and Teichmann (2020), two alternatives were presented: a loss
function based on the CRRA utility and a quadratic hedging
criterion. Selecting a loss function and its parameters is an
important and delicate matter, which can be tackled by monitoring
alternative metrics (see Section 3.3) and analyzing the learnt
strategies in detail. Irrespective of what loss function better encodes
preferences, we find that the learning process seems to work better
when using the target-based rather than the utility-based loss
function. Despite both loss functions encoding different objectives,
models trained on the target loss function often achieve equal
(sometimes even higher) CRRA utility than models that were
trained using CRRA utility. In terms of other metrics, such as
the VaR of the final equity distribution, models trained on the
target loss seem to perform better. All models are thus trained
with the target loss function, while the CRRA utility is additionally
used for model evaluation. The target loss function is applied with

17 Alternatively, learning investments and borrowings in excess of

reinvested investment of financing positions also works well.
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FIGURE 5

Decision network architecture—arrows annotated with “NN” denote a forward pass through a shallow neural network, the annotation “FC” denotes a
single fully connected layer. The notations scl and dist are used to indicate the scale and distribution decisions made by the model.

some adjustments. First, only downward deviations from the target
return are penalized. Economically, it makes sense that higher
returns should not be penalized. Practically, this leads to better
performance in terms of other metrics. This asymmetric target loss
ℓt on a single path with a given return target µ is therefore given by

ℓt(ET | E0;µ) =
[(

ET − (1+ µ)TE0
)−]2

. (47)

Replacing the utility loss ℓu with this target loss ℓt in Equation (32)
gives the total loss function used in our numerical experiments.

3.2.3.1. Sampling loss function parameters

Using the target loss means having to choose an annualized
return target µ. This choice is important because if the chosen
target is too large, the model will take unreasonably high risks
to match the target. If it is too small, the learnt policy will not
be optimal in any practical or expected utility sense. Alleviating
the impact of the target choice is another motivation for only
penalizing downward deviations in the target loss. When using the
symmetric target loss (29) in combination with an unambitious
return target µ, we observe an undesirable strategy: the model
maximizes equity during the first few periods, overshoots the target
in many scenarios, and then decreases the bank’s equity by taking
unprofitable actions. Even with the asymmetric target loss, it is
unclear how to choose the exact target µ. Instead of restricting the
optimization to a single return target, a different target is sampled
for each path during each epoch from a uniform distribution
on the interval [µl,µu]. Initially, the motivation behind this
approach was the following: we provide the sampled target as
an additional feature to the neural network and optimize actions

conditional on a given return goal. This approach of upside-down
reinforcement learning (Schmidhuber, 2020; Srivastava et al., 2021),
essentially translates the reinforcement learning problem into a
supervised learning problem when viewing the obtained reward
as the prediction and the target reward as the label. The idea of
conditioning on a parameter of the loss function has also been
successfully applied to similar problems in finance by conditioning
on a risk aversion parameter; see Leal et al. (2021) andMurray et al.
(2022).

Applying this technique of sampling the targetµ and providing
it as a feature to the neural network improves model performance
across all relevant metrics. However, the learnt strategies do not
differ significantly when varying µ at inference, i.e., there is no
adaptive behavior in the sense of upside-down reinforcement
learning. The target sampling may instead be interpreted in a
probabilistic sense: the true target return µ that corresponds to
the preferences of the bank’s shareholders is unknown but assumed
to be uniformly distributed on [µl,µu]. The improvement in
performance may be due to increased exploration when the target
is sampled. Furthermore, note that the mean of the uniform
distribution on the chosen interval [µl,µu] in Table 2 is an
ambitious return target in the sense that it lies significantly above
the mean return that the best models achieve in the experiments;
see Table 3.

It is also unclear how to choose the loss function weight
λ that trades off the target objective and the penalty avoidance
objective. If λ is too small, the model learns strategies that violate
constraints in too many scenarios. If λ is too large, the target
objective is effectively neglected and the performance in terms of
the validation metrics decreases. Again, having to make a single
choice (at least for training) is avoided by sampling a different
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TABLE 3 Main results—MM abbreviatesmain model, which represents the trained Deep ALMmodel.

Model BME BMC BMD MM MMS MM BME BMC BMD MM

Horizon 5y 5y 5y 5y 5y 15y|5y 15y 15y 15y 15y

Loss statistics

ℓ(λ = 3.5)∗ 1.357 0.999 0.753 0.467 1.611 − 45.907 32.151 3.123 1.587

ℓ
t
(µ = 4.06%)∗∗ 1.428 0.997 0.824 0.558 1.719 45.290 10.829 10.625 3.059 1.712

ℓ
p

0.011 0.032 0.012 0.003 0.002 0.007 10.066 6.193 0.067 0.015

ES0.95(ℓp) 0.107 0.518 0.144 0.036 0.035 0.062 185.857 114.694 0.836 0.124

ℓ
u
(γ = 10.0) −0.064 −0.071 −0.074 −0.079 −0.084 −0.071 −0.106 −0.107 −0.110 −0.110

Equity ratio statistics

ER 1.107 1.124 1.133 1.153 1.173 1.128 1.518 1.514 1.716 1.812

σER 0.040 0.026 0.027 0.036 0.034 0.043 0.178 0.164 0.172 0.202

skew(ER) −0.419 0.047 0.286 1.682 1.068 1.263 0.707 0.946 0.033 0.398

kurt(ER) 2.551 0.883 1.088 8.101 4.674 5.465 4.079 4.913 1.127 0.657

VaR0.95(ER) −0.071 −0.043 −0.043 −0.049 −0.050 −0.064 −0.273 −0.242 −0.302 −0.320

ES0.95(ER) −0.101 −0.055 −0.053 −0.060 −0.062 −0.082 −0.356 −0.308 −0.368 −0.368

Annualized statistics

µ (in %) 2.048 2.353 2.529 2.883 3.242 2.434 2.781 2.768 3.631 4.002

δ (in %) 1.432 1.503 1.560 1.855 2.147 1.613 3.042 2.982 3.967 4.515

The superscript S indicates the inclusion of swaps; see Section 4.5. BM is short for benchmark. Recall that they assign constant weights regardless of the scenarios. BME and BMC make the same

decisions along the time axis. Regarding BME , the distribution is fixed and only the scale is learnt. Both distribution and scale are trained in BMC . Finally, BMD acquires adaptive weights along

the time axis.
∗ The mean loss is a linear combination of the losses reported later.
∗∗ The first four listed models are evaluated with µ = 4.06%, modelMMS is evaluated with µ = 5.39%, and the 15ymodels are evaluated with µ = 4.00%. Hence, total and target loss should

not be compared between these different categories.

penalty weight for each training path from a uniform distribution
over the interval [λl, λu]. The sampled penalty weight is provided
as an additional feature. Again, our experiments show that the
sampling procedure improvesmodel performance but fails to evoke
conditional behavior. Note of course that it might well be possible to
learn goal-conditioned behavior in this setting, e.g., by improving
the neural network architecture or hyperparameters. For model
evaluation, the target return and penalty weights are not sampled
but set to the values µeval and λeval across all experiments.

3.2.3.2. Gradient flow

The problem of vanishing and exploding gradients is dealt with
by using gradient clipping (Pascanu et al., 2013) on all gradients
and residual connections (He et al., 2016) in the fully connected
layers of the decision network. Gradient clipping helps mitigate the
spikes in the loss function that occur due to constraint violations.
To further help with the gradient flow in the model, detaching
the features from the computational graph before passing them
through the neural network leads to a slight improvement in
learning. Correspondingly, the forward pass is adjusted to

at = gθt
(
sg[Xt]

)
, (48)

where sg denotes the stopgradient operator.18

18 Following the definition in Oord et al. (2018), the operator sg is defined

as identity at forward computation time and has zero partial derivatives, thus

e�ectively constraining its operand to be a non-updated constant.

3.2.3.3. Weight sharing

We also find the optimization to work better when weights are
shared between the neural networks, i.e., when setting gθt ≡ gθ .
This reduces the number of parameters in the model significantly
by a factor of H − 1. It means that each parameter contributes to
H − 1 decisions as opposed to a single decision, which apparently
leads to more robust gradients. To provide the model with a sense
of time, we provide it with the additional feature

Xtime
t =

t

T
. (49)

Leaving out the time feature does not solve the undesired time
dependence of decisions that is introduced by assuming a finite
time horizon T as discussed in Section 2.5. The model can estimate
the current time via other features but learns quicker if the time
feature is provided explicitly.

The decision network gθ is trained using the RAdam

optimizer (Liu et al., 2021). The most important hyperparameters
are listed in Table 2. During model development, we trained
most models on 40, 000 scenarios for < 100 epochs using
early stopping. The models used to generate the results
reported in Section 4 were either fully trained or at least
fine-tuned on constantly resimulated paths. More precisely,
we simulated a completely new set of scenarios for each
epoch. This is computationally more expensive than training
on the same scenarios in each epoch, but it leads to better
learning processes.
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3.2.4. Implementation
We structured the formulation of the ALM problem in

Section 2 into decision-independent and decision-dependent
computations since this represents the computational structure of
our implementation. All decision-independent computations are
made outside of the training loop. While this implementation
strategy avoids having to recompute the transition of many model
variables in each epoch, it makes the problem memory bound as all
the intermediate computations have to be stored and loaded during
each epoch. To benefit from GPU acceleration, one needs either a
GPU with a lot of memory or needs to size down the batch size,
which decreases model throughput and performance. Considering
this, it might be faster to recompute even the decision-independent
variables during training when computations are done on GPUs
(similar to the motivation behind activation checkpointing). In
addition, computations are slowed by the recurrent structure of the
problem, i.e., the loop in Algorithm 1. Decisions in different periods
cannot be parallelized as they depend sequentially on each other.

Our implementation is done in Python. The decision-
dependent transitions and the forward and backward passes
through the neural networks (see Figure 2) are implemented
in PyTorch. For optimization and training code, we use
PyTorch Lightning.19 Using this code, training a full model
from scratch on a (weak) CPU takes roughly 8h–12h, but there
is a lot of optimization potential on both the hardware and
software sides.

3.3. Evaluation

Evaluating our ALM framework is delicate as one has to
distinguish between evaluating the problem formulation and the
actual performance of strategies conditional on the considered
problem. The modeling decisions presented in Section 2 as well
as the loss function decisions presented in this section were made
in an iterative process: we specified particular premises, learnt and
analyzed strategies, and determined whether the results aligned
with the many requirements of the bank. In the earlier stages, we
often found the learnt strategies to be degenerate in some sense,
either exploiting loopholes in the problem formulation or being
bound by the strictness of the modeling assumptions. For instance,
the bank’s legacy financing portfolio includes many short-term
maturities that come from opportunities seized during the recent
period of negative interest rates. In the initial problem formulation,
the shortest financing maturity available was a 3-y bond. Once
short-term financing had matured, the structure of the balance
sheet had to change significantly. Simply rolling these positions
over was not available in the action space. This was solved by
removing those legacy positions from the model that the bank
was seeking to resolve anyway and by extending the available
financing maturities to also include 3m, 1y, and 2y. Even after many
iterations, there is still some room for improvement for the ALM
model. Section 4 compares the influence of different modeling

19 The code is available at https://github.com/konmue/deep_alm; for data

privacy reasons, the repository is private at the time of the publication of this

article. We intend to release the core scripts in due course.

choices in terms of the model horizon T and the inclusion of swaps.
The most important shortcomings are highlighted in Section 5.

To evaluate strategies within a defined problem setting, we use
a collection of metrics that are calculated on n validation paths
indexed by i. To start, we report the loss and loss components that
are associated with a given model, namely

ℓ : =
1

n

n∑

i=1
ℓ(EiT , p

i | E0;µ, λ), (50a)

ℓ
t
: =

1

n

n∑

i=1
ℓt(EiT | E0;µ), (50b)

ℓ
p
: =

1

n

n∑

i=1
ℓp(pi), (50c)

VaRα(ℓ
p) : = F̂−1ℓp (α)− ℓ

p
, (50d)

ESα(ℓ
p) : =

1
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1{ℓp(pi)≥VaRα (ℓp)}

(
n∑

i=1
ℓp(pi)1{ℓp(pi)≥VaRα (ℓp)}

)

− ℓ
p
, (50e)

ℓ
u
: =

1

n

n∑

i=1
ℓu(EiT | E0; γ ), (50f)

where F̂ℓp denotes the empirical distribution function of ℓp(pi)
on the validation data set. As we use the target loss (Equation
50b) for the calculation of the total loss (Equation 50a), we also
report the mean utility loss component (Equation 50f). Next to
the loss metrics, we report metrics that directly characterize the
distribution of the equity ratio ER : = ET/E0 on the set validation
scenarios. This distribution is denoted by the empirical cumulative
distribution function F̂ER. We report

ER : =
1

n

n∑

i=1
ERi, (51a)

mk : =
1

n

n∑

i=1

(
ERi − ER

)k
, k ∈ {2, 3, 4}, (51b)

σER : =
√
m2, (51c)

skew(ER) : =
m3

m2
3/2

, (51d)

kurt(ER) : =
m4

m2
2
− 3, (51e)

VaR1−α(ER) : = F̂−1ER (1− α)− ER, (51f)

ES1−α(ER) : =
1

n∑

i=1
1{ERi≤VaR1−α (ER)}

(
n∑

i=1
ERi

1{ERi≤VaR1−α (ER)}

)

− ER. (51g)

note the difference in the definition of ESα(ℓp) and ES1−α(ER):
the first metric is defined on a loss distribution and the latter is
defined on a P&L distribution. Consequently, both ES0.95(ℓp) and
ES0.05(ER) have the interpretation as how far the mean over the
’worst’ 5% of the respective values deviate from the original mean.
To compare models across different time horizons T, we define the
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annualized metrics
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(
(ERi)

1
T − 1

)
, (52a)

δ : =
1

n(T − 1)
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i=1

∑

t∈
(
T\{T}

)
∩N

δit

E0
. (52b)

µ denotes the geometric mean return on equity, excluding dividend
yield, averaged over all scenarios. δ approximates the annual
dividend yield. It is a simplified metric that is meant to give a rough
idea of how much dividend yield a strategy provides. Summing
the dividends over time is a significant simplification and neglects
the time value of money. Furthermore, note that all dividends are
standardized by the initial value of equity and not by the equity
value of the preceding year.

In the optimization, the interest rate risk is controlled via a
single number (Equation 25). The IRS captures the risk associated
with parallel shifts of the yield curve but does not indicate how
the bank’s equity would be affected if the shape of the yield
curve changed. In ALM, it is therefore common to consider the
interest rate sensitivity of the bank’s equity separately for each
maturity τ ∈ T : one considers an increase of 100 bps in the
yield curve at a single maturity τ and calculates the consolidated
impact on equity. The resulting sensitivity gaps (also known as key
rate durations) are aggregated into yearly tranches. By definition,
the sensitivity profile reflects cash flows from loans, investments,
deposits, and borrowings. Inspecting the sensitivity gaps for
different scenarios is extremely insightful since the optimized
balance sheet structure and the interest rate exposure is revealed.
The model can control the sensitivity gaps via the investment and
financing portfolios.

4. Experiments and results

There are many interesting questions to pursue with the precise
model of the ALM problem and the Deep ALMmethod for solving
the problem. In this article, we restrict ourselves to three aspects.
First, we demonstrate that the Deep ALM method works and
outperforms the given benchmarks. Second, we analyze the learnt
strategies on a selection of validation scenarios that differ in the
evolution of the yield curve, including steepening and inversion.
Third, we analyze how the extension to swaps affects the learnt
strategies and ultimately the bank’s P&L. Throughout this analysis,
we compare two different settings of the ALM problem that differ
in terms of the modeled time horizon T = 5y and T = 15y.
15y|5y refers to as modeling and optimizing with respect to 15y and
evaluating the strategy already at the 5y horizon.

4.1. Main results

The following section focuses on the general performance of
the Deep ALM strategy and the benchmark strategies. All models
are trained separately in the two different settings of T = 5y
and T = 15y. The performance of the strategies is evaluated on
a validation set of 1 600 yield curve scenarios using the metrics

defined in Section 3.3. The results are reported in Table 3. The main
conclusion that can be drawn from these results is that models with
a larger number of trainable parameters perform better than those
with fewer parameters. In particular, Deep ALM outperforms all
benchmarks significantly. This can be observed unanimously across
all metrics: the main model has lower loss statistics and a more
favorable equity distribution than the benchmarks. This indicates
that there is a decent alignment between the loss function and the
underlying preferences.

The loss statistics indicate that in the 5y setting, even the simple
benchmarks seem to be able to adhere to constraints in most
scenarios as the incurred penalty loss is small. The main model
only has a very small penalty loss and seems to stay within the
constraints even better. In the 15y setting, the benchmark strategies
incur large penalty losses, but the main model achieves a small
penalty loss. This gives the indication that constraints are more
difficult to comply with in the 15y setting. Consequently, they have
a bigger impact on the loss function leading to different strategies
when compared to the 5y horizon.

The distribution of the final equity ratio under the Deep ALM
strategy is more favorable compared to the distribution obtained
under the best benchmark BMD: following MM, one obtains a
distribution of ER = ET/E0 that has a higher mean with lower
risk; both value at risk and expected shortfall are smaller. The
distribution also has a more positive skew, but a slightly larger
standard deviation when compared to the benchmark. Looking
at the right tail of the equity ratio distribution under the MM in
Figure 7, one can observe that there are a number of validation
scenarios in which the model achieves a much better equity ratio
than in the mean. The distribution of ER does not seem to be fat-
tailed on the left. This asymmetry is due to the loss function that
penalizes downward deviations from the targeted equity ratio but
does not penalize upward deviations.

4.1.1. Benchmarks
Visualizing the learnt strategies in Figure 8 leads to a couple of

interesting observations. First, we see that all benchmarks invest
significantly more than the maturing amount. The benchmarks
also borrow more than the maturing amount, but borrowings are
scaled up less than investments. In absolute terms, financing is
still able to cover a lot of the investment activities as the initial
financing portfolio is much larger than the initial investment
portfolio. In the case of strategy BMEover 5y, investments are
made at such a large scale that the cash position is reduced
significantly over time. In the case of the other three depicted
strategies, the cash position is slightly increasing over the model
horizon. This points to the main observation of the benchmark
experiments: the learnt strategies in the 5y and 15y settings differ
significantly. BMCover 5y suggests investing at shorter maturities
than financing, while BMCover 15y suggests investing at slightly
higher maturities than financing. For the purpose of providing a
good default ALM strategy, this one trained to optimize long-term
goals seem to be more relevant than the 5y strategy. The clear
dependence of the benchmark strategies on the time horizon T

motivates analyzing how the Deep ALM strategies depend on the
very choice.
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FIGURE 6

Equity ratio histogram—This chart depicts the final equity distribution of Deep ALM after 5y and 15y, respectively, compared to the most competitive
benchmark strategy.

FIGURE 7

Constant benchmark strategies—The vertical axis denotes the scales of total investment and financing relative to the maturing positions, i.e.,
‖aBt ‖1/π (1)(Bt) and ‖aKt ‖1/π (1)(K). The variable d above the columns specifies the duration of the portfolios.

4.1.2. Deep ALM
Visualizing and interpreting the Deep ALM strategies is difficult

because decisions now differ based on the scenario and model
time. We start by considering only the volume of investments and
borrowings, shown in Figure 9. One can observe that for both time
horizons, the learnt strategies are generally scenario-dependent.
Still, the quartile lines of the volume plot show that the strategies
chosen in different scenarios are, at least in terms of volume, often
quite similar. This comes at no surprise given that many scenarios
are quite similar. By deviating from the median strategy in the
other scenarios, the model generates the outperformance of the
benchmark BMD observed in Table 3. Interestingly, the median
strategy does not correspond exactly to the benchmark strategy
BMD from which the model learns to deviate.

Second, we see that the strategies optimized on the different
time horizons are significantly different. In the case of the 5y
horizon, there are many periods in most scenarios where no
investments are made at all. At the 2y mark, investment activities
spike. In Section 4.3, we will see that these investments are always
made at the 3y maturity. Thus, 3y before the model horizon ends,
the model makes large investments into 3y bonds, again pointing

toward the role of the model horizon T. Concerning financing
activities in the 5y setting, one can observe that both the benchmark
BMD and the main model raise funds of roughly mCHF 1, 000 in
the first model period. This decision is taken in each scenario as all
scenarios have the same initial state. Raising funds in the first period
but not making any investments builds up a cash position and
increases the liquidity ratios LCR andCMR.Withholding cash from
investment is usually undesirable when interest rates are positive
as the bank does not earn any interest on the cash position. This
decision seems to bemotivated by the expectation that interest rates
increase over the first few model periods. If the yield curve shifts
upwards, investment and financing portfolios decrease in value.
In that case, taking on additional financing before rates increase
and keeping these funds in cash leads to an increase in equity.
This highlights the impact of the yield curve scenarios on the
learnt strategies. The fact that interest rates are increasing in most
scenarios (see again Figure 4) induces the model’s expectation of
increasing rates and the scenario-independent decision of raising
large funds in the first period.

In the 15y setting, investment and financing decisions are more
equally distributed across time. Each month the model invests and
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FIGURE 8

Investment and financing volume—Investment volume refers to ‖aBt ‖1 and financing volume refers to ‖aKt ‖1. The solid line indicates the median level
of ‖aBt ‖1 or ‖aKt ‖1 across all 1 600 validation scenarios. The darker shaded area is enclosed by the 25% quantile and the 75% quantile. The lighter
shaded area is enclosed by the 5% quantile and the 95% quantile. The gray vertical lines indicate the times at which the annual step occurs, i.e.,
dividends are paid out and the minimum return constraint is checked. The same layout is used for all plots in this section.

borrows at a similar scale as in the previous month. Spikes in
investment and financing volumes are much lower than in the 15y
setting. This continuous investment and financing pattern looks
quite similar to ALM strategies pursued in practice. In the first few
model periods, one can observe a similar strategy as pursued in the
5y setting: borrowings often exceed the amount needed to finance
investments and new loans, leading to the buildup of a larger cash
position; see also the median CMR in Figure 10. Again, this likely
corresponds to the expectation of increasing interest rates during
the first periods. As time evolves, the median investment volume
increases continually, which is sensible considering that the other
balance sheet items grow as well. The median financing volume
also starts increasing after the fifth year, but it increases less in
relative terms. This is in line with the observation that the model
restructures the bank toward less leverage in the long term; see
Figure 11.

4.2. Constraints

Table 4 reports detailed statistics on the constraints. In both the
5y and 15y settings, the main model is able to adhere to the five
regulatory constraints in almost all cases. The NSFR constraint is
never violated and does not seem to affect the model decisions. The
model typically borrows more funds than necessary to roll over the
legacy portfolios, which increases the amount of stable funding.

While increases in investments lead to an increased required
amount of stable funding, the model never increases investments
to a level that would destabilize long-term liquidity. In fact, a brief
inspection showed that the NSFR never dropped below 130% in at
least 90% of the scenarios. Qualitatively, the movements are similar
to those of the LCR.

LCR and CMR seem to have a much bigger impact on
constraining liquidity. In the case of the 5y horizon, both ratios
increase in the first period due to the increased borrowing that
occurs in each scenario. Over the course of the next periods,
the model further increases both ratios in most scenarios before
either of them decreases over the remainder of the model period.
After 5 years, both median ratios lie only slightly above their
respective minimum boundaries. Still, the model avoids violations
of the LCR and CMR constraints in all and more than 99% of
scenarios, respectively. Interestingly, the behavior is different when
optimizing over the long-term horizon. The LCR is held at amedian
level that is above its initial value and not decreased as the model
period approaches the end. The CMR decreases in most scenarios
over the model period but is sustained at a higher level than in the
5y optimization. On the 5y horizon, the model can reduce its cash
position to the bareminimum and avoid constraint violations at the
same time. On the 15y horizon, this becomes unsustainable, and
the model instead decides to keep a larger cash position to remain
compliant. This interpretation again indicates that the 15y setting
seems to have a better alignment with the true preferences of the
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FIGURE 9

LCR and CMR.

TABLE 4 Constraint statistics.

Constraint CMR LCR NSFR E/RWA IRS EYR

MM(5y)

Median at T − 1 1.76 1.10 1.33 0.20 −0.03 21.17

% of scenarios with violations 0.12 0.00 0.00 0.00 0.06 20.06

Mean number of violations per violation scenario 1.00 - - - 1.00 1.08

Mean violating value 0.94 - - - 0.09 −2.99

Value at largest violation 0.92 - - - 0.09 −23.80

MM(15y)

Median at T − 1 3.66 1.23 1.34 0.24 −0.03 63.43

% of scenarios with violations 0.12 0.00 0.00 0.12 0.12 45.94

Mean number of violations per violation scenario 1.00 - - 2.50 4.00 1.35

Mean violating value 0.91 - - 0.17 0.09 −5.54

Value at largest violation 0.85 - - 0.16 0.09 −53.68

bank. The observation that the cash position is reduced in most of
the scenarios is meaningful considering that the large initial cash
position is a remainder from the recent period of negative interest
rates. Unwinding this cash position is beneficial as interest rates are
positive in most scenarios.

The model adheres to the leverage constraint on the ratio
between equity and RWA in all and more than 99% of the scenarios
in the 5y and 15y setting, respectively. In both cases, this ratio
first slightly decreases as RWA grow quicker than equity due to
increased investments. Toward the end of the first 5 years, increases
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FIGURE 10

Equity/RWA—Note that the dividend payouts lead to downward jumps in the bank’s equity. In the figures, this impact seems to be delayed by one
period. This is because the equity value is recorded at the end of the restructure step; but the annual step is performed after the balance sheet
restructuring.

in equity translate into an increase in the ratio, away from the lower
bound of 17%.

The model is also able to comply with the interest rate
sensitivity constraint, only violating it in one and two validation
scenarios in the 5y and 15y settings, respectively. It seems that
the restrictions imposed by other constraints, especially the EYR
constraint, imply that interest rate risk must be hedged to such a
degree that the model almost never attempts to push the sensitivity
constraint to its boundaries. In the 5y setting, the extensive initial
borrowing corresponds to a positive IRS strategy: because the
model expects interest rates to rise, it wants to have positive
exposure to such movements. As the model time progresses, the
IRS decreases and becomes negative during the fifth and final year.
The IRS strategy followed in the 15y setting is more cautious as the
IRS is kept around 0% for much of the model period, before also
being reduced to a negative level during the last 3 years. The fact
that we can observe the model pursuing a negative IRS in only the
later parts of both model periods points again toward the impact of
the model horizon.

The model can control the IRS via the size and duration of the
investment and financing portfolios. In both settings, the model
decreases the duration of the investment portfolio over time. In
Figure 12, we see that this is achieved by investing mainly in short-
term bonds and letting longer portfolio positions mature. Notice

that the duration of the investment portfolio develops similarly in
both horizon settings when viewed on the relative time scale t/T.
This again points toward an undesired impact of the time horizon
T: if we learnt “the” best ALM strategy, both would follow the same
strategy on the absolute time scale. The duration of the financing
portfolio decreases slightly over the majority of the model period,
before decreasing more sharply at the end of the model period.
Again, one can observe that the financing duration evolves similarly
in both settings when viewed on the relative time scale. This effect
is not overfitting in the classical sense. In the training process, a
strategy is learnt that optimizes the objective of expected utility
maximization at the selected end point. In this process, the strategy
can be generalized from the training data to the validation data
(which would not be the case with classical overfitting). However,
this overengineering with respect to the terminal model point is not
practical for the bank as a going concern. It is rather due to the
limitation of the chosen DSC approach, which requires a cut-off
date for optimization. This is a misalignment between the ’short-
term’ optimization problem and real-world ALM. The strategy of
choosing a reference point for optimization far in the future and
then limiting the analysis and conclusions to a shorter time window
seems to be a viable solution to address this issue.

The constraint that is violated most often is the constraint
on the minimum annual return. This is unsurprising considering
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FIGURE 11

Interest rate sensitivity—Whereas the durations in this chart only account for parts of the balance sheet (i.e., the duration structure of the balance
sheet will not necessarily be inverted by the end), the interest rate sensitivity is measured holistically.

that adhering to this constraint is considered less important than
adhering to the regulatory constraints. Consequently, the relative
weight σi placed on this constraint is lower than that placed on the
other constraints. Beyond its lower prioritization, the constraint on
the EYR seems to be a particularly difficult constraint to adhere
to. Additional experiments showed that constraints that are easy
to comply with will rarely be violated even if the assigned penalty
weight is relatively small. This is not the case for the EYR constraint,
which essentially requires that the bank never encounters an
adverse year, even if the interest rate environment changes to great
effect. The number of violations in the 5y and 15y settings is roughly
equal when adjusted for the length of the period. This is remarkable
considering that the variety of yield curve shapes and levels attained
over the 15y horizon is larger than that on the 5y horizon. The
greater yield curve diversity makes adherence to the EYR constraint
more difficult. This is evidenced by the fact that the benchmark
strategies are often able to comply with this constraint over 5y but
not over 15y; cf. the large penalty losses in Table 3. The fact, that
the MM(15y) strategy manages to comply with the EYR constraint
most of the time, indicates that the 15y strategy is generally more
cautious. This explains the large differences between the 5y and
15y strategies: while a strategy that is close to the constraint
limits works on the 5y horizon, it becomes unsustainable in the
long run.

4.3. Scenario analysis

4.3.1. 5y horizon
We now analyze the strategies of the main model MMon

two particular yield curve scenarios depicted in Figure 13. Both
scenarios are part of the validation set of yield curve scenarios
simulated using the HJM-PCA model. They were chosen as
illustration examples because of the prototypical yield curve
movements. In the first scenario, referred to as steep, the
yield curve steepens and in the second scenario, referred to as
inversion, the yield curve inverts during the second half of the
model period.

Focusing on a single scenario at a time gives us the chance
to visualize the exact model decisions taken; see Figure 14. In the
steepening scenario, the model only makes negligible investments
over the entire period. During the first 3 years of this scenario,
the yield curve barely changes. Even after 2 years, where we
typically find large investments in the 5y setting, the model only
invests tiny amounts. On the liability side, the model borrows a
reasonable amount at short (3m) and long (10y) maturities during
the first half of the model period. In the second half of the model
period, it is common among many scenarios that the model raises
short-term financing. In this scenario, the borrowed amounts are
very large.
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FIGURE 12

Yield curve scenarios (5y)—Scenarios steep on the left-hand side and inversion on the right-hand side.

In the inversion scenario, one can observe the typical
investment strategy alluded to earlier: 3 years before the end of the
model horizon, the model invests heavily into 3y bonds. At that
time, the yield curve has not yet inverted and lies slightly below the
initial yield curve. After the subsequent yield curve inversion, no
more investments are made. Funds are mainly borrowed at the 10y
maturity during the first 3.5 years. In the last 2 years, we can observe
the typical pattern of short-term financing. When compared to the
steepening scenario, the volume of short-term financing toward the
end is much lower, which is reasonable considering that short-term
financing is expensive under the inverted yield curve.

In both scenarios, the model follows its default strategy during
the first 2 years: withhold investments and refinance with mostly
10y bonds whenever the IRS turns negative. As pointed out before,
this behavior is likely due to the expectation of increasing interest
rates. Considering that in both scenarios, yield curves stay relatively
constant during that period, observing similar behavior should be
expected. It seems less clear why the model then decides to follow
its usual strategy of making large investments in 3y bonds in the
inversion scenario, but not in the steepening scenario. A possible
explanation might be the difference in the 3y yield. In the inversion
scenario, the yield curve takes a steep upward shift starting around
the 24th month, such that investments made afterwards earn higher
interest rates. In the steepening scenario, the yield curve after 2
years is very similar to the initial yield curve, which carries a 3-y
yield that is only slightly above zero. Thus, the benefit of making
a 3-y investment over holding cash is marginal. This is important
because the model only seems to consider investing in the shortest
maturity. While this restriction to short-term investments may
be related to the adverse effect of the 5y horizon, it can also
be observed in the 15y setting mentioned later. This indicates
that the focus on short-term investments is motivated by other
factors such as compliance with the EYR constraint as discussed
in the next section. In the steepening scenario, the IRS sensitivity

profile is, without making any investments, well set up for the
steepening in the yield curve. Figure 15 shows that especially due
to the 10y borrowings made in the previous periods, the interest
rate sensitivity is positive for the maturities 7y–10y. At most other
maturities, sensitivities are much smaller in absolute terms. This
means that a steepening in the yield curve leads to an increase in
the bank’s equity.

4.3.2. 15y horizon
On the long time horizon, selecting a “reasonable” or insightful

yield curve scenario for the analysis becomes more difficult and
interpretations should be drawn carefully. Again, two scenarios
are selected from the validation set which are simulated using the
HJM-PCA model; see Figure 16. In the first scenario incr, the yield
curve generally shifts upwards and steepens over the entire model
period. Roughly in the sixth and the eighth year, the yield curve
shifts downward two times for a while before continuing its upward
trend. In the second scenario inv_and_back, the yield curve changes
its shape multiple times throughout the 15 years. The yield curve
flattens over the first periods, then inverts and shifts upwards,
before yields decrease and flatten again. At the end of the 15 years,
the yield curve steepens.

In the first scenario, the yield curve stays roughly at its initial
level for the first 3 years. During that time, the model slowly
builds up a slightly positive interest rate sensitivity, likely due to
the model anticipating increasing yields. This is achieved via a
low investment volume and an increased financing volume. Both
investments and borrowings are made using a mix of short- and
long-termmaturities. For the remainder of the period during which
the yield curve generally increases and steepens, investments are
made at the shortest investment maturity of 3y, and financing is
mostly done at the 10y maturity. During the two periods where
yields are slightly lower, investments decrease, and total borrowings
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FIGURE 13

Decisions (5y).

FIGURE 14

Sensitivity gaps (5y).

increase, with some of these borrowings made at shorter maturities.
This strategy increases the IRS leading to the interpretation that
the model expects the yield curve to increase again. Toward the
end of the model period, we observe that long-term financing is
replaced with short-term financing. This observation can be made
in both scenarios, again pointing toward the adverse effect of the
time horizon T. Decisions in the second scenario are generally

quite similar to the first scenario. Investments are mostly made
at short-term maturities. Financing is mainly done at long-term
maturities in the first periods, at the 10y maturity between the
5th up until the 13th year, and at short-term maturities in the
final periods. Because the yield curve is inverted for much of
the period, these decisions build up a larger IRS than in the
first scenario.
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FIGURE 15

Yield curve scenarios (15y)—Scenarios incr on the left-hand side and inv_and_back on the right-hand side.

The focus on 10y borrowing in both scenarios of Figure 17 is
likely due to the fact that approximately 40% of new mortgages are
assumed to have a 10y maturity. Apparently, the model does not
want to finance these loans with short-term deposits and build up a
negative sensitivity with respect to the 10y yield. Instead, it raises
funds to finance a majority of these loans at the same maturity.
Figure 18 displays that the 10y absolute sensitivity is comparatively
small. Because customers pay a larger spread on loans than the
bank pays on their financing, the model detects a risk-free profit
with this strategy limited by the volume of the loans. This behavior
of directly financing new loans with additional financing can only
be consistently observed at the 10y maturity. New loans that are
granted at other maturities (mostly at maturities < 10y) are likely
financed to a large extent by deposits. Since these do not match
perfectly in maturities, interest rate risk arises. Hence, the model
specifically offsets interest rate risk at some maturities but keeps
exposure at others.

Figure 18 shows the gap structure in the two 15y scenarios at

two points in model time, namely just after 5 and 10 years. The

gap profile observed in the two different scenarios is quite similar
when compared at the same point in time. The 10y sensitivity is of

small absolute size as a majority of the sensitivity arising from the
10y mortgages is hedged via 10y financing. The tranches up to a

maturity of 10 years always have a negative sensitivity, except for
the first and the sixth tranche which either have a positive or small

negative sensitivity. Tranches with a maturity of 10 years and above

mostly have a positive sensitivity.
The sensitivity profile chosen by the model may be interpreted

as follows. First, the overall sensitivity that the model chooses is
limited: all sensitivity gaps are relatively small in absolute terms

and the netted sensitivity gaps are often close to zero, which
corresponds to an almost vanishing IRS. Within the tranches up

to maturities of approximately 7 to 8 years, the model pursues a
strategy of positive maturity transformation to profit from upward

sloping yield curves. The negative sensitivities arise from loans

and investments at these maturities that are partially financed
with short-term debt such as non-maturing deposits. Note that
in the inversion scenario, where maturity transformation might
lead to losses20, the mid-term sensitivities are smaller in absolute
terms. The fact that maturity transformation is exploited at the
short- and mid-term maturities (instead of long-term investments)
might be due to the fact that the initial yield curve and many
simulated yield curves are steepest on the short end, making the
maturity transformation at short maturities more profitable. At
the same time, long-term investments would build up sensitivities
that are in absolute terms much larger than the short-term
investments. This would thus lead to an overall IRS that is
negative and closer to the boundaries than that pursued by the
model. This would also make compliance with the minimum
annual return constraint more difficult, which penalizes equity
volatility. Additional experiments confirmed that when decreasing
the weight associated with violations of the minimum annual
return, the model chooses more long-term investments, even
though a majority remains still short term. This results in a higher
volatility of the bank’s equity across model time, but a higher mean
equity at the end of the period. The impact of the penalty weight
illustrates the importance of tuning the loss function parameters to
preferences and requirements.

Not only does the model not invest long-term, but also loan
volumes are small at maturities over 10 years. Nonetheless, one
can observe that in both scenarios the model consistently borrows
small volumes at the 15y maturity. Because the amount of assets at
these maturities is so low, even small financing positions build up
positive sensitivity gaps at the long-term maturities. These positive

20 Losses only occur if the negative slope o�sets the spreads that the bank

charges on both sides of its business model: charging more interest on loans

and paying less interest on deposits.
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FIGURE 16

Decisions (15y).

FIGURE 17

Sensitivity gaps (15y).

sensitivity gaps offset the negative sensitivities at the short- and
mid-term maturities and keep the net IRS low. The low volume
needed to create these gaps means that the hedge achieved with
these positions is relatively cheap. In addition, 15y yields are in
many of the simulated scenarios not much larger than 10y yields,
i.e., the yield curve flattens toward the far end. This makes long-
term financing at small volumes attractive.

4.4. Long-term optimization and
short-term validation

The 15y optimization seems to have a better alignment with
actual objectives in ALM. But interpreting and selecting strategies
solely based on their success after many years is difficult and
individual analyses are impractical when facing a large set of yield
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curve scenarios. This section presents two further approaches that
help with model interpretation.

4.4.1. Intermediate analysis
For a practical application, it is important to understand how

well the bank is performing in the mid-term, when following a
strategy that optimizes for long-term success. To this end, the
strategy MM(15y), which has been trained on the 15y horizon,
is evaluated on the 5y yield curve scenarios. This is achieved by
stopping the forward pass through the entire computational graph
early, i.e., shortening the loop in Algorithm 1 from H = 180 to
H = 60. Recall that weights are shared in the 15y model and
the relative time feature t/T is a model input. When evaluating
on T = 5y, the model time is provided relative to T = 15y,
such that the time feature refers to the same points in time during
training and evaluation. The performance of the 15y model on
the 5y horizon is reported in Table 3 in column MM(15y|5y). As
expected, the 5-year performance of the 15y strategy is worse than
that of MM(5y). This highlights that the practically undesirable
strategies pursued by the 5y model are not the result of a failed
optimization but rather due to a misspecified problem setting.
The 5-year performance of the 15y model is comparable to the
performance of the best benchmark strategy BMD(5y). The 15y
model is better than the benchmark strategy in complying with
constraints. However, this comes at the cost of a higher VaR and
ES in the equity ratio distribution after 5 years. This observation is
in line with the objective of the 15y optimization which penalizes
constraint violations in all periods but does not reward the exact
equity distribution in any intermediate period. As indicated in
Section 2.5, assigning rewards annually based on the equity ratio
distribution is an alternative objective which is worth pursuing in
the ALM framework. When applying the 15y model on the two 5y
scenarios considered before, decisions are, as they are made from
the same model, generally comparable to the decisions observed in
the first five years of the 15y scenarios. Investment and financing
are done consistently each month with slightly increased financing
and decreased investment in the first periods. Most investments
are made at the 3y maturity, financing is mostly done at the 10y
maturity in the inversion scenario and at a mix of maturities in the
steep scenario. The MM(15y|5y) is thereby very different from the
MM(5y) strategy: there are no spikes in investments after 2 years
and there are no large short-term borrowing positions toward the
end of the 5 years. In equity terms, the performance is similar on a
steepening yield curve but worse for an inverting term structure.

4.4.2. Scenario categorization
So far, the performance analysis has been conducted on a

high level (full validation set) and on a detailed level (single
validation scenarios). The following demonstrates how a medium
granularity can offer new insights into model performance. Based
on the yield curve movement, we categorize some of the 1 600
validation scenarios into five subsets containing each 50 scenarios.
In particular, these five categories are considered:

– Steep: Scenarios for which the steepness of the final yield curve,
measured by subtracting the 1m yield from the 15y yield, is
maximal.

– Up: Scenarios for which the 1m yield lies above 2% and the
steepness of the final YC is maximal; the second condition
prevents only flat yield curves being considered, which are
the most common shape for yield curves equipped with high
short-term yields.

– Down: Scenarios for which the average yield at time T across
all maturities is minimal.

– Inversion: Scenarios for which the steepness of the final yield
curve is minimal.

– Constant steepness: Scenarios for which the steepness of the
yield curve has the lowest standard deviation across the
model periods.

The models are evaluated on these subsets. Table 5 reports the
CRRA utility loss and the penalty loss achieved by the different
models in the five yield curve categories. Both loss statistics
show that there are significant differences in performance between
the different yield curve scenarios for any particular model. All
models seem to have similar strengths and weaknesses: in terms
of utility, they all perform best in the down category and worst
in the up category. This might be due to the fact that all models
choose strategies with a negative IRS toward the end of the model
period; see Figure 12. Hence, if yields decrease right before the
end of the period, the bank’s equity increases. In contrast, if yields
increase right before the end of the model period, equity decreases.
When comparing the different strategies with each other, Table 5
highlights again that the MM(5y) outperforms the MM(15y|5y)
with respect to both metrics. Similarly, one can again observe
that both main models incur significantly lower penalty losses
than the most competitive benchmark strategy. The main models
mostly incur penalty losses in the up and inversion scenarios, where
large moves in the yield curve likely lead to a violation of the
EYR constraint.

The results of the categorical yield curve analysis on the 5y
horizon should be interpreted carefully. First, the selection criteria
were largely based on the final yield curve. Yield curve paths could
be quite different among scenarios from the same category. Second,
on such a short horizon, yield curve movements have a large impact
on the valuation of cash flows on the bank’s balance sheet and a
small impact on the cash flows themselves. For instance, legacy
loans still have a large impact and pay interest rates that were
determined in the past. If interest rates stay at a given level for a
longer period, interpretations may change drastically.

4.5. Extension to swaps

This section presents results in the 5y setting extended with
swaps.21 Table 3 reports the evaluation metrics obtained by the
Deep ALM strategy in the extended model. The swap strategyMMS

outperforms the strategyMM, which does not have access to swaps,
across all the relevant metrics. Note that the reported mean loss
ℓ and mean target loss ℓ

t
should not be compared between the

21 The analysis on the 15y horizon is omitted because the volume

requirements on swaps have been set with the 5y horizon in mind. The

approximation of unhedged assets and liabilities, which restricts the volume

of the swap portfolios, is likely too simplistic when optimizing for a longer

time horizon.
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TABLE 5 Category statistics—Note that both loss functions are averaged over the 50 scenarios within each category.

Category Steep Up Down Inversion Constant steepness

ℓ
u
(γ = 10.0)

BMD(5y) –0.071 –0.063 –0.086 –0.074 –0.074

MM(5y) –0.085 –0.066 –0.096 –0.079 –0.079

MM(15y|5y) –0.079 –0.048 –0.093 –0.064 –0.075

ℓ
p

BMD(5y) 0.050 0.011 0.113 0.022 0.006

MM(5y) 0.001 0.008 0.005 0.010 0.000

MM(15y|5y) 0.001 0.026 0.003 0.033 0.002

two models because the swap model is trained with a higher target
return µ. We find that to achieve the best performance (in terms
of the other metrics) in the swap setting, one should be more
ambitious and target a higher return.

The swap decisions made by strategy MMS are the same in
most of the scenarios. In the case of receiver swaps, the model
decides to enter into as many swaps as allowed by the restrictions

on the swap volume. Consequently, the model tries to build up
the maximum allowed swap position of mCHF 2 800 as quickly as

possible. Because monthly swap volumes are capped atmCHF 100,

the model builds the maximum receiver swap position by entering
a receiver swap with a notional amount of mCHF 100 in each of

the first 28m. Looking at the volume of entered swaps in Figure 19,
one can see that there are some months where the model does

not enter receiver swaps but decides to enter payer swaps. Once
more, the model maxes out the monthly cap of mCHF 100. The

months during which the model enters into payer swaps are spaced

annually such that the exchange of cash flows occurs immediately
before the annual step, when the dividends are issued, and the

minimum return constraint is assessed. These payer swaps seem
to be used as a hedge against increasing 1y interest rates. In the

two considered example scenarios in Figure 19, the model enters
into receiver swaps at the longest possible maturity of 10y and
enters into the payer swaps at the shortest available maturity of
5y. These maturity decisions can be observed across the majority
of scenarios.

The portfolio of receiver swaps is built to pursue positive
maturity transformation. Instead of constructing this carry trade

via investing in bonds (or lending) and borrowing from bonds (or
from customers), the model enters 10y receiver swaps. On these,
the bank receives a fixed rate that depends on the 1y–10y interest
rates at issuance time and has to pay the floating 1y rate. Hence,
if the initial yield curve has a positive slope and stays constant
afterwards, the bank collects a premium associated with the positive
slope in the yield curve. The model prefers using receiver swaps
to construct the carry trade instead of using bonds because the
receiver swap is much cheaper. When borrowing funds at short
maturities and investing them at longer maturities the bank has
to pay a total spread of 2 × 15 bps = 30 bps, whereas the
receiver swap can be entered into at a spread of 2 bps. These
more favorable market conditions are also likely the reason why
the model pursues the maturity transformation via receiver swaps

so strongly. On the other side, investment and borrowing volumes
are now much lower when compared to the setting without swaps.
Interestingly though, the investment and financing strategies that
accompany the (almost) scenario-independent swap strategy vary
across scenarios. The model uses investments and borrowings for
the necessary adjustments that make the constant swap strategy
work in every scenario.

Still, it seems unlikely that the optimal swap strategy is almost
independent of the yield curve scenario. First, note that the
quick accumulation of swap positions should be interpreted with
the caveat that the bank is not assumed to hold any legacy
swap portfolios, which is not the case in practice. Second, these
results only show the low scenario-dependence up to the volume
constraints. Additional experiments found that if the volume caps
are removed, swap strategies are much more scenario-dependent,
but the model builds up impractically large swap portfolios. At the
same time, the extreme scenario independence of the swap strategy
might be due to a learning issue. In the setting without swaps,
one could commonly observe that whenever models did not learn
well, they often resorted to constant strategies across all scenarios,
a strategy captured via the benchmark BMD. Learning that the
constant swap strategy leads to good results across all scenarios is
much simpler than learning when it might make sense to deviate
from this strategy. Nonetheless, the results in the 5y should also
not be overinterpreted, considering that the 5y setting also leads
to unintuitive results when no swaps are available. This does not
change the interpretation that building up a portfolio of receiver
swaps is a sensible strategy for the bank in the current interest rate
environment. A similar strategy including the unwinding of a payer
swap portfolio (which is a strategy not available to the model) was
recently discussed at the bank.

5. Discussion and outlook

This article develops a framework for deriving and evaluating
dynamic strategies in ALM. We demonstrate that Deep ALM
optimization can successfully be implemented and that the
learnt strategies outperform the benchmarks. To this end, we
parametrized investment and financing decisions with neural
networks. The trained models comply with the regulatory
constraints in almost all yield curve scenarios. The soft requirement
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FIGURE 18

Swap volumes—Note that the bond volume refers to the value of bonds purchased and issued in mCHF. The swap volume refers to the notional
amount in mCHF of swaps entered into this period. The swap value is, aside form spreads, zero at issuance.

FIGURE 19

Swap decisions (5y).

Frontiers in Artificial Intelligence 35 frontiersin.org

https://doi.org/10.3389/frai.2023.1120297
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Englisch et al. 10.3389/frai.2023.1120297

to consistently achieve a minimum annual return is more
difficult than the others and has a material impact on the
performance of the bank. The choice of the time horizon
T on which the Deep ALM model is trained influences
the learnt strategies significantly. The long-term optimization
with T = 15y seems to have a better alignment with
the ’real’ ALM problem than that with T = 5y. In
most scenarios, the trained models pursue strategies with
low interest rate risk. The Deep ALM model often pursues
positive maturity transformations at the shorter end of the
yield curve and establishes small long-term financing positions
as a cheap hedge against parallel moves in the yield curve.
With access to swaps, the Deep ALM model complies even
better with constraints and generates higher returns-on-equity.
Due to favorable market conditions for swaps, positive maturity
transformation is substantiated by building up a portfolio of
receiver swaps.

Deep ALM can address extremely complex and decisive
questions in due course while accounting for many factors. For
instance, how should a bank (re)structure its balance sheet in a
negative or positive interest rate regime or when interest rates
are on the verge of changing the sign, given the initial state of
the balance sheet structure as well as that of the market and
the current economic outlook? Deep ALM does not learn to act
under all configurations but rather for a given initial state and
a bundle of scenarios. This restriction is key to tame the curse
of dimensionality. Furthermore, Deep ALM does not attempt to
predict the future; one rather adapts best to the future while
accounting for the uncertainty. Obviously, the key challenge boils
down to the construction of adequate scenarios. Deep ALM is not
intended tomakeAsset-Liability-Committees (ALCO) redundant. It
rather creates an additional and valuable foundation for decision-
making. An in-depth validation process of the learnt strategies
is essential for practical purposes to comprehend the rationale
behind the proposed decisions, to prevent unrealistic and extreme
strategies, to get practical insights, to identify model weaknesses,
and to justify strategic decisions for governance and regulatory
purposes. Due to the abundance of model parameters, scenarios,
and exportable quantities, sufficient resources should be allocated
for these important post-training analyses. The dynamic decision-
making complicates model explainability. As a matter of fact, only
a small part of the model results actually produced was integrated
into this publication.

The presented ALM framework has been developed iteratively
with close industry collaboration. Still, our preliminary results
highlight that there are remaining issues that ought to be
addressed before deploying Deep ALM systems. These include the
following:

– Cutting Off the Modeling at Time T: While ALM is a
problem of going concern, the DSC algorithm requires the
stochastic control problem to be in finite discrete time. Our
results demonstrated that ’cutting off’ the modeling at an
arbitrary time horizon T is an impactful modeling decision
and optimizes for strategies that are not optimal in the
long run. Increasing the time horizon T and restricting the
forward pass to a shorter window seems to be a viable
way to deal with this issue. Still, there might be better

approaches of solving this problem, e.g., by changing the
underlying algorithm.

– Loss Function Engineering: Finding a loss function that reflects
true preferences on the ALM strategy and its implications is
challenging. Even after fixing a specific loss function, choosing
relative weights of the concurrent objectives has a profound
impact on the optimization problem and the learnt strategies.
The weight placed on the minimum annual return constraint
has a significant effect as it trades off low equity volatility
versus long-term equity maximization.

– Swaps: The learnt strategies in the extended setting are
from the viewpoint of swaps almost scenario-independent.
Understanding whether the strategy of always maxing out the
volume restrictions on swaps truly is a dominant learning
issue is important for a practical application. Beyond that,
the setup regarding swaps might be too simplistic as there is
no legacy portfolio and there is a flat limit for the accessible
swap volume. It is inevitable to overcome these simplifications
before extending the model to longer horizons with swaps.
As in the case without swaps, optimizations over longer
horizons might lead to very different results compared to the
5y setting.

As with any model, the presented problem formulation
simplifies the reality of ALM. However, a striking feature of
Deep ALM is its flexibility with regard to extensions. When
extending the ALM framework, one certainly has to consider
the danger of overcomplicating the problem formulation. As
illustrated, interpreting the learnt Deep ALM strategies is not
always straightforward. In the near future, Deep ALM may
not be used end-to-end, but rather as a recommender system.
Explainability remains essential, which might get lost if the
problem setup is unnecessarily complex. While our research may
serve as a useful starting point, there are many refinements and
extensions to consider when bringing Deep ALM into practice.
To our mind, the most relevant extensions to the model are
the following:

– Stochastic Customer Behavior and Spreads: The simplifying
assumption that loans and deposits evolve deterministically
is not necessary. The Deep ALM framework is flexible to
incorporate models with stochastic customer behavior. Such
models can also involve dependencies on the evolution of the
yield curve, similar to the current depreciation mechanism,
and they should take stress scenarios into consideration.

– Higher Granularity: All balance sheet positions are considered
on a highly aggregated level. Especially if modeled
stochastically, splitting the loan and deposit portfolios
into more granular portfolios and providing these as features
to the model might improve the framework.

– Accounting Matters: All balance sheet items and constraints
are valued economically. In reality, constraints are calculated
using accounting standards that deviate from marking-to-

market. Considering the large impact of the existing frictions
in this model, it seems interesting to understand what
would change, if one modeled and tracked the balance
sheet according to accounting standards while still using
an economic valuation for assigning rewards. The necessary
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adjustments would require significant additional work and
would make the problem computationally more expensive.

– Yield Curve Simulation: The experiments corroborate that
the simulated yield curves carry an inductive bias in the
Deep ALM framework that affects the learnt strategies. It
would therefore be interesting to substitute the HJM-PCA
approach with other term structure models and to quantify the
model risk of the yield curve simulator; e.g., see Lütkebohmert
et al. (2022). Assessing the impact of an exogenously specified
non-vanishing market price of risk is equally important. In
a next step, it would be particularly interesting to utilize
“model-independent scenarios” based on the signature; e.g., see
Buehler et al. (2020). Furthermore, it would be definitely worth
looking at multiple yield curves and defaultable bonds; e.g., see
Cuchiero et al. (2016).

– Improvement of the Learning Process: Getting the Deep ALM
optimization to work well has been an empirical process of
trial and error. Techniques that improved the learning process
were presented in Section 3.2.3. Other approaches did not
improve the performance in our implementation but might
still be interesting to pursue in future work. These include, for
instance, the following:

– Adjustments to the architecture of the encoding layers and
the main neural network: (i) adding memory cells between
the neural networks gθt and gθt+1t and (ii) using different
types of layers including convolutional layers, attention-
based layers, and noisy layers (Fortunato et al., 2019) to
improve exploration.

– Pre-training selected parts of the neural network or
using genetic optimization to solve the credit assignment
problem through the recurrent computational graph.
We implemented an approach in the spirit of Ha
and Schmidhube (2018), which involved pre-training
prediction (LSTM) and encoder models (VAE) before
learning the control via genetic optimizers.

– Augmenting the problem with state or reward predictions;
e.g., see Silver et al. (2017).
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Notation

The following appendix provides an overview of the notation
for the formulation of the ALM optimization problem introduced
in Section 2. Variables that are used exclusively in the introduction
are not listed here.

Dimension Variables

Variable Codomain Value Description

T N 5 (or 15) length of the model period
[0,T] in years

H N 60 (or 180) number of steps during the
model period

1t :=T/H R≥0 1/12 step size of 1m

T - {0,1t, . . . ,H1t} discretized model period

t T - time index

N N 180 maximum number of steps
into the future for which cash
flows are modeled (at each
point in the model period)

n N - number of scenarios

T - {1t, . . . ,N1t} set of possible maturities of
cash flows

τ T - maturity index

bB N 13 number of different bonds to
invest in each period

bK N 16 number of different bonds to
finance from in each period

s N 6 number of different payer and
receiver swaps to enter in each
period

d N 145 feature dimension

d′ N 64 dimension of final encoding
layer

Model Variables

Variable Codomain Description

Yt R
N yield curve

Dt R
N discount factors

Assets

At R≥0 economic value of assets

Ct R≥0 cash

RP
t R

N nominal cash flows of mortgages

RE
t R

N nominal cash flows of loans to
individuals

Variable Codomain Description

Rt : = RP
t + RE

t R
N nominal cash flows of loans

R̃P
t R

N nominal cash flows of new
mortgages

R̃E
t R

N nominal cash flows of new loans to
individuals

R̃t : = R̃P
t + R̃E

t R
N nominal cash flows of new loans

Bt R
N nominal cash flows from bond

investments

B
pre
t R

N nominal cash flows from bond
investments before cash flows from
period t investments are added

Liabilities & Equity

Lt R≥0 economic value of liabilities

SDt R
N nominal cash flows of

non-maturing deposits

SFt R
N nominal cash flows of term

deposits

St : = SDt + SFt R
N nominal cash flows of deposits

S̃Dt R
N nominal cash flows of new

non-maturing deposits

S̃Ft R
N nominal cash flows of new term

deposits

S̃t : = S̃Dt + S̃Ft R
N nominal cash flows of new deposits

Kt R
N nominal cash flows from bond

financing

K
pre
t R

N nominal cash flows from bond
financing before cash flows from
period t financing are added

Et R≥0 economic value of equity

Decision Variables

aBt R
bB

≥0 number of bonds to buy at time t
for each available maturity

aKt R
bK

≥0 number of bonds to issue at time t
for each available maturity

a
pay
t R

s
≥0 number of payer swaps to enter

into at time t for each available
maturity

arect R
s
≥0 number of receiver swaps to enter

into at time t for each available
maturity

at R
bB+bK
≥0 concatenated decision vector

Xt R
d features

Other Cash Flow Variables

rt R received interest payments on all
loans

Z
αB
i

t R
N cash flows received on the ith

investment bond issued at time t
for i ∈ {1, 2, . . . , bB}

Z
αK
i

t R
N cash flows received on the ith

financing bond issued at time t for
i ∈ {1, 2, . . . , bK }

uD R interest rate paid on non-maturing
deposits
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Variable Codomain Description

uF R interest rate paid on term deposits

ID R
N interest payments made on

non-maturing deposits for each
associated maturity

IF R
N interest payments made on term

deposits for each associated
maturity

ct R material and personnel cost

cpt R penalty for holding cash when
interest rates are negative

CFt R cash flow from loans, deposits, and
costs

δt R dividend

h
pay
t R

s(H−1) payer swap holding portfolio in
units of swaps

hrect R
s(H−1) receiver swap holding portfolio in

units of swaps

V
fix
t R

s(H−1) value of outstanding fixed
payments of all swaps at time t

V
float
t R

s(H−1) value of outstanding floating
payments of all swaps at time t

V
spread
t R

s(H−1) value of outstanding spread
payments of all swaps at time t

NA
R≥0 net swap assets (value of swap

portfolio if positive)

NL
R≥0 net swap liabilities (absolute value

of swap portfolio if negative)

η
pay
t R cash flow from all held payer swaps

at time t

ηrec
t R cash flow from all held receiver

swaps at time t

Spreads & Growth Factors

κL R annual spread on loans

κB R annual spread on investments

κK R annual spread on borrowings

κS R annual spread on swaps

ρL R annual growth of loans

ρSD R annual growth of non-maturing
deposits

ρSF R annual growth of term deposits

Loss Function

γ R≥0 risk aversion coefficient

µ R≥0 annual return target

Pit R≥0 penalty of a violation of the ith

constraint at time t for
i = 1, 2, . . . , 6

σi R≥0 weight of violation penalty on ith

constraint for i = 1, 2, . . . , 6

p R≥0 penalty accumulated across all
constraint violations in the model
period

λ R≥0 weight of penalty loss in total loss
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