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While a�ordance detection and Human-Object interaction (HOI) detection tasks

are related, the theoretical foundation of a�ordances makes it clear that the two

are distinct. In particular, researchers in a�ordances make distinctions between J.

J. Gibson’s traditional definition of an a�ordance, “the action possibilities” of the

object within the environment, and the definition of a telic a�ordance, or one

defined by conventionalized purpose or use. We augment the HICO-DET dataset

with annotations for Gibsonian and telic a�ordances and a subset of the dataset

with annotations for the orientation of the humans and objects involved. We then

train an adapted Human-Object Interaction (HOI) model and evaluate a pre-trained

viewpoint estimation system on this augmented dataset. Our model, A�ordanceUPT,

is based on a two-stage adaptation of the Unary-Pairwise Transformer (UPT), which

we modularize to make a�ordance detection independent of object detection. Our

approach exhibits generalization to new objects and actions, can e�ectively make the

Gibsonian/telic distinction, and shows that this distinction is correlated with features

in the data that are not captured by the HOI annotations of the HICO-DET dataset.

KEYWORDS

multimodal grounding, a�ordance detection, human-object interaction, habitat detection,

multimodal datasets, neural models, transformers

1. Introduction

Introduced by Gibson in the 1970s, the concept of an “affordance” describes the functional

and ecological relationship between organisms and their environments (Gibson, 1977). Gibson

formulated the concept as a measure of what the environment “offers the animal” in terms

of action possibilities of the object. In modern AI, particularly as it pertains to problems of

perception in robotics (Horton et al., 2012) and grounding language to vision (McClelland

et al., 2020), to say an object “affords” an action is to say that the object facilitates the action

being taken with it. Gibsonian affordances are those behaviors afforded due to the physical

object structure, and can be directly perceived by animals. For example, if a cup has a handle,

it affords grasping and lifting by that handle. Pustejovsky, following from his Generative

Lexicon theory (Pustejovsky, 1995) subsequently introduced the notion of a telic affordance,

or behavior conventionalized due to an object’s typical use or purpose (Pustejovsky, 2013). For

example, a cup’s conventional purpose is for drinking from and a book’s is for reading. These

conventionalized afforded behaviors are correlated with certain specific configurations between

human and object; e.g., a chair must be upright with its seat clear to be sat in. These conditions

(or habitats) form a precondition to the satisfaction of the intended use of the object; if those

conditions are satisfied, the act of sitting on the chair will lead to the expected result of the chair

supporting the human (i.e., its Telic qualia role according to Generative Lexicon theory). If not

(e.g., the chair is upside down), the human will not be appropriately supported.
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On the question of multimodal grounding, the computer vision

and natural language processing (NLP) communities have drawn

closer together, such that datasets originating in computer vision

(e.g., Goyal et al., 2017; Damen et al., 2018; Boggust et al., 2019)

now have demonstrated utility as benchmarks for NLP grounding

tasks (e.g., Gella and Keller, 2017; Huang et al., 2020; Xu et al.,

2020). One such popular challenge is grounding words to actions in

images and video (e.g., Radford et al., 2021). As such actions often

involve humans interacting with objects, datasets specialized to not

just actions (running, jumping, walking, etc.) but to human-object

interaction (HOI) have also proliferated in recent years (cf. Gupta and

Malik, 2015; Krishna et al., 2016; Chao et al., 2018; Kim et al., 2021;

Zou et al., 2021; Zhang et al., 2022).

Knowledge of how a human interacts with an object, however, is

not always revealed through a single modality (language or image),

and often even the alignment of multimodal annotations (e.g.,

bounding box and linguistic caption) does not adequately encode the

actual HOI in a situation. For many HOIs, conventional descriptions

used to caption them often fail to draw out significant aspects of the

interactions that are important for creating visual embeddings. For

example, it would be expected that an image with the caption “person

driving a car” would share certain visual correlations with images of

tools held in the hand, but there is usually no linguistic expression

present in the caption to explicitly evidence that the driver is holding

a steering wheel, etc.

Humans most often learn about affordances (e.g., “cups contain

things,” “spoons are used for stirring”) by using objects or watching

them in use (Tomasello, 2004); hence there is a natural alignment

between affordance reasoning and various kinds of HOI tasks.

However, it must be noted that affordances and HOIs are

not identical. Returning to Gibson’s original formulation of the

concept, he expands on it by stating that an affordance “implies the

complementarity of the animal and the environment.” That is to say

that the Gibsonian affordance, one afforded by an object’s structure,

is not just any action which can be taken with an object, but an

action that is somewhat specific to that object and that agent in that

environment. For example, the hollow geometry of a bottle affords

containing liquids, while the opening affords releasing them. An

image of a human drinking from a bottle, with it raised to the mouth,

implies both the structure and the purpose of the bottle, even though

neither is made explicit from the collocation of the object bottle and

the action drink_from. It is this type of intentionality information, or

identification of the relation between the object and human that is

largely missing from grounded HOI datasets.

In this paper, we address the question of whether HOI models

can distinguish the intentionality behind telic affordances from

Gibsonian exploitation of an object.

Our novel contributions are as follows:

1. We present an augmentation of the HICO-DET (Chao et al.,

2018) dataset that is annotated to distinguish Gibsonian from telic

affordances at the visual and linguistic levels.

2. We developed AffordanceUPT, an adapted and modularized

version of UPT (Zhang A. et al., 2021) that is trained over this

novel data and can generalize to certain novel objects and actions.

3. We evaluate PoseContrast, a SOTA object orientationmodel, over

the augmented dataset and find that PoseContrast tends to exhibit

a strong bias toward the most frequent or default orientation,

rather than the appropriate orientation for the action.

AffordanceUPT1 trained over the augmented HICO-DET dataset

is able to accurately distinguish active intentional use from simple

Gibsonian exploitation, and we find that the way objects cluster

when the model is trained for the Gibsonian/telic distinction

exposes additional correlations to the visual features of the specific

images themselves.

2. Related work

There has been considerable interest in how encoding affordances

might be used to improve the accuracy of HOI recognition and

scene understanding models (Hassanin et al., 2021), as well as

in downstream reasoning tasks in cognitive models of HOI or

computational models of HRI. Psychological studies have shown

that humans respond faster when objects are observed in canonical

configurations (or habitats Pustejovsky, 2013) for their typical

affordances (Yoon et al., 2010; Borghi et al., 2012; Natraj et al.,

2015). Roboticists are particularly interested in affordances to model

human-like interactions with objects, and work from that community

has demonstrated that in order to successfully interact with an

object, a robot need not know the object’s name, but only perceive

its function (Myers et al., 2015) or object affordances (Kim and

Sukhatme, 2014; Saponaro et al., 2017). Affordances have also

been recognized as implicating broader decisions for planning and

inference (Horton et al., 2012; Antunes et al., 2016; Beßler et al.,

2020).

The NLP community has made significant contributions

in extracting object-oriented knowledge from language data.

Multimodal datasets have been used to associate linguistic

descriptions to visual information from action images, e.g.,

IMAGACT (Russo et al., 2013; Moneglia et al., 2018). Other

research has explored integrating different descriptions of affordance

information coming from language and visual datasets (Chao et al.,

2015; Saponaro et al., 2017). Several approaches have identified

objects’ functional roles and factors involved with their creation

using standard distributional techniques reflecting PPMI between

action verbs and object types (Cimiano and Wenderoth, 2007;

Yamada et al., 2007). These correlate with the telic (function) and

agentive qualia (creation) a la Pustejovsky.

Recently it has become clear that not all modes of interacting

with an object involve an affordance, while not all relevant object

affordances are actually involved in the interaction the human is

shown engaging in an image (Beßler et al., 2020; Hassanin et al.,

2021). To address this, Pustejovsky (2013) defines a habitat as the

precondition for an action to take place. Namely, a habitat is a

conditioning environment or context that facilitates the enactment

of an afforded behavior, such as how a bottle must be held to be

drunk from. A primary component of habitats is object orientation,

and therefore a potentially useful multimodal method for habitat

detection is pose detection.

Pose detection has applications ranging from autonomous

driving (Caesar et al., 2020), to robotics (Tremblay et al., 2018),

and language grounding (Thomason et al., 2022). Consequently,

available datasets are also diverse and specialized (more details

1 All models and annotations corresponding for this work can be found under

https://github.com/VoxML/a�ordance-annotation.
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in Section 3.3.2). Only recently has object orientation has been

introduced into HOI Detection [e.g., D3D-HOI (Xu et al., 2021)

or BEHAVE (Bhatnagar et al., 2022)]. So far, the focus has been

mainly on human pose (e.g., Yao and Fei-Fei, 2010) or object size and

positioning (e.g., Li et al., 2020).

3. An approach to detecting
a�ordances

3.1. Theory

When humans identify and label objects, we not only perform

a categorical type assignment (e.g., cup), but more often than

not, we understand an entire set of object attributes as well as a

network of relations concerning how the object participates in the

situation under discussion. Many of these involve human-object

interactions (HOIs), and our knowledge of things is predicated on

an understanding of how we interact with them. Osiurak et al. (2017)

provide a clear operationalization of this mechanical knowledge of

affordances in the domain of tool use. In this domain, Norman (2002)

divided Gibson’s formulation into physical and learned affordances,

and Young (2006) specified the notion of functional affordances.

These specifications divide affordances into hand-centered and tool-

centered, and the divisions map relatively straightforwardly to

Gibson’s affordances and Pustejovsky’s telic affordances, but do not

per se address the question of object orientation to the human.

For example, there is a conventional presupposition that the

orientation of the cup exposes the concavity of the interior to enable

the functioning of the cup (Freksa, 1992). Assuming that an object

such as a cup, typed as a container, is asymmetric across the plane

bisecting it horizontally, but otherwise a symmetrical cylindroid, it

would appear that orientation information is critical for enabling

the use or function of the object qua container. In fact, only when

the cup’s orientation facilitates containment can the function be

“activated,” as it were. This references two notions that are critical

for reasoning about objects and HOI generally: we encode what the

function associated with an object is (its affordance) (Gibson, 1977),

but just as critically, we also identify when it is active (its habitat)

(Pustejovsky, 2013). Therefore, as given by Pustejovsky’s original

definition of the telic affordance, in this study we consider telic as

a proper subset of the Gibsonian affordance, that overrides it; a telic

affordance necessarily exploits the structural properties of the object,

but does so in a way that selects for a conventionalized configuration

to activate a conventionalized function.

To capture object type and human-object interaction potential,

we adopt conventions used in the modeling language VoxML

(Pustejovsky and Krishnaswamy, 2016), where habitats, including

orientation, are modeled as preconditions on affordances, that

is, the situational information about when/how an object is

used. This allows modeling contextual and common-sense

information about objects and events that is otherwise hard

to capture in unimodal corpora, e.g., balls roll because they

are round.

Hence the task of extracting dependencies between object

habitats and affordances is consequential for tasks like automatic

annotation of VoxML or Text-to-3D Scene applications (Chang

et al., 2015). The current study focuses on adapting HOI models

for affordance type classification using the Gibsonian/telic distinction

and object orientation.

3.2. Annotation

3.2.1. Image context annotations
Our dataset consists of images taken from HICO-DET, a

benchmark for HOI detection (Chao et al., 2018). Every image

contains annotations for each HOI instance—bounding boxes for the

humans and the objects with labels for the interactions.We annotated

120 images taken from 10 object categories for a total of 1,200 images.

The 10 object categories are apple, bicycle, bottle, car, chair, cup, dog,

horse, knife, and umbrella, chosen for being representative of the full

set of HICO-DET object categories, which includes animals, vehicles,

and household objects. Using a modification of the VIA tool (Dutta

et al., 2016; Dutta and Zisserman, 2019) as shown in Figure 1, each

image was annotated for the action, affordance class (Gibsonian/telic),

and direction of front and up orientation of the objects therein.

Action and affordance were annotated for all the relevant humans

in an image, and orientation fields up and front were annotated for

both the objects and the humans. Additionally, fields is_part_of and

changes? were used to track whether an item being annotated was

part of another annotated item and whether any changes were made

in the annotations (new object or action) from those specified in the

HICO-DET dataset, respectively.

The possible options for the field affordance are None, Gibsonian

(G) and telic (T). The affordance is marked as G when the action

performed is by virtue of the object’s structure and T if by virtue of

the object’s conventionalized use or purpose (see Section 3.1). The

fields action and obj name are chosen from the list of actions and

object names respectively provided in the HICO-DET dataset. Front

and upward orientations are selected from the world orthogonal axes

[x, y, z]. When viewing an image face-on, +x is to the right of the

screen,−x is to the left,+y is upward and−y is downward, while+z

extends out of the screen toward the annotator and −z is pointing

away from them into the screen. This assumes a standard right-hand

coordinate system as shown in Figure 1. Axes can be combined. If the

front of the human or object faces both leftward and forward (out

of the image), then the front orientation is −x + z, and +x + z if

turned halfway toward the right. If no clear front or top was apparent

(e.g., for a ball), it was annotated as [0, 0, 0]. In this paper we denote

orientation using the notation front_up with each vector represented

as (x, y, z). The horse in Figure 1 would be denoted [−1, 0, 1]_[0, 1, 0],

because its forward vector is facing toward the left (−x) and out of the

image (+z) while its intrinsic up vector is pointing up (+y).

These annotations were later used to evaluate Object Pose

Detection (see Section 3.3.2) and to evaluate the overall Habitat

Extraction approach (Section 4.4).

3.2.2. Text annotations
Each of the 600 object-verb pairs in the HICO-DET dataset

were also annotated with the affordance (G for Gibsonian or T for

telic). Table 1 shows a few examples. In HICO-DET, people and

objects are often associated with multiple verbs (e.g., a person sits,

rides, and races a motorcycle). If one action of such a set has been

defined as telic, we define the action as a telic affordance; this is

because telic affordances are supervenient on any existing Gibsonian
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FIGURE 1

Example image context annotation. This HICO-DET image shows a telic a�ordance between horse (10) and person (7) and both with orientation:

front(−1, 0, 1) up(0, 1, 0).

TABLE 1 A small subset of text annotations.

Object Action A�ordance

Bicycle Ride T

Bicycle Hold G

Bottle Hold G

Bottle Drink_with T

Cow Milk T

Cat Feed T

Banana Carry G

Skis Pick_up G

Knife Cut_with T

G stands for Gibsonian and T for telic.

affordances, hence they can formally be said to take precedence

over any accompanying implicated Gibsonian affordance. Since

telic affordances are necessarily more specific and informative than

Gibsonian affordances, they are considered to subsume them, and

therefore defining the same affordance as both telic and Gibsonian

would be redundant—see Section 3.1 for more information.

These text-only annotations have the advantage of rapidly

generating data for training HOI models, while lacking some

additional contextual information that may be provided by

an image, as in Section 3.2.1. These annotations were later

used to train and evaluate the AffordanceUPT model (see

Section 3.3.1).

Image and text annotation were each performed by different

people. The calculated IAA is listed in the Supplementary material.

3.3. Models

3.3.1. Human-object interaction
We adapted the UPT (Unary-Pairwise Transformer; Zhang

et al., 2021a) model as the basis for Gibsonian/telic affordance

classification. UPT is a two-step transformer-based (Vaswani et al.,

2017) HOI classifier and its authors demonstrate that it is

comparatively performant and memory efficient compared to other

state-of-the-art HOI models (e.g., Tamura et al., 2021; Zhang et al.,

2021b). In the first step, it determines all relevant entities and in

the second step their relations (in contrast to single-task models,

where entities and relations are considered together in multi-task

learning; Zhang A. et al., 2021). UPT is therefore composed of

two parts: a cooperative transformer, which operates on unary

tokens to generate a representation of entities, and a competitive

transformer, which subsequently operates on pairwise tokens to

represent their relations.
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Moreover, the two-step approach enables the analysis of both

representations of objects (unary tokens) and of their interactions

(pairwise tokens) (see Section 4).

To utilize UPT for affordance detection, we changed the

classification from a variable number of verbs to a two-label

Gibsonian/telic classification. We also modularized UPT to make

the affordance detection independent of object detection based on

DETR (Detection Transformer; Carion et al., 2020), which uses

ResNet (He et al., 2016) as a backbone. That is, we replaced the pre-

trained, inflexibly implemented DETR variant (supporting 80 object

types) with a modular variant from Huggingface2 (supporting 90

object types) and froze all DETR/ResNet weights. However, nothing

fundamental was changed in the underlying architecture. This makes

our UPT variant independent of the object detection module so that

it can be replaced by models that support other object types. We

will refer to the model as AffordanceUPT in the remainder of this

paper. The performance of AffordanceUPT on unknown objects and

actions is also part of our evaluation (see Section 4.1). Our approach

to affordance detection shows how methods such as UPT can be

applied to this and related tasks in multimodal semantics.

3.3.2. Object pose estimation
To estimate object orientation, we use PoseContrast (Xiao et al.,

2021). This model has the advantage of not requiring additional

information such as CAD references or class information, while still

providing strong results (cf. Xiao et al., 2019; Dani et al., 2021;

Nguyen et al., 2022). We retrained the model on the ObjectNet3D

dataset (Xiang et al., 2016), which is still one of the largest datasets

for this task with 100 object categories and over 90,000 images. Other

common datasets are still very limited in their domain or object

categories (see also Supplementary material).

3.3.3. Training
AffordanceUPT was trained for 20 epochs on 2 GeForce

RTX 8000 devices with a batch size of 8 per GPU—an effective

batch size of 16. Hyperparameter optimization was performed

using W&B (Biewald, 2020). The resulting parameters are listed

in the Supplementary material. The respective HICO-DET dataset,

annotated with Gibsonian/telic labels as described in Section 3.2.2,

served as training and test data. Images without Gibsonian/telic

text annotations were removed, resulting in a dataset size of 33,593

training images and 8,527 testing images. In addition to training with

the regular HICO-DET split, we also trained variants to evaluate

generalization to unknown objects and actions (see Section 4.1).

PoseContrast was trained on one GeForce RTX 8000 with default

parameters. Different hyperparameters and additional methods of

augmenting the training data were tested, but did not result in

significant improvements.

4. Evaluation and analyses

4.1. Evaluation of A�ordanceUPT

For the evaluation of AffordanceUPT see Table 2 and Figure 2.

The results show that HOI models can also be used for affordance

2 https://huggingface.co/facebook/detr-resnet-50

TABLE 2 A�ordanceUPT results on the Gibsonian/telic text annotated

HICO-DET dataset where the first line is our default A�ordanceUPT model

trained and evaluated on the regular HICO-DET split.

Training data Test data mAP x
100

HICO-DET Train HICO-DET Test 27.58

O
b
je
ct

HICO-DET Merged w/o

bicycle

HICO-DET Merged bicycle 35.74

HICO-DET Train HICO-DET Test bicycle 46.69

HICO-DET Merged w/o car HICO-DET Merged car 20.44

HICO-DET Train HICO-DET Test car 33.54

V
er
b

HICO-DET Merged w/o

wield

HICO-DET Merged wield 32.99

HICO-DET Train HICO-DET Test wield 37.23

HICO-DET Merged w/o

drive

HICO-DET Merged drive 21.40

HICO-DET Train HICO-DET Test drive 26.05

O
b
j+
ve
rb

HICO-DET Merged w/o

book or read

HICO-DET Merged book

and read

24.11

HICO-DET Train HICO-DET Test book and

read

31.46

HICO-DET Merged w/o car

or drive

HICO-DET Merged car and

drive

15.63

HICO-DET Train HICO-DET Test car and

drive

22.63

HICO-DET Merged stands for the data set combined from training and test data. w/o denotes

models that have been trained without the respective object/verb.

detection with a few adjustments, as shown in the example of UPT.

The mAP values are within ∼1–5 mAP) of HOI detection on the

regular HICO-DET dataset (cf. Hou et al., 2021b; Tamura et al., 2021;

Zhang et al., 2021a). The differences are for a few reasons:

1. The distributions of our target classes are much more complex,

subsuming multiple diverse actions;

2. HICO-DET has separate bounding boxes for each action, and

these can vary widely, resulting in multiple boxes for the same

object or person;

3. Not every affordance in HICO-DET is always annotated but

AffordanceUPT detects them anyway;

4. Our object detection model is not trained on HICO-DET, so

there can be major deviations for the boundary boxes that cannot

be merged.

A few examples can be found in the Supplementary material.

These do not significantly affect training and inference, but are

reflected in the evaluation score since the problem primarily

concerns the boundary boxes and not the affordance label itself. We

deliberately decided against alternative datasets like V-COCO (Lin

et al., 2014; Gupta and Malik, 2015) or VisualGenome (Krishna

et al., 2016), as V-COCO has a very limited set of verbs (26) and

VisualGenome is too unstructured for now.

To evaluate AffordanceUPT on novel objects, we select a few

specific examples, specifically: the nouns bicycle and car, the verbs

wield and drive, and the HOIs book+read and car+drive (see Table 2).

In Table 2, HICO-DET Merged w/o bicycle (first column) denotes a

dataset created from combining train and test images without bicycles

in them (used for training), whereas HICO-DET Merged bicycle
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FIGURE 2

A�ordanceUPT evaluation regarding object types and training data size. The bottom axis lists the object labels. The left axis and associated bar graphs

show the number of Gibsonian (blue), telic (orange), and general object occurrences (green) in the HICO-DET training subset. The right axis and

corresponding line graph show the mAP for each object. Dashed lines denote overall mean values for the two a�ordance types. The objects are sorted by

the ratio between G and T training samples.

(second column) has combined train and test images with bicycles in

them (used for testing) and HICO-DET Merged Test bicycle (second

column) denotes images from the test set with bicycles in them

(used for testing).HICO-DET Train andHICO-DET Test denotes the

regular train and test set respectively. We re-split HICO-DET such

that for each example, the test set comprised all images containing the

example, while the training data comprised all remaining images (i.e.,

for car+drive, images of boats being driven or cars being washed were

omitted from both training and evaluation). These results were then

compared against the results of the normal AffordanceUPTmodel on

the objects/verbs in the regular HICO-DET test dataset.

Our results show that AffordanceUPT can detect affordances on

novel objects, albeit with an appreciable drop in mAP (e.g., ∼10–

13%). The effect is less strong for unknown actions such as driving

(only a drop of around 5%). AffordanceUPT can even generalize to

some extent to novel objects and actions (e.g., detecting that driving

a car is a telic affordance, despite never seeing a car or a driving

action). Meanwhile, regular HOImodels generalize only on unknown

HOI combinations (e.g., Shen et al., 2018; Hou et al., 2021b) or on

unknown objects (e.g., Wang et al., 2020; Hou et al., 2021a), not both.

Because each re-split requires retraining, the evaluation could not

be carried out for all combinations due to runtime reasons. However,

the tendencies are clearly apparent.

The generalization on display here is only made possible by our

abstraction to the two affordance types that point to specific kinds of

action classes that can be contained under the same label. This means

affordance detection supports a higher level of generalization due to

greater abstraction. Further, the ability to distinguish between the two

affordance types, telic and Gibsonian means that the model can also

identify when an object is being actively used, since telic affordance

indicates active usage and Gibsonian indicates mere interaction

with the object. This makes affordance detection interesting for

applications where the exact action does not need to be detected, but

a distinction of intentional or active use is sufficient.

Such situations could be, for example:

i) Monitoring an object’s active usage time. For example, a knife

can be held in several different ways. But, to use a knife for

cutting something, the blade of the knife needs to be pointing

down toward the object. Using these criteria, we can estimate

when a knife is likely to be dull from continued use and

needs sharpening.

ii) For autonomous driving. For example, whether a pedestrian is

distracted by the active use of an object and therefore more

caution is required (Papini et al., 2021).

iii) Language grounding applications, such as grounding for

robotics (Ahn et al., 2022). For example, aiding a robot in

distinguishing between interactive and non-interactive gestures

(Matuszek et al., 2014). A robot can learn to identify that in

order to grasp an object, the anthropomorphic hands/grippers

should be positioned above the object before attempting the

grasp. The grasp would depend on the specific task one is trying

to execute, and whether that task exploits a Gibsonian affordance

or a telic one. The orientation of the object is also important in

some cases—e.g., to hold a cup for the purpose of pouring (telic)

something from the cup to a bowl—in this case, the top of the

cup should be tilted toward the bowl, and orientation is one of

the object attributes we annotated (Section 3.2.1).

iv) Visual question answering (Antol et al., 2015). For example, to

generate better answers to the question “What is the person

doing?”. Consider an image of a human-object interaction where

a person is holding an umbrella. Based on the intentionality of

the interaction, the answer could be “the person is holding the

umbrella upright to shield himself from the rain” vs. “the person

is carrying the umbrella with him in case it rains.”

v) Image captioning (Nguyen et al., 2021)—specifically in cases

where the verb implies one kind of affordance but the image

indicates the other. For example, if an image of a “riding”

affordance shows a passenger riding in a car beside the driver

with hands on the steering wheel, our model would still be able

to detect that the car is being used for an intentional “driving”

action. In Figure 5, we show distinct clusters of car “riding”

action images where the driver’s hands are visible and where they

are not.

4.2. Evaluation of PoseContrast

Weused the 1,200 image annotations of HICO-DET from Section

3.2.1 to evaluate PoseContrast. Since PoseContrast outputs object

rotation as Euler angles, but the annotations indicate the major axis

orientation, the PoseContrast output was mapped to these axes. The

evaluation scores thus describe the accuracy with which the objects
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TABLE 3 PoseContrast results on the image annotated HICO-DET dataset.

Model Apple Bicycle Bottle Car Chair Cup Dog Horse Knife Person Umbrella

[0,0,1]_[0,1,0] 0.18 0.13 0.57 0.19 0.27 0.72 0.20 0.21 0.01 0.40 0.73

Most frequent 0.65 0.41 0.57 0.38 0.31 0.72 0.21 0.41 0.18 0.40 0.73

PoseContrast 0.83 0.44 0.67 0.51 0.58 0.75 0.31 0.25 0.08 0.44 0.67

The object names in black are also represented in ObjectNet3D. The first two rows represent the baselines. The top row shows the accuracy for a hypothetical model that always predicts the orientation

vector [0,0,1]_[0,1,0] (oriented upright with respect to the viewer), and the second row shows the accuracy if the most common orientation for the object in the dataset is always predicted.

FIGURE 3

PoseContrast orientation predictions on the 1,200 annotated HICO-DET images for 9 object classes. Predicted orientations with a frequency of < 5 were

filtered out. *Marks objects that are also in ObjectNet3D.

were aligned with the correct major axes. We compare PoseContrast

with two baselines: one, in which the object is always predicted

to be facing forward and upright ([0, 0, 1]_[0, 1, 0]), and a second,

which always predicts the most frequent orientation in the HICO-

DET annotations (Most Frequent). The results are listed in Table 3.

PoseContrast appears to generalize very poorly on the HICO-DET

dataset. Notably, the default orientation [0, 0, 1]_[0, 1, 0] is predicted

for almost all objects (see Figure 3), including for object classes in

the training set. Examining the ObjectNet3D dataset, we find that it

almost exclusively contains objects in this orientation (e.g., upright

bottles, forward-facing TVs), rather than in orientations where they

are manipulated by humans (i.e., Gibsonian or telic affordances) (see

Figure 4). Rotating the image serves as an augmentation method

during training but is of limited use. For example, if only side views of

weapons are available, it is impossible to generate views from the front

or back. We also tried additional augmentation methods such as blur

filters and dpi variations, but they did not produce significantly better

results. Further analyses can be found in the Supplementary material.

4.3. Analysis of A�ordanceUPT tokens

To show how AffordanceUPT distinguishes between Gibsonian

and telic affordances, in Figure 5 we visualize the token-pair

representations for the 10 test categories using t-SNE and

PaCMAP (Wang et al., 2021). We see that objects that are interacted

with in a similar way and have similar affordances appear closer

together. For example, the occurrences of bottle and cup (i.e.,

containers to drink liquids from) are strongly overlapping. Also,

bicycles and horses, both rideable, are placed close to each other when

considering telic affordances. Gibsonian interactions with horses, on

the other hand, are closer to those with dogs (and do not occur in the

large Gibsonian bicycle cluster). In addition, all objects (e.g., apple,

bottle, cup, knife) that imply interaction primarily with the hand are

in the same region, which includes some images of cars (blue marked

cluster), an initially rather unintuitive observation. But a look at the

different images for “ride” in the two car clusters, explains this. In the

blue cluster (closer to the hand-held objects), the interactions of the

hand with the car (e.g., steering wheel) are more clearly visible, while

in the red cluster the people (and therefore hands) are less visible,

and the images focus more on the entire car and the actual “driving”

aspect. The same apparent HOI action class (in this case, “ride”), as

given by the original labels in HICO-DET, in fact divides into distinct

clusters based simply on how the model is trained to represent

the two-way affordance type distinction (Gibsonian and telic). This

directly reflects one of the potential application domains of this

work mentioned in Section 4.1. Such information is essential for

accurately grounding visual human-object interactions to language,
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FIGURE 4

ObjectNet3D dataset mapped to main orientations. Scores are weighted for every object. An interesting example (red box) is “bottle,” which occurs

almost exclusively in an upright position in the dataset. Other interesting examples include “fire extinguisher” and “rifle,” which also exist in the dataset in

stereotypical pose (cf. Barbu et al., 2019), but which for these objects means that the front of the object points to the side of the image.

and thus leads us back to the motivation from the introduction:

information like this is linguistically redundant (e.g., “man driving

a car with his hands on the steering wheel” is non-informative

because driving—at present—presupposes steering). Only with image

examples do these features make semantic sense. This work paves the

way for systematically extracting such visual information and linking
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FIGURE 5

A�ordanceUPT token-pair visualization using t-SNE (Left) and PaCMAP (Right). The vehicle images above and below are “ride” images from the

HICO-DET dataset and are classified as telic by the model. The images in the top row are in the red cluster and the images in the bottom row are in the

blue cluster.

FIGURE 6

Habitats based on the 1,200 image annotations. The colors here represent the relative alignments in relation to the person.

it to language. Visualizations of the unary tokens can be found in the

Supplementary material.

4.4. Automated habitat annotation

As automatic determination of object orientation is still limited,

we analyze habitats based on our HICO-DET image annotations. We

converted object orientations in world space to be relative to the

interacting person (e.g., the person’s front is now+z). In Figure 1, the

horse would have the orientation [0, 0, 1]_[0, 1, 0], since it is oriented

in the same direction as the person. Figure 6 depicts the resulting

statistics, and shows the relationship between affordance and object

orientation as a habitat condition. The orientation of objects like

bicycles, cars, chairs, horses, and dogs is relatively independent of

their affordances, but these objects are often aligned in the same

way as the person in the case of a telic scenario. Bottles and cups,

on the other hand, show a strong relative increase in orientation

to [0, 0, 0]_[0, 0,−1], indicating that the object’s upward is oriented

opposite to the person’s front (typical orientation when drinking).

Knives, on the other hand, can be held in any orientation, however

the majority of orientations (green segment plus orange segment)

indicate that knives are often held with the blade facing down, away

from the person.
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Figure 6 shows the interdependence of affordance and orientation

(as a subcondition of habitat): affordances presuppose certain

orientations, and conversely, certain object orientations make certain

affordances possible in the first place. Therefore, both variables

should be considered in relation to each other (in relation to HOI

as a whole) and not as independent phenomena.

5. Discussion and conclusions

We presented AffordanceUPT, an adaptation of UPT to

distinguish between Gibsonian and telic affordances. With some

augmentations to HICO-DET and modularization of UPT, we can

alter a powerful HOI detection model to detect distinctions in

affordances specifically. This greater level of abstraction lends itself

to generalization that was not possible before from a forced-choice

HOI detection model, and in the process we uncovered properties

of the data that have important implications for grounding images

to language.

Our model performs affordance detection even on novel objects.

We highlight the limitations of habitat (orientations) modeling

in existing datasets using PoseContrast. Further, we also visualize

the Gibsonian/telic distinction which highlights interesting HOI

attributes.

We found that how AffordanceUPT clusters objects indicates

what can be detected by automatic entity and intention detection.

Such distinctions are useful for (semi) automatically populating

a multimodal representation like VoxML (Pustejovsky and

Krishnaswamy, 2016) by inferring possible affordances for an object

and their preconditions. AffordanceUPT also shows promise in

generalization for novel objects and actions, meaning it could also

infer partial information about novel objects or events for such

a representation.

5.1. Future work

In future work, we plan a comprehensive analysis of

AffordanceUPT’s performance on novel entities with respect to

which training conditions must be fulfilled for the model to classify

which attributes.

Results and interpretations like those in Figure 5 were performed

on a manageable subset of data. Further analysis could determine

how our method scales when dealing with big data, using

automated analysis techniques. In addition, since annotations were

only performed on a subset of the HICO-DET dataset, one

item of future work is to enlarge the dataset, including using

crowdsourcing techniques.

Now that we have established the validity of the AffordanceUPT

Gibsonian/telic discrimination approach, next steps also include

doing cross-dataset validation, such as training on HICO-DET and

evaluating on V-COCO, to further establish generalizability or the

requirements for generalizable Gibsonian/telic discrimination.

The division into Gibsonian and telic affordances can also be

further refined. For example, the act of “repairing a car” is not a telic

affordance, but an act ofmaintaining telic functionality.

Successful habitat detection depends on improving performance

on the remaining challenge of object orientation detection. In

the future, we plan to test our approach on a larger scale and

expand the dataset for this purpose. This may involve combining

AffordanceUPT with grounded language models e.g., CLIP (Radford

et al., 2021).
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