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Sentiment interpretability analysis
on Chinese texts employing
multi-task and knowledge base

Xinyue Quan, Xiang Xie* and Yang Liu

Beijing Institute of Technology, Beijijng, China

With the rapid development of deep learning techniques, the applications

have become increasingly widespread in various domains. However, traditional

deep learning methods are often referred to as “black box” models with low

interpretability of their results, posing challenges for their application in certain

critical domains. In this study, we propose a comprehensive method for the

interpretability analysis of sentiment models. The proposed method encompasses

two main aspects: attention-based analysis and external knowledge integration.

First, we train the model within sentiment classification and generation tasks to

capture attention scores from multiple perspectives. This multi-angle approach

reduces bias and provides amore comprehensive understanding of the underlying

sentiment. Second, we incorporate an external knowledge base to improve

evidence extraction. By leveraging character scores, we retrieve complete

sentiment evidence phrases, addressing the challenge of incomplete evidence

extraction in Chinese texts. Experimental results on a sentiment interpretability

evaluation dataset demonstrate the e�ectiveness of our method. We observe

a notable increase in accuracy by 1.3%, Macro-F1 by 13%, and MAP by 23%.

Overall, our approach o�ers a robust solution for enhancing the interpretability

of sentiment models by combining attention-based analysis and the integration

of external knowledge.

KEYWORDS

interpretability analysis, sentiment classification, multi-task training, attention

mechanism, knowledge base

1 Introduction

Deep learning models have achieved state-of-the-art results in many fields of natural

language processing. However, many results cannot be trusted or applied due to the black-

box mechanism of deep learning models, especially in medical, military, legal, and other

demanding fields. Therefore, how to analyze the interpretability of deep learning models

has attracted more and more discussion and attention. Interpretability analysis involves two

main aspects: data analysis and model analysis. Data analysis focuses on understanding the

data independently before building the model. Common techniques include classification,

clustering, and dimensionality reduction. Model analysis can be categorized into intrinsic

interpretability analysis and post-modeling interpretability analysis according to time (Du

et al., 2019). The former aspect focuses on examining the characteristics of the model

itself, such as weights and monotonicity. The latter can be further divided into global

interpretability and local interpretability, depending on whether the aim is to explain overall

predictions or individual predictions of the model, respectively. In the 2022 Language and

Intelligence Challenge, the Chinese Information Processing Society and the China Computer

Federation jointly released the sentiment interpretability evaluation task, providing the
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evaluation indicators and the evaluation datasets. The

interpretability analysis in the challenge belongs to global

interpretability. The task requires participants to output the

sentiment prediction of the model of the text and the evidence on

which the prediction depends. Here, the evidence is the tokens in

the text that are strongly related to the prediction of the model.

We ranked 7th out of the final 48 teams, and in this study, we will

discuss the method we used.

When selecting an interpretability analysis method, our

preference lies with the attention mechanism. Jain and Wallace

(2019) discovered that different attention distributions can yield

identical prediction results, leading them to conclude that the

attention mechanism is unsuitable as an interpretability method.

Wiegreffe and Pinter (2019) proposed four testing approaches

to demonstrate that, under specific conditions, the attention

mechanism can indeed offer an interpretable foundation for model

prediction outcomes. In the context of the sentiment classification

task of this study, we contend that sentiment prediction of the

model is determined by the output of the hidden layer associated

with the classification label, which exhibits strong correlations with

other tokens in the text. As a result, we consider the conclusions

drawn from employing the attention mechanism as a reliable

interpretability basis in this particular scenario.

Based on the granularity of sentiment analysis processing, tasks

can be categorized into aspect-level, sentence-level, or document-

level analyses (Hemmatian and Sohrabi, 2019). In this study, our

focus lies on sentence-level analysis. In data-driven sentiment

analysis tasks, it is customary to employ text as the input of the

model and predict the sentiment category of the given text as

its output. Models are typically trained using annotated training

datasets that provide sentiment labels. Various models, such as

RNN (Elman, 1990), CNN (Kim, 2014), and BERT (Devlin et al.,

2018), can be employed for the sentiment analysis task. In addition

to utilizing the classification framework directly, researchers such as

Schick and Schütze (2020, 2021) have proposed Pattern Exploiting

Training. This approach leverages language models and achieves

sentiment classification through generative means by attaching

task-specific prompts to the text.

Our approach centers on sentiment interpretability analysis,

employing a multi-task training mode in conjunction with an

attention mechanism and external knowledge base. Sentiment

generation is incorporated as an auxiliary task to facilitate

sentiment classification, with the classification task determining

the predicted sentiment category. Multi-task training aims to

acquire attention scores from multiple perspectives, mitigating

potential bias resulting from a single-task attention mechanism.

Interpretability analysis methods gauge the contribution of input

tokens to model predictions, forming the basis for the selected

evidence outputs. Due to vocabulary overflow concerns in word-

level models, contemporary classification models primarily adopt

a character-based approach. Consequently, the output of evidence

may be fragmented, omitting certain portions. Given that Chinese

evidence often manifests in phrase form, this issue of phrase

splitting significantly affects Chinese sentiment analysis. To address

this matter and ensure the retrieval of complete evidence phrases

within character-based scoring, we introduce an external Chinese

vocabulary as a knowledge base. By comparing against baseline

experiments, our method exhibits a notable improvement. To

further investigate, we conduct ablation experiments to assess the

impact of different modules on the results.

2 Related work

In the discussion of interpretability analysis methods, Ribeiro

et al. (2016) proposed the local interpretable model-agnostic

explanation, which interpreted the local prediction results of

complex models by using the linear model to fit the variation

in results caused by disturbances to the input instances. Since

the method of Ribeiro et al. (2016) cannot handle non-linear

features well, it used the linear model to fit the results; besides

the analyzed results are independent of each other, it cannot

analyze the results of recurrent neural networks well. Guo et al.

(2018) proposed the local explanation method using the non-linear

approximation based on Ribeiro’s method, which approximates the

decision boundary of complex models locally by using regression

models combined with regularization methods. Springenberg et al.

(2014) used the back propagationmethod to reduce noise in Zeiler’s

method (Zeiler and Fergus, 2014) that uses the deconvolution

method to explain the results of convolutional neural networks.

Sundararajan et al. (2016) and Smilkov et al. (2017) delved

gradient information to do the complex model interpretation and

respectively proposed the integrated gradient and the smooth

gradient methods, while Mareček and Rosa (2019) and Pruthi

et al. (2019) made full use of attention scores, such as combining

syntax trees with attention and generating fake mask attention for

model interpretation. Meister et al. (2021) specifically examined

how the sparsity of the attention mechanism influences the

analysis of model interpretability. Their research delved into

the investigation of attention and its impact on interpretability

analysis. Agarwal et al. (2021) introduced a local interpretable

model-agnostic explanation method that utilized a linear model

to interpret the local prediction results of complex models. This

approach was shown to be effective in explaining the predictions

of different models, such as decision trees, random forests, and

neural networks. Multimodal Routing extends the study by Tsai

et al. (2020) in local interpretability by providing a framework for

locally interpreting the relative importance of different explanatory

features to model prediction given different samples. Zhang

et al. (2022) proposed a method that uses a linear model to

explain complex model predictions. The authors of this study

build on this work by proposing a Sentiment Interpretable Logic

Tensor Network (SILTN) that enhances interpretability using a

differentiable first-order logic language (FOL).

In the domain of interpretability of Chinese texts classification,

Liu et al. (2018) used the generated fine-grained information

to construct a generative interpretation framework for text

classification and proposed explanatory factor for the first time.

Liu et al. (2018) also introduced a risk-minimizing training method

for the generation-discriminant hybrid model. Yang et al. (2020)

proposed a new sentiment analysis model-SLCABG, which is

based on the sentiment lexicon and combines Convolutional

Neural Network (CNN) and attention-based Bidirectional Gated

Recurrent Unit (BiGRU). The scale of the data has reached 100,000
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FIGURE 1

The process of sentiment interpretability analysis.

orders of magnitude, which can be widely used in the field of

Chinese sentiment analysis. Yan et al. (2021) proposed a sentiment

analysis knowledge graph SAKG-BERT model that combines

sentiment analysis knowledge and the language representation

model BERT. To improve the interpretability of the deep learning

algorithm, Yan et al. (2021) construct an SAKG in which triples

are injected into sentences as domain knowledge. Li et al. (2022)

introduced Shapley value that is inherent in solid theory for factor

contribution interpretability to work with deep learning models by

taking into account interactions between multiple factors.

3 Methodology

Our method leverages sentiment datasets. Specifically, we

denote the input text of the model as xi = (xi0, xi1, xi2, . . . , xim),

where xim represents the mth token in the ith text, and xi0
represents the < CLS > token. The sentiment labels of the

text are represented as y = (y1, y2, . . . , yn), where n denotes

the number of texts and yi ∈ 0, 1. During inference, an

interpretability analysis method is employed to provide insights

into the prediction of the sentiment category of the model. This

study introduces a novel approach that combines a multi-task

training mode with an attention mechanism and a knowledge base

for interpretability analysis. The multi-task framework includes a

sentiment classification task and a sentiment generation task. The

knowledge base incorporates the jieba1 and idiom vocabularies. The

whole process is shown in Figure 1.

3.1 Sentiment classification task

The purpose of the sentiment classification task is to predict the

sentiment category of the input text, and we implement this task

by using a pre-trained BERT (Devlin et al., 2018) model combined

with a fully connected network. During training, the output word

vector of the BERT (Devlin et al., 2018) model corresponding

to the < CLS > token can be regarded as the sentence vector

1 Jieba is a popular Chinese text segmentation library commonly used

in natural language processing tasks. It provides e�cient and reliable word

segmentation for Chinese text, enabling various applications such as text

analysis, information retrieval, and machine translation. Developed by Sun

Junyi, Jieba utilizes a combination of di�erent segmentation algorithms

to achieve accurate word boundary identification. The library has gained

significant popularity within the Chinese NLP community due to its ease of

use, flexibility, and excellent performance.

TABLE 1 Mapping relationship between multiple groups of sentiment

words and sentiment categories.

Positive–negative

Good–bad; happy–sad; love–hate; joyful–angry; pleased–annoyed; amused–sorrow

representation of the input text and used for the prediction of

the fully connected layer. Here, we choose the cross entropy loss

function for training, the specific formula is as follows:

loss1 = −
n

∑

i=1

k
∑

j=1

(

yij log2
(

ŷij
)

+
(

1− yij
)

log2
(

1− ŷij
))

(1)

where yij ∈ {0, 1}, ŷij ∈ [0, 1] the former represents the true

value of the ith text on the jth sentiment category, and the latter

represents the probabilistic prediction value of the model.

3.2 Sentiment generation task

The purpose of the sentiment generation task is to predict

the sentiment label by generating words of sentiment category.

Specifically, it sets appropriate prompt words for the classification

task, which are incorporated into the model along with the text

to be predicted. The sentiment generation task will be used as an

auxiliary task to jointly train the BERT (Devlin et al., 2018) model

with the classification task, and the final prediction category of the

input text is still obtained by the sentiment classification task.

Given the absence of sentiment word labels in the sentiment

dataset, and considering the requirement to generate sentiment

category words in the sentiment generation task, we manually

formulate the mapping relationship between multiple groups of

sentiment words and sentiment categories in a grouping manner

and avoid the need for labeling sentiment words by predicting

sentiment words within the group; the mapping relationship

between emotional words and emotional categories is shown in

Table 1.

Combined with the generation task, the input of the model

is extended as: xi = (< CLS >, xi1, xi2, . . . xim, <sentiment>, <

MASK >), the words that are predicted on the position of <

MASK > marker are the sentiment words, and they will be the

map to the sentiment categories according to Table 1. Furthermore,

the prediction of sentiment words is performed separately within

each group. The BERT (Devlin et al., 2018) model is pre-trained

by mask prediction tasks to obtain a full connection layer with

output probability distributed on the vocab. The output vector of
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< MASK > marking position is used to predict emotional words

in each mapping group after passing through the full connection

layer. Then, the cross-entropy loss function is calculated in each

group, and the total loss value of the sentiment generation task is

calculated by averaging the sum of losses of each group:

loss2 = − 1

G

∑

G

n
∑

i=1

v
∑

j=1

xMASK
i,j

(

log2

(

xMÂSK
i,j

))

(2)

where G indicates the number of the groups, as shown in

Table 1. For example, Good - bad is a group. The labels of the

mapping sentiment categories are positive and negative. v is the

length of the vocab, xMASK
i,j ∈ {0, 1} indicates the true value of

the corresponding sentiment words of the < MASK >, and the

same sentiment category corresponds to different sentiment words

in different groups. χMÂSK
i,j ∈ [0, 1] indicates the prediction value

of the sentiment words corresponding to < MASK >. Finally, we

train themodel with the combination of the sentiment classification

task loss and the sentiment generation task loss using multi-task

learning. The total loss is as follows:

loss = loss1 + loss2 (3)

3.3 The knowledge base construction

The primary objective of conducting sentiment interpretability

analysis is to extract the evidence utilized by the model

for sentiment category prediction, specifically focusing on the

characters present within the input text. Given the vast number

of words involved, the model is susceptible to encountering the

out-of-vocabulary (OOV) problem, which motivates the adoption

of character-level analysis rather than word-level analysis. By

assigning importance scores to individual characters instead of

words and assessing their impact on the sentiment category

prediction of the model, this approach takes into account the

inherent challenges associated with the OOV problem. However,

the character-level sentiment analysis will lead to the separation

of phrases in Chinese. If the selective output of characters within

complete words is considered as evidence, while disregarding the

output of complete words, it goes against intuition. To address this

issue, we establish a comprehensive knowledge base. When some

characters of the input belong to the phrases on the knowledge

base and are selected as the evidence, the entire vocabularies can

be recalled by the knowledge base and further set a threshold

to determine whether the phrases or characters can be the final

evidence. We combine the jieba glossary, which is relatively

complete and authoritative in Chinese glossaries, with the open

Chinese idiom glossary by Tsinghua University2 to build the

2 Tsinghua University’s Chinese Idiom Glossary is a valuable resource

developed by experts at Tsinghua University, providing detailed explanations

and interpretations of Chinese idioms. It serves as a comprehensive reference

for learners, researchers, and enthusiasts of Chinese language and culture,

o�ering insights into the meanings, usage, and cultural significance of a

wide range of idiomatic expressions. The accuracy, reliability, and scholarly

approach of the glossary make it an indispensable tool for anyone interested

in exploring the rich linguistic and cultural heritage of Chinese idioms.

knowledge base. To be specific, first, the phrases longer than three

in length in jieba glossary are filtered. Then, the phrases containing

letters, numbers, and punctuation symbols are filtered. After that,

the phrases with character lengths greater than 4 in the idiom

glossary are filtered. Finally, the idioms that can be split into

other phrases are filtered. The main purpose of preprocessing the

vocab is to reduce the introduction of non-sentiment phrases.

For example, the non-sentiment vocabularies combined with the

sentiment vocabularies will be filtered in steps 1, 3, and 4. The

complete process can be referred to Algorithm 1.

1: procedure PREPROCESSVOCAB(jiebaGlossary,

idiomGlossary)

2: for phrase in jiebaGlossary do

3: if WORDLENGTH(phrase) > 3 then

4: if CONTAINSSYMBOLS(phrase) then

5: FilterOut phrase

6: end if

7: end if

8: end for

9: for phrase in idiomGlossary do

10: if WORDLENGTH(phrase) > 4 then

11: if CANBESPLIT(phrase) then

12: FilterOut phrase

13: end if

14: end if

15: end for

16: end procedure

17: function WORDLENGTH(phrase)

18: return length of phrase

19: end function

20: function CONTAINSSYMBOLS(phrase)

21: return True if phrase contains letters,

numbers, or punctuation symbols

22: end function

23: function CANBESPLIT(phrase)

24: return True if the idiom can be split into

other phrases

25: end function

Algorithm 1. Vocabulary preprocessing.

3.4 Importance score based on
attention-mechanism

The fundamental concept underlying the BERT (Devlin et al.,

2018) model is the utilization of a multi-head attentionmechanism,

wherein the attention score is computed as follows:

Q = WqX

K = WkX
(4)

score = softmax

(

Q∗ KT√
dk

)

(5)
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Let X denote the word embedding vector associated with the

input text, while Wq and Wk represent the learnable variables,

and dk represents the dimension of vector K. The attention score

assigned to each word captures the relative significance of the

surrounding words with respect to it, thereby enabling the attention

score to serve as a metric for evaluating the contribution of

the input text to the prediction of the model. Consequently, the

attention score ranking can be leveraged to generate the evidence,

supporting the prediction of the model. This study is trained with

a combination of classification and generation task, the former is

realized with the help of < CLS > marks, and the latter with

< MASK > marks, so we will calculate the attention score used to

measure the importance of characters by calculating the weighted

sum. The specific calculation formula is as follows:

score = α∗
∑

L

score <CLS>+(1−α)∗
∑

L

score <MASK>,α ∈ [0, 1]

(6)

where α is the task weight, L is the number of layers, score<CLS>,

and score<MASK>, respectively, calculating the attention scores at

the corresponding positions of the subscripts. The model is made

up of 12 sub-layers and attention score of each layer will be

calculated; therefore, we regard the attention score of each sub-

layer corresponding to the position as the attention score value of

the model at the corresponding position, and the value of the final

attention score at the corresponding character position of the input

text is regarded as its contribution value to the model prediction.

3.5 Output of the evidence

The scores for each character in the input text are calculated in

Section 3.4, denoted as S(xi, si), where si = (s1i , s
2
i , . . . s

m
i ). Here, smi

represents the score corresponding to themth character (xmi ) in the

ith input text. A higher score indicates a greater contribution of xmi
toward predicting the sentiment category yi. The characters in the

input text are sorted in descending order based on their scores. The

top l ∗ a characters are selected, where l is the length of the input

text and a is the proportion of evidence in the text (determined

during data preprocessing). If the selected characters form a phrase

that matches the knowledge base constructed in Section 3.3, the

phrase is considered as evidence. If the selected characters do not

form a phrase or the phrase is not present in the knowledge base,

the individual characters themselves are considered as evidence.

Finally, the evidence is outputted based on its position in the

original text.

4 Experiments

We utilize the BERT-base3 model with a hidden size of 768 on

an RTX 3080Ti. Our training setup includes a batch size of 48, a

maximum sequence length of 128, a learning rate of 1e − 4, and a

training duration of 3 epochs. Additionally, we set the parameter

α to 0.5, achieve an accuracy of 30.10%, and utilize the AdamW

optimizer from Huggingface Transformers.

3 The model used in this study is an open-source model from Hugging

Face, available at: https://huggingface.co/bert-base-chinese.

4.1 Datasets processing

The evaluation dataset used in the experiment is the A-list

dataset of the emotionally interpretable track in the 2022 Language

and Intelligence Technology Competition, with 1,044 data. This

competition did not provide the training dataset, so we used the

sentence-level sentiment classification dataset from ChnSentiCorp

as the training set, with 12,000 data, and the sentiment labels are

positive and negative. Since we set the maximum length of input

text to 256, part of the data in the training dataset will be truncated

to affect the sentiment category. First, we train the model with the

training dataset and then delete the data whose predict label and

the true label do not match. After that, the length of the dataset is

reduced to 11,478. There are distribution differences between the

evaluation dataset and the training dataset, and to make full use

of the evaluation dataset to reduce its impact on the experimental

results, we use the sentiment classification task, the sentiment

generation task and the natural language inference task to train the

BERT (Devlin et al., 2018) model with the training dataset and then

apply the model to the prediction of the evaluation dataset. We use

the voting mechanism to label the evaluation dataset by predicting

the results and then merge it into the training dataset for training.

4.2 Metrics

The metric used in this study is the same as that of

the competition, and the evaluation is carried out from three

dimensions: the accuracy of model classification, the rationality,

and loyalty of the prediction-dependent evidence. The rationality of

evidence-dependent predictions is calculated byMacro−F1 values,

to assess the coincidence degree between the evidence predicted by

the model and the manually labeled evidence, which is calculated as

follows:

Macro−F1 = 1

N

N
∑

i=1

(

2 ∗ Pi ∗ Ri

Pi + Ri

)

(7)

Pi =

∣

∣

∣
s
p
i ∩ s

g
i

∣

∣

∣

∣

∣

∣
s
p
i

∣

∣

∣

,Ri =

∣

∣

∣
s
p
i ∩ s

g
i

∣

∣

∣

∣

∣s
g
i

∣

∣

(8)

where s
p
i and s

g
i represent the dependent evidence of ith

data predictions of the model obtained by interpretable analysis

methods and the dependent evidence on manually sentiment

labeling of ith data. The loyalty of evidence-dependent prediction

is to evaluate the consistency of the model on the original input

evidence and disturbance input evidence prediction by calculating

the Mean Average Precision (MAP) of all categories, the formula is

as follows:

MAP =
∑|Xa|

i=1

(

∑i
j=1 F

(

xaj , x
o
1 : i

))

/i

|Xa| (9)

where Xo and Xa represent the order of importance of

characters in the original input and perturbed input, respectively.

The importance of characters in this article ismeasured by attention

score. |Xa| represents the number of characters in the perturbation
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input, and x01 : j represents the top j most important characters in

the perturbation input. Functions F(x,Y) are used to determine

whether the character x is contained in list Y , and if so, F(x,Y) = 1.

A higher MAP value indicates that the model is more consistent on

the evidence prediction before and after the perturbation is added.

4.3 Baseline

In this study, the interpretability analysis is based on the

attention mechanism, and the integral gradient and the linear

model are selected as the baseline. To reduce the impact of the

framework of model selection on the interpretable prediction, we

selected the BERT (Devlin et al., 2018) model as the basic model

framework of the baseline experiment.

1) Attention-based interpretability analysis method: The choice

of interpretability method in this study is essentially based

on attention mechanism. It calculates the attention score of

classification marks on other characters to obtain the dependence

on input characters in the prediction task. The hidden output

vector of classification marks is related to the connection of other

characters through attention mechanism strongly. As a result,

attention mechanism is credible as an interpretability analysis

method.

2) Gradient-based interpretability analysis method:

Sundararajan et al. defined interpretability analysis as attribution

calculation, that is, to calculate the attribution vector of the input

vector relative to the baseline vector. The value of the position

corresponding to the input vector in the attribution vector can

be regarded as the contribution of the position character to the

predicted value. The attribution vector is obtained by integrating

the derivative of the input vector on the neural network between

the baseline vector and the input vector.

3) Linear-based interpretability analysis method: Ribeiro et al.

realized the partial interpretability analysis of the target model by

training simple interpretable linear models to fit the partial results

of complex target models. The training dataset of interpretable

models consists of input data and disturbance data that add

disturbance terms to the input data. The label of disturbance

data is obtained from the prediction of the target model. In this

experiment, we use the ridge regression model as an interpretable

linear model.

4.4 Results and discussion

The experimental results are shown in the Table 2. The higher

the accuracy, Macro−F1 and MAP values, the better the model

performances. The highest values of each index are marked in bold.

The results in the table show that our method is superior to the

baseline model in three indicators. Compared with the Macro−F1

indicator and MAP indicator of Attention-based and Gradient-

based, a high Macro-F1 indicator does not mean a highMAP value.

Analyzing from the calculation formula of indicators (Macro−F1-

formula 7, MAP-formula 9), the former represents the accuracy

of evidence prediction and directly reflects the effectiveness of

interpretable methods. The latter represents the consistency of

TABLE 2 Experimental results on the competition dataset.

Method Accuracy Macro-F1 MAP

Attention-based 0.88985 0.51472 0.43279

Gradient-based 0.85057 0.49694 0.43770

Linear-based 0.87835 0.43340 0.39002

Ours 0.90230 0.64406 0.66278

The bold values mean that they are the best result of certain experiment.

TABLE 3 Results of ablation study on the competition dataset.

Method Accuracy Macro-F1 MAP

Ours-P 0.89464 0.56777 0.61602

Ours-C 0.89847 0.61973 0.65888

Ours-G 0.89963 0.61849 0.66807

Ours-K 0.89751 0.56930 0.48746

Ours 0.90230 0.64406 0.66278

The bold values mean that they are the best result of certain experiment.

the evidence prediction before and after the disturbance term is

added to the input data, which, to some extent, represents the

robustness of the interpretable method. If the complete input text

and disturbance text are output as prediction evidence instead of

choosing evidence by the proportion, a higher MAP value and a

lower Macro−F1 value can be obtained. On the contrary, if the

length of output evidence is kept as short as possible, a relatively

higher Macro-F1 value and a lower MAP value can be obtained.

If the correctness and completeness of output evidence cannot be

guaranteed, it can be based on the use scenario to properly adjust

the proportion of evidence in the text, to balance the effectiveness

and robustness of the interpretable method.

4.5 Ablation experiments

Compared with the interpretable method based on attention

mechanism, ourmethod integrates the pre-processing of evaluation

dataset, multi-task training, and evidence recall based on external

knowledge base. We analyzed the effects of each module through

ablation experiments. The ablation experiments results are shown

in Table 3. The definition of methods in the table is as follows:

Ours−Pmeans to remove the pre-processing module of evaluation

data, that is, do not automatically label the evaluation data but

retain the cleaning of training dataset; Ours−C means to remove

the sentiment classification task, and the sentiment generation

task is used for model training; Ours−G means to remove the

task of sentiment generation, and model training is conducted

by sentiment classification task; Ours−K means to remove the

external knowledge base, and the evidence output of the model is

only determined by the set of evidence proportion and importance

score.

Based on the analysis of the ablation experiment results, the

accuracy is basically not affected by the removal modules. We

maintain that the accuracy of sentiment classification is mainly

determined by the model structure and training dataset, which

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1104064
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Quan et al. 10.3389/frai.2023.1104064

FIGURE 2

Attention scores of classification task.

FIGURE 3

Attention scores of generation task.

FIGURE 4

Weighted attention scores.
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FIGURE 5

The process of evidence output.

means that the training set selected in this study and the pre-

trained BERT (Devlin et al., 2018) model are sufficient to achieve a

high accuracy of sentiment prediction. Compared with Macro−F1

indicators, we believe that the multi-task architecture training

model can mitigate the bias caused by single task by calculating

the weighted sum of attention of different tasks, thus improving

the accuracy of evidence prediction. The pre-processing of the

evaluation dataset can automatically label the evaluation data

through the model so that the evaluation data can be incorporated

into the model training process. The accuracy of the evidence

prediction of the model trained by the evaluation data can be

improved to a certain extent. The external knowledge base can take

the complete recall of the split phrase as evidence, which can be

applicable to the circumstances that the evidence phrase is split and

taken out as evidence. At the same time, the external knowledge

base will introduce the error caused by the recall of the non-

evidence phrase which is of great importance for the selection of

the knowledge base. In the evaluation dataset selected in this study,

the external knowledge base can improve the rationality of evidence

prediction. Moreover, in some cirmustances, the knowledge base

can be constructed manually.

Compared with MAP indicators, the external knowledge base

will greatly affect the loyalty of the model. Its analysis is described

above; the introduction of the knowledge base will improve the

anti-interference of the model in the evidence extraction process by

completing the evidence characters. Compared with the knowledge

base module, other modules have a relatively weak impact on

loyalty of the whole model. We consider that this is also due to the

fact that BERT (Devlin et al., 2018) model is sufficient to achieve

the task of sentiment classification. Therefore, on the premise of

more accurate output of evidence, the combination of knowledge

base can enhance the anti-interference of the model.

4.6 Case study

To facilitate readers’ understanding of the proposed method

for sentiment interpretability in this study, a simple example

is provided. Given the input text “陈 老 师 人 真 的 非 常

好 ， 干 活 也 十 分 的 细 心” (which translates to “Teacher

Chen is very diligent and does work with great attention to

detail"), as shown in Figure 2, the attention scores for each

character in the classification model are displayed. Similarly,

Figure 3 shows the attention scores for each character in the

generation model. The magnitude of the attention scores reflects

the contribution of each character to the sentiment prediction of

the input text. In other words, characters with higher attention

scores are more likely to serve as evidence for sentiment

prediction.

In this case, the weighted attention scores of the classification

model and the generation model, with a selected value of 0.5

for parameter “a,” are shown in Figure 4. The entire process

of evidence word output is presented in Figure 5. It can be

observed that the relative magnitudes of the weighted attention

scores play a significant role. The characters “陈” (Chen, a

given name in Chinese), “ 老” (old), “人” (person), “好”

(good), “活” (live), and “细” (thin) have relatively high attention

scores. After sorting them in descending order, the sequence

“ 好” (good), “人” (person), “活” (live), “细” (patience), “老”

(old), and “陈” (Chen, a given name in Chinese) is obtained.

By combining these characters with the phrases from the

knowledge base, individual characters are connected to form

complete words. In this way, some meaningless characters can

become evidence vocabularies in the knowledge base. Finally,

by applying a proportional value, the ultimate evidence for

predicting sentiment is determined as “好,” “人,” “干活,” and
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“细心,” which are “good,” “person,” “working," and “patience” in

English.

5 Conclusion

To address the challenge of interpreting sentiment analysis,

this study proposes a language model trained using a multi-task

learning approach, augmenting with an attention mechanism to

assign scores to evidence. Furthermore, an external knowledge

base is employed to retrieve complete evidence phrases, thus

enhancing prediction rationality and loyalty of the model. Through

evaluating and analyzing the competition dataset, it is observed

that Chinese dependent evidences, typically in the form of phrases,

greatly benefit from the utilization of an external knowledge

base. This enhancement is evident in both the loyalty index,

measured by the Mean Average Precision (MAP) value, and, to

some extent, the rationality index, denoted as the Macro−F1

value. Notably, the multi-task architecture primarily influences

the Macro−F1 value. Moreover, experimental analysis reveals that

the manually set evidence proportion and the selection of the

knowledge base significantly influence the results. Hence, striking

a balance between the rationality and fidelity of evidence extraction

tasks by appropriately configuring the evidence proportion and

knowledge base selection represents a crucial area for future

research endeavors.
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