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A computational model for the
cancer field e�ect

Karl Deutscher, Thomas Hillen* and Jay Newby

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, Canada

Introduction: The Cancer Field E�ect describes an area of pre-cancerous cells

that results from continued exposure to carcinogens. Cells in the cancer field

can easily develop into cancer. Removal of the main tumor mass might leave the

cancer field behind, increasing risk of recurrence.

Methods: The model we propose for the cancer field e�ect is a hybrid cellular

automaton (CA), which includes a multi-layer perceptron (MLP) to compute the

e�ects of the carcinogens on the gene expression of the genes related to cancer

development. We use carcinogen interactions that are typically associated with

smoking and alcohol consumption and their e�ect on cancer fields of the tongue.

Results: Using simulations we support the understanding that tobacco smoking is

a potent carcinogen, which can be reinforced by alcohol consumption. The e�ect

of alcohol alone is significantly less than the e�ect of tobacco. We further observe

that pairing tumor excision with field removal delays recurrence compared to

tumor excision alone. We track cell lineages and find that, in most cases, a

polyclonal field develops, where the number of distinct cell lineages decreases

over time as some lineages become dominant over others. Finally, we find tumor

masses rarely form via monoclonal origin.

KEYWORDS

cancer field e�ect, field cancerization, carcinogenesis, head and neck squamous cell

carcinoma, computational modeling, hybrid cellular automaton, smoking

1. Introduction

The idea of field cancerization was first mentioned by Slaughter et al. (1953) in 1953
when histologically observing 783 squamous-cell tumors in oral cancers. Within the entire
patient population it was found that benign epithelium surrounding the malignant tumor
was abnormal. As well, some of the patients had multiple separate tumors occur in the
same area of the oral cavity. From these observations, Slaughter et al. proposed a process
termed field cancerization, in which a carcinogenic agent preconditions an area of epithelium
toward cancer. If an area of epithelium is exposed to a carcinogenic agent for a sufficient
amount of time and with enough intensity then it produces irreversible changes in cells
and cell groups, such that the process toward cancer becomes inevitable (Slaughter et al.,
1953). In Slaughter et al. (1953), it is also noted that a field of preconditioned epithelium
may develop cancer at multiple points and possibly lead to multiple tumors. As a result,
cancer does not arise from one cell that suddenly becomes malignant but instead from
areas of precancerous change. Local recurrence after surgery or radiation occurs due to
left-over benign epithelium that is preconditioned toward cancer, i.e., from the remaining
pre-cancer field. Many papers were written following (Slaughter et al., 1953) that showed
field cancerization can be found in colon carcinoma (Galandiuk et al., 2012; Alonso et al.,
2015), gastric carcinoma (Kang et al., 1997; Zaky et al., 2008; Takeshima et al., 2015),
esophageal carcinoma (Cense et al., 1997; Oka et al., 2009; Lee et al., 2011), non-small-cell
lung squamous carcinoma (Franklin et al., 1997; Steiling et al., 2008; Kadara and Wistuba,
2012), non-small-cell lung adenocarcinoma (Gomperts et al., 2013; Kadara et al., 2014),
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head and neck squamous cell carcinoma (HNSCC) (oral,
oropharynx, hypopharynx, larynx) (Slaughter et al., 1953; Califano
et al., 1996; Braakhuis et al., 2003; Angadi et al., 2012), breast
carcinoma (Trujillo et al., 2011; Rivenbark and Coleman, 2012;
Foschini et al., 2013), cervix (Chu et al., 1999), prostate carcinoma
(Nonn et al., 2009; Trujillo et al., 2012), bladder carcinoma (Hafner
et al., 2002), and skin carcinoma (Kanjilal et al., 1995; Hu et al.,
2012; Szeimies et al., 2012).

Biomarkers that were discovered to correlate with the presence
of a cancer field are loss of heterozygosity (LOH) (Tabor et al.,
2001), micro-satellite alterations (Tabor et al., 2001), chromosomal
instability (Hittelman, 2001), and mutations in the TP53 gene
(Brennan et al., 1995; van Houten et al., 2002). Braakhuis et al.
(2003) related field cancerization to genetics and identified: “growth
of one or more genetically altered cell(s) that produces a field of

cells predisposed to subsequent tumor growth.” Based on genetic
evidence, there currently exists two main hypotheses that explain
the underlying cellular basis of field cancerization: polyclonal origin
and monoclonal origin. Polyclonal origin proposes that mutations
occur in multiple sites of the epithelium due to continuous
carcinogen exposure, which leads to multi-focal carcinomas or
lesions of independent origin (van Oijen and Slootweg, 2000).
Monoclonal origin proposes that the mutant cells from the initial
lesion migrate and develop multiple lesions that share a common
clonal origin (Braakhuis et al., 2003). Here, we show that while all
cases are possible in our model, a polyclonal field is by far the most
common outcome of our simulations.

Another breakthrough in biology since (Slaughter et al., 1953)
was the discovery of cancer stem cells CSCs and their importance
in cancer initiation, progression, and treatment. Simple et al.
(2015) explain field cancerization using Braakhuis model of genetic
alterations (Braakhuis et al., 2003) plus the addition of CSCs.
They consider both monoclonal and polyclonal origin within
their model. In Simple’s model (Simple et al., 2015) for oral
cancer, a continuous exposure of the oral mucosa to carcinogens
results in molecular alterations that lead to the induction of CSC-
like behavior in a step-wise manner. CSCs originate either by
transformation of normal stem cells (NSCs), or by dedifferentiation
of the tumor cells (TC) and migration through normal mucosa to
develop the field. Repeated mutations at 17p (the location of the
TP53 gene) and 3p/9p (p16/FHIT gene) lead to transformation of
the NSCs into transit amplifying cells (TACs). These transformed
cells divide and expand to create a field of neoplastic cells. Finally,
a genetic hit in the cells within the field at 13q (the location of the
Rb gene) allows a carcinoma to develop. Note that alteration to the
Rb gene is known to release CSCs from their quiescent stage such
that proliferation, self-renewal and formation of tumors can occur.
The work of Simple motivated us to include gene expression levels
explicitly in our model, and to use a neural network to describe
those changes.

Recently Curtius et al. (2017) studied field cancerization from
an evolutionary perspective. They define a cancerized field to be a
single cell or group of cells that are further along the evolutionary
path toward cancer. Driver mutations have been found in both
the carcinoma and the cancerized field thus indicating that a
driver mutation may also be a field cancerization characteristic.
As a result, field cancerization can occur because of multiple

independent clonal expansions, i.e., polyclonal origin. Thus, both
Simple et al. (2015) and Curtius et al. (2017) consider that a
cancerized field can be formed via monoclonal or polyclonal origin.

1.1. Our model

In our model, a cancer field will be considered as a region of
tissue that has genetic and phenotypic change that preconditions
it toward the possible formation of one or more tumors within it.
The genetic and phenotypic change can be caused by carcinogenic
onslaught, genetic defects at birth, mutations later in life, or a
combination thereof. We focus on the effect of a certain body
region or organ—such as the mouth or the tongue—and we do not
consider a system-wide pre-mutation as a cancer field.

The steps of the process of field cancerization that will be
considered here are as follows:

• A region of tissue is repeatedly affected by one or more
carcinogens over time, for example through smoking tobacco.

• The carcinogen(s) cause genetic mutations in the cells of the
tissue which in turn influence the phenotype of the cell;

• As the cells start to proliferate and differentiate, the field
expands;

• Eventually a CSC will be created, which will finally create the
first TC and consequently a tumor.

We develop the model in the framework of a hybrid cellular
automaton as introduced by Gerlee and Anderson (2007). The
details will be explained in Section 2. With this model we try to
answer:

1. What degree of carcinogenic onslaught is necessary for field
cancerization to occur? Which carcinogens are the most
aggressive, smoking related carcinogens or alcohol?

2. How long before a cancer field is formed? How long before the
first tumor cell within the field is formed?

3. Is the field formed via monoclonal origin, polyclonal origin, or a
mixture of both? Which type of origin is the most common?

4. How long does it take for a tumor to be large enough such that it
is detectable by physicians? Once a tumor is detected, what size
is the surrounding field?

5. How long does it take a recurrence to occur after removal of the
tumor vs. the removal of tumor and field?

6. What are the dynamics of different cell lineages in an established
cancer field?

Though field cancerization is found in many types of tissue
throughout the body, the most commonly studied case is head
and neck squamous cell carcinoma (HNSCC), which we consider
here. Alcohol and smoking are the most commonly associated
carcinogens to HNSCC. These two carcinogens typically enter
the body through smoking and/or chewing tobacco and drinking
alcohol, respectively. We use parameter values that are typically
associated to smoking and alcohol drinking.

We find in our model, that a continued, long-time onslaught of
carcinogen on tissue of the mouth inevitably leads to a formation
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of a cancer field. Our model confirms the general understanding
(Hashibe et al., 2009; LoConte et al., 2018) that smoking induced
carcinogens are much more potent than alcohol. The timing of
the first tumor cell is usually quite long, in the order of 10s
of years, hence for many people, a cancer will not arise. In
almost all situations the field is polyclonal. Monoclonal fields
are only seen in very small domains. A removal of the tumor,
in our model, leads to a quick recurrence if the field is left
behind. If the field is removed as well, then recurrence takes very
long time. When we follow the cell lineages, we see that new
lineages form and several of them will die out over time. However,
some lineages establish themselves and become cancerous. In
that case we observe a polyclonal cancer field, and also
polyclonal cancers.

1.2. Carcinogenesis

Most carcinogenesis models consider that cancer is initialized
from the result of a multi-step process (Frank, 2007). A normal
cell does not become a cancer cell until multiple genetic
alterations accumulate within it. The number of genetic alterations
in a cancer cell is an indicator of the level of malignancy
of the cell.

Gatenby and Gillies (2008) found six micro-environmental
barriers for a malignant phenotype: apoptosis with loss of basement
membrane contact, inadequate growth promotion, senescence
(deterioration of a cells’ power of division and growth with
age), hypoxia (deficiency in the amount of oxygen reaching the
tissues), acidosis (excessively acidic condition of the body fluids
or tissues), and ischaemia (restriction of blood supply to tissues,
causing hypoxia). The development of cancer occurs when a
normal cell overcomes at least one of these barriers. Thus, the
micro-environment is an important factor to consider in cancer
initialization.

A normal cell lineage can acquire mutations (Curtius et al.,
2017), that are positively selected in the micro-environment of a
healthy organ. A driver mutation is one that confers growth or
survival advantages for tumor cells within the appropriate micro-
environment (Greaves et al., 2003; Calabrese et al., 2004; Stratton
et al., 2009). A passenger (neutral) mutation is one that passively
accumulates in cell lineages (Greaves et al., 2003; Calabrese et al.,
2004; Stratton et al., 2009). It may be that some driver mutations
are not currently affecting cancer growth but instead had previously
driven the growth of an lineage (Curtius et al., 2017). Progression
to cancer usually requires the accumulation of multiple driver
mutations (Weaver et al., 2014). A mutant lineage/clone, can grow
to produce large patches, or fields, of cells that are predisposed to
eventually progress to neoplasm.

It has been reported by Knopf et al. (2015) that at least 232 genes
are directly involved in HNSCC of young patients. Here, we focus
on 10 genes of importance: TP53, TP73, RB, TP21, T16, EGFR,
CCDN1, MYC, PIK3CA, and RAS (Knopf et al., 2015). Some of
these genes are oncogenes (EGFR, CCDN1, MYC, PIK3CA, RAS),
i.e., supporting cancer development if over expressed, and some are
tumor suppressor genes (TP53, TP73, RB, TP21, TP16), i.e., support
tumor growth if expression is inhibited.

1.3. Cancer stem cells

Before discussing cancer stem cells (CSCs) it should be noted
that there is no single standardized definition of CSCs. Instead,
many slightly different and sometimes contradictory definitions
have emerged, each suited to a particular study. In general, CSCs
are not normal stem cells (NSC), they are cells that have some of the
characteristics of NSC. We consider CSCs as multipotent cells in a
tumor that like NSCs have self-renewal ability, but in addition, have
the abilities of tumor initiation, migration and metastasis (Biddle
et al., 2011; Bu and Cao, 2012).

The origin of CSCs is explained by three possible processes.
The first process states that a NSC undergoes several genetic as
well as epigenetic alterations to give rise to a CSC (Feller et al.,
2013). The second process states that CSCs originate from NSCs
that acquire a precancerous phenotype during their development
stage (Bjerkvig et al., 2005; Feller et al., 2013; González-Moles
et al., 2013). The third process states that the CSC originate from
mature tumor cells (Moon et al., 2011; Kumar et al., 2012; Herreros-
Villanueva et al., 2013; Di Fiore et al., 2014) or epithelial cells
(Bjerkvig et al., 2005; Feller et al., 2013; González-Moles et al., 2013)
that undergo dedifferentiation into a CSC through modifications
in signaling pathways and regulatory mechanisms. Note that the
first and second processes only differ in whether an NSC acquires a
genetic alteration when it is fully developed or still in development.

1.4. Previous mathematical models

There exists an extensive amount of literature that studies
cancer initiation (Gentry and Jackson, 2013; Durrett et al., 2016;
Paterson et al., 2020), progression (Beerenwinkel et al., 2014;
Enderling and Chaplain, 2014), metastasis (Franssen et al., 2019),
treatment (chemotherapy, immunotherapy, radiation) (de Pillis
et al., 2009; Enderling and Chaplain, 2014; Radunskaya et al., 2018),
and effects of various micro-environmental and external factors
on cancer development (Gerlee and Anderson, 2007). However,
the only mathematical model for field cancerization, that could be
found at the time of writing, is themodel by Foo et al. and its follow-
up studies (Foo et al., 2014, 2020, 2022; Ryser et al., 2016). Here, we
will further extend Foo’s model using the hybrid cellular automaton
approach of Gerlee and Anderson (2007).

Foo et al. (2014) describe field cancerization as a spatial Moran
process on a square lattice. The cells are classified into three
phenotypes, k = 0 healthy, k = 1 pre-cancerous, k = 2 cancer cells.
These phenotypes have different fitness, with healthy having the
lowest fitness, pre-cancer cells an intermediate fitness, and cancer
cells the highest fitness. Random mutations allow cells to transit
from k = 0 to k = 1 and k = 2. Foo et al. (2014) consider the
dependence of their model on the parameters, and they identify
three regimes. A first regime where pre-cancer cells quickly become
cancerous. In that case no field is generated, as the progression to
cancer is fast. A second regime where progress from pre-cancerous
to cancerous is slow. This leads to a significant sized cancer field
and multiple lesions in the tissue. And a third regime, where Field
development and cancer development are on the same time scale.
More recently, Foo et al. (2020, 2022) extended themodel to include

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2023.1060879
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Deutscher et al. 10.3389/frai.2023.1060879

a three dimensional tissue structure consisting of epithelial layers,
and more than k = 2 phenotypes.

We use these models by Foo et al.’s (2014, 2020, 2022) as
a starting point for our model and we extend it by (i) allowing
multiple mutations at different genes, which can or cannot
lead to cancer development, (ii) allow for non-constant micro-
environments, (iii) consider carcinogens as mutational driver, (iv)
follow cell lineages, and consider additional phenotypic action
such as apoptosis, quiescence, transit amplifying cells, and de-
differentiation.

Ryser et al. (2016) applied the model described in Foo et al.
(2014) to head and neck squamous cell carcinoma (HNSCC). The
three histopathological stages of epithelial dysplasia (precancerous
stages) are mild, moderate, and severe (carcinoma in situ [CIS]).
Ryser et al. (2016) consider the following four type of cells: normal
cells (type 0), mildly dysplastic cells (type 0*), moderately dysplastic
cells (type 1), and severely dysplastic cells (type 2). They use
the stochastic Moran model on a regular two-dimensional lattice
as described in Foo et al. (2014). To estimate and compute the
parameters for their model they use age-specific incidence rates
from the Surveillance, Epidemiology, and End Results (SEER)
program of the National Cancer Institute (18 registries, 2000–2012)
in a Bayesian framework. Ryser et al. (2016) computed the survival
function, the probability density function of the local field radius,
and the probability of harboring at least two clonally unrelated
fields in the head and neck region with respect to the mean age at
smoking initiation to diagnosis with invasive cancer. They found
that there is a strong dependence of the local field size on age at
diagnosis, with a doubling of the expected field diameter between
ages at diagnosis of 50 and 90 years. Further the probability of
harboring multiple clonally unrelated fields at the time of diagnosis
were found to increase substantially with patient age. As a result
of these discoveries they suggest that patient age at diagnosis is
a critical predictor of the size and multiplicity of precancerous
lesions.

Our extensions of the model of Foo et al. (2014) will be in
the framework of a hybrid cellular automaton as developed by
Gerlee and Anderson (2007). Gerlee and Anderson (2007) created
a hybrid cellular automaton to model the effect of various micro-
environmental factors on solid tumor growth. Their model is
a hybrid cellular automaton because the rule of the automaton
depends upon the output of a neural network and partial
differential equations. The cellular automaton is comprised of two
cell types: an empty cell (normal cell) and a tumor cell. The neural
network is used to approximate the relationship between themicro-
environmental variables and the phenotype of a cell. The partial
differential equations are used to model the spread of the various
micro-environmental variables in the domain of consideration.
While Gerlee and Anderson (2007) considered tumor growth, they
did not specifically study the cancer field effect.

For the neural network they use a multi-layer perceptron
(MLP), with input being the output of the partial differential
equation for the cell at a location (x, y) and output being a
vector of likelihoods of a phenotype and movement occurring
at a time-step. The hidden layer of the MLP represents the
genes and hence the neural network attempts to replicate the
genotype-phenotype relationship. They consider the phenotypes

proliferation (P), quiescence (Q), and apoptosis (A). Each time-step
represents a cell cycle so that a single phenotypic action will occur
once per time step for each cell. The maximum of the likelihoods
between P, Q, and A determines which phenotypic action occurs.
If the likelihood of movement is sufficiently large then the cell is
allowed to move. The quiescent state is used to describe any normal
activity of the cell which is not one of the three actions explicitly
modeled above.

We extend Gerlee’s model by (i) considering six cell types
(normal tissue cells NTC, mutated normal tissue cells MNTC,
normal stem cells NSC, mutated normal stem cells MNSC, cancer
stem cells CSC, tumor cells TC, and empty cells) (ii) including
transit amplifying cells (iv) including four phenotypic actions
(proliferation, quiescence, apoptosis, differentiation) (v) including
10 gene expression levels for TP53, TP73, RB, TP21, T16, EGFR,
CCDN1, MYC, PIK3CA, and RAS. (vi) following cell lineages,
and (vii) considering full or partial surgical removal of cancer and
cancer field cells.

2. The hybrid cellular automaton
model

Here, we develop a hybrid cellular automaton (CA) model for
the cancer field effect. We model on three distinct levels, a model
for the carcinogen distribution, a neural network for the gene
expression and a model for the cell dynamics over time.

We use carcinogen concentration function ci(x, y) to describe
the carcinogen input on a two dimensional domain, where the
index i is used to distinguish different carcinogens, for example
i = 1 for smoking induced carcinogens, and i = 2 for alcohol
induced carcinogens. In our simulations we consider a wide variety
of carcinogen distributions ci(x, y), including a uniform, smooth
spatial patterns, and random distributions. We found that the
Gaussian distribution described below gave the most instructive
results, hence we only report those. We choose a Gaussians
centered in the domain middle as

ci(x, y) = exp

(

−1

2

(x− µ)2 + (y− µ)2

σ 2

)

, µ = N

2
−1, σ = N

15
;

(1)
where N is the domain size (number of grid cells), assuming a
square domain is used.

2.1. Gene expression neural network

In this section, we describe a deep neural network with one
hidden layer to account for varying levels of gene expressions
through cell age and carcinogenic onslaught. A schematic of the
layers of the neural network is given in Figure 1.We considerG ∈ N

genes that are biomarkers to the considered cancer type. Later we
will model the gene expressions for HNSCC of the 10 genes TP53,
TP73, RB, TP21, TP16, EGFR, CCDN1, MYC, PIK3CA, and RAS.
Here, we formulate the model in general terms first.
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FIGURE 1

Schematic of the gene neural network. As input we use the carcinogen concentrations and the cell age. The hidden layer relates the carcinogens to

the gene expression levels, which are the output of the neural network.

2.1.1. General case
A good general reference for neural networks can be found in

Hastie et al. (2009). The gene expression of each gene is represented
by the function

ej(t) ∈ R, j = 1, 2, ...,G. (2)

The gene expression is a non-dimensional value that is zero when
the expression is normal, negative when it is under-expressed, and
positive when it is over-expressed. The gene expression of each
gene changes over time based upon a simple multi-layer perceptron
(MLP). The input of the MLP is the vector

X(t) : = [{ci(t − 1)}i=1,...,C ,α(t − 1)]T ∈ R
C+1
+ , (3)

where ci(t) are the carcinogen concentrations, C denotes the
number of carcinogen considered and α(t) is the age of the cell. The
cell age α is measured for each cell after mitosis. Changes in gene
expression are based upon the carcinogens in the environment of
the cell and the age, which essentially means we are looking at the
effects of the carcinogens and replication errors as a cell ages. The
output of the MLP is given by

Y(t) : = [{δj(t)}j=1,2,...,G]
T ∈ R

G, (4)

where δj(t) is the computed maximum possible change in gene
expression for gene j. The amount the gene j will be mutated in
a time-step is a random sample from the uniform distribution
multiplied by δj(t).

Y(t) is computed using matrix multiplication, addition and
application of a non-linear transform. The hidden layer is
computed by

H(t) : = γ (WXX(t)) ∈ R
G, (5)

where

γ (ξ ) : = ξ
√

1+ νξ 2
,∈

(−1√
ν
,
1√
ν

)

(6)

is the non-linear activation function that is applied element wise
to a vector, and WX ∈ R

G×C+1 is a weight matrix. Note that the
activation function is chosen to ensure |δj(t)| < 1√

ν
, hence allowing

us to control the maximum amount the expression of gene j can
change in a time-step via ν. After the hidden layer is computed the
output is computed by

Y(t) = γ (WYH(t)+ bY (t)), (7)

where WY ∈ R
G×G is a weight matrix and bY (t) ∈ R

G is a bias
vector.

Biologically speakingW
(i,j)
X , i ∈ [1,G], j ∈ [1,C] represents how

carcinogen i influences gene j,W(i,C+1)
X represents whether cell age

influences gene i, W
(i,j)
Y represents whether gene i influences gene

j, and b
(i)
Y (t) denotes whether gene i has a higher or lower chance

of gene expression changes relative to other genes. Note that if a
value in the weight matrices is negative it means there is a negative
relationship, if it is positive it means there is a positive relationship,
and finally if it is zero it means there is no relationship.
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We assume that as the cell ages, replication errors increase
in frequency and cause random changes in gene expression. In
the case of determining how age affects each gene, the values of
W

(i,C+1)
X , i ∈ [1,G] are randomly made positive or negative at every

time-step by sampling a Bernoulli random variable bi,t , with success
probability parameter p = 0.5, and scaling W

(i,C+1)
X , i ∈ [1,G] by

α̃i,t ∈ {±1} where

bi,t ∼ Bernoulli(p = 0.5) (8)

α̃i,t = 2bi,t − 1. (9)

Let zj ∼ Uniform(0, 1), j = 1, . . . ,G, be independent uniform
random variables. The gene expression, ej(t), of a gene is updated
by

ej(t) = ej(t − 1)+ zjδj(t). (10)

A gene j is considered to be mutated if its gene expression is above
the threshold valueM ∈ R+, i.e., |ej(t)| ≥ M. The bias for a gene j,

b
(j)
Y (t), is updated through the relation

b
(j)
Y (t) =















β , ej(t − 1) ≥ M

−β , ej(t − 1) ≤ −M

0, otherwise

, (11)

where β ∈ R+ is preset parameter.

2.1.2. Neural network parameters for the HNSCC
case

For the case of HNSCC we make the following choices. We
consider the G = 10 genes TP53, TP73, RB, TP21, TP16, EGFR,
CCDN1, MYC, PIK3CA, and RAS. The type of gene is summarized
in Table 1.

The weight matrix associated with the input of the neural
network (5) is given by:

WX(t) =





































1 −1 α̃1,t10−7

0 0 α̃2,t10−7

0 −1 α̃3,t10−7

1 −1 α̃4,t10−7

1 0 α̃5,t10−7

1 1 α̃6,t10−7

1 1 α̃7,t10−7

0 1 α̃8,t10−7

0 1 α̃9,t10−7

1 1 α̃10,t10−7





































, (12)

where α̃i,t is defined by (9). As sufficient data was unavailable we
assumed that each carcinogen has a weight of 1, −1, or 0 for
each gene depending on how the carcinogen effects that gene. For
example since ethanol tends to upregulate TP53 then W11

X = 1.
The impact of alcohol and smoking induced carcinogens on gene
mutations was taken from the large online data bases (PubChem,
2023a,b), and are listed in the last two columns in Table 1.

We assume that each gene has the same mutation rate which
causes the last column in WX , that is associated with mutations
caused by transcription errors due to cell age, to have one

value. The mutation rate was chosen based upon the human
genomic mutation rate being approximately 2.5×10−8 per base
per generation (Nachman and Crowell, 2000). The weight matrix
associated with the output of the neural network (7) is given by:

WY =





































1.00 0 0.01 0 0 0 0 0 0 0
0.01 0.1 0 0 0 0 0 0 0 0
0.01 0 0.3 0 0 0 0 0 0 0
0.01 0 0 0.1 0 0 0.01 −0.01 0 0
0.01 0 0 0 0.1 0 0 0 0 0
0.01 0 0 0 0 0.1 0 0 0 0
0.01 0 0.01 0 0 0 0.2 0 0 0.01
0.01 0 0 0 0 0 0 0.3 0 0.01
0.01 0 0 0 0 0 0 0 0.1 0
0.01 0 0 0 0 0 0 0.01 0 0.3





































. (13)

The main diagonal of the above matrix gives the main weights for
each gene with W11

Y being the highest as it is TP53. Each diagonal
value was given a default of 0.1 and it is increased by 0.1 for each
gene it calls or is related to, so TP53 gets a value of 1 because it
is assumed all the genes relate to TP53. Each column describes
the relations between the other genes and the gene associated
with the main diagonal value of that column, where if the gene is
upregulated by the diagonal gene it gets a value of 0.01 and when it
downregulates the gene it gets a value of −0.01. The magnitude of
the values in the matrix were chosen by trial and error since there
is not sufficient data to complete the matrix with accurate values.

The activation function (6) parameter is given by ν = 106. The
value of ν results in the neural network outputting values in the
range ( −1√

ν
, 1√

ν
) = (−10−3, 10−3) and was chosen so to keep the

maximum amount each gene can change to a reasonable figure.
Finally themutation bias vector update function (11) parameter

is given by β = 10−3. The value of β was chosen to correspond
with the maximum output value of the neural network, so that
when a gene is mutated, the neural network will always output the
maximum value.

2.2. Cellular automaton

We consider a two dimensional regular grid with N grid cells.
Each cell can be occupied by a cell, or be empty. The six cell classes
that we consider are normal tissue cells (NTC, brown), mutated
normal tissue cells (MNTC, green), normal stem cells (NSC, blue),
mutated normal stem cells (MNSC, yellow), cancer stem cells (CSC,
purple), and tumor cells (TC, red), plus an empty cell (white) (see
Table 2).

The cell class in the CA is represented by s(t) ∈ {0, 1, ..., 6} with
0 = NTC, 1 = MNTC, 2 = NSC, 3 = MNSC, 4 = CSC, 5 = TC, 6 =
empty.

Evolution of the model occurs in the following basic steps:

1. Given a carcinogen exposure, changes in gene expressions of a
cell are computed by the neural network causing gene mutations
to occur.

2. Based on the genetic profile, the cell executes one of
four phenotypic actions: proliferation, quiescence, apoptosis,
differentiation. If empty space is available in the neighborhood,
the cell moves with a certain probability.
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TABLE 1 List of 10 genes that are relevant for HNSCC.

Index Gene Gene-type Regulation Phenotypes Carcinogen 1 Carcinogen 2

1 TP53 Tumor-suppressor Down ↑: p Up Down

↓: a, q

2 TP73 Tumor-suppressor Down ↓: a

3 RB Tumor-suppressor Down ↑: p, d Down

↓: q

4 TP21 Tumor-suppressor Down ↑: p Up Down

5 TP16 Tumor-suppressor Down ↑: p Up

6 EGFR Oncogene Up ↑: p Up Up

7 CCDN1 Oncogene Up ↓: a Up Up

8 MYC Oncogene Up ↑: p, d Up

↓: a

9 PIK3CA Oncogene Up ↓: a Up

10 RAS Oncogene Up ↑: p, d Up Up

↓: a

We indicate the type of gene as tumor suppressor or oncogene and show how the phenotypes change as the gene is up-or down regulated. The abbreviations p, a, q, d stand for the phenotypic

actions of proliferation, apoptosis, quiescence, and differentiation, respectively. The column “regulation” indicates the expression level changes that make the cell more cancerous. The column

“Phenotypes” indicates the relative change in p, a, q, d. In the last two columns we list how the given carcinogen changes the corresponding gene expression. Carcinogen 1 and 2 reflect the typical

effects of smoking and alcohol consumption, respectively.

TABLE 2 CA cell classes.

Cell class s(t) Color

Normal tissue cell (NTC) 0 brown

Mutated normal tissue cell (MNTC) 1 green

Normal stem cell (NSC) 2 blue

Mutated normal stem cell (MNSC) 3 yellow

Cancer stem cell (CSC) 4 purple

Tumor cell (TC) 5 red

Empty cell 6 white

Here, we give a shortened description of the rules of the
cellular automaton. A full description, involving mathematical
formulas for all possible transitions, is given in the Appendix 1
(Supplementary material).

Each cell in the CA tracks the gene expression of the G genes in
a vector defined by

E(t) = [{ej(t)}j=1,...,G]. (14)

The phenotype of a cell is tracked by a vector that contains
probabilities for each type of phenotypic action occurring in a given
time-step and is defined by

P(t) = [p(t), q(t), a(t), d(t)], (15)

where p(t) represents proliferation, q(t) represents quiescence,
a(t) represents apoptosis, and d(t) represents differentiation.

The probabilities are set such that P(t) generates a probability
distribution, so that

4
∑

i=1

Pi(t) ≡ p(t)+ q(t)+ a(t)+ d(t) = 1 and Pi(t) ≥ 0, ∀t. (16)

At a time-step in the CA a phenotypic action is chosen to occur
by sampling from the probability distribution generated from P(t).
Since we do not want a cell to reproduce more than once in a time-
step, each time-step represents the length of a typical cell cycle for
the type of tissue under consideration.

When a NSC, MNSC, or CSC differentiate the resultant cell
initially is a transit amplifying cell (TAC) for a set number of
generations, 2, after which it turns respectively into a NTC,
MNTC, or TC. As a result of this each cell has two parameters
τ (t) ∈ {0, 1} and n(t) ∈ {0, ...,2}, where τ (t) is a binary parameter
used to determine if a cell is currently a TAC or not and n(t) is
the number of generations a TAC cell lineage has produced. The
parameters τ (t) and n(t) are copied from parent to child cell and
once n(t) = 2 then τ (t + 1) = 0, n(t + 1) = 0.

The final aspect of the cell that is tracked and represented in the
overall cell state is the age of the cell, α(t) ∈ N. Hence, the complete
state of a cell in the CA is given by the vector that contains cell type
s, age α, gene expression E, phenotye vector P, TAC state τ̄ , and
TAC generation n̄ as

S(t) = [s(t),α(t),E(t),P(t), τ (t), n(t)] (17)

Each cell has a neighborhood that contains itself, the cardinal
directions around it, and the cells directly NE, SE, SW, and NW of
the cell. In CA theory this is called the Moore neighborhood (Gray,
2003). The boundary conditions of the grid are standard periodic
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boundary conditions for convenience. Other boundary conditions
could be easily implemented too.

2.2.1. Cell mutations
The chosen G genes are known genes related to the type of

cancer being studied. For the case of HNSCC, (see Table 1). We
define the vector T ∈ {0, 1}G, where Tj = 0 represents a tumor
suppressor gene and Tj = 1 represents an oncogene. A gene j is
positively mutated toward cancer (positively mutated) if either it is
a tumor suppressor gene and its gene expression is downregulated,
ej(t) ≤ −M, or it is an oncogene and its gene expression is
upregulated, ej(t) ≥ M, where M is the given threshold. At each
time-step the gene expression of each gene is updated from the
results of the gene expression neural network from Section 2.1. The
changes in the gene expression allow the gene to become mutated
or even go from mutated to non mutated (normally expressed).

We also consider that a mutated gene can influence another
gene, where we assume that a positively mutated gene will cause
a positive mutation of a related gene. A non-positively mutated
gene will cause a negative mutation (mutation that regulates a
gene toward normal expression) of a related gene. We express this
interdependence through amatrix R ∈ {0, 1}G×G, where each entry,
Rij, represents whether gene i is related to gene jwith 0 = unrelated
and 1 = related. Note that thematrixR is not necessarily symmetric
as a gene imight regulate gene j but not vice versa.

We show in the Appendix 1 (Supplementary material) how this
update is done mathematically.

2.2.2. Update rules for phenotypic action
When a gene is mutated it can modify the probability of a

phenotypic action occurring, Pi(t). Hence the phenotypic actions
Pi need to be updated for each cell at each time step. We
define the matrix U ∈ R

4×G, where each entry, U ij, is an
increment to the probability of phenotypic action i, Pi(t), under
the circumstance that gene j is mutated and its’ expression is
upregulated. Similarly, we define the matrix D ∈ R

4×G, where
each entry, Dij, is an increment to the probability of phenotype
action i, Pi(t), under the circumstance that gene j is mutated
and its’ expression is downregulated. We define detailed rules
for updates to the phenotypic action probabilities in Appendix 1
(Supplementary material). Note that we often choose U = −D

for symmetry. The sum of the phenotype vector equaling one
is maintained by balancing the probability of each phenotype
action against the probability of quiescence and quiescence equally
against all the other phenotypic actions (see Appendix 1 in
Supplementary material for more details).

2.2.3. Update rules for cell class
A cell is considered mutated if it has more than or equal to

ϒ ∈ N positivelymutated genes. If a transition from a non-mutated
cell to a mutated cell occurs, the phenotype vector is updated as
described in Appendix 1 (Supplementary material).

Dedifferentiation is the process of a specialized cell reverting
back to a non-specialized cell. In our model this is accomplished
by a non stem cell becoming a stem cell. Dedifferentiation

depends on a complex interaction of positive and negative
feedback mechanisms involved in cell proliferation and gene
expression. A recent review (Hillen and Shyntar, 2023) (and the
references therein) discuss detailedmodeling of these aspects. Here,
dedifferentiation is used to help maintain the proper ratio of stem
cells to non stem cells in the grid by dedifferentiating whenever
the number of stem cells in the neighborhood of a non stem cell
is less than or equal to some chosen value, Ŝ, or if the number of
empty cells in the neighborhood of a non stem cell is less than or
equal to some chosen value, Ê. To help reduce the number of cells
dedifferentiating, the process is completed only when a random
sample from the uniform distribution is less than or equal to some
threshold, D̂ ∈ R+(0, 1).

We associate a fitness value to each cell, so that the cells
can compete and the population contains only the healthiest, or
in the case of mutated cells, the most positively mutated cells.
The characteristics that affect the fitness are based upon work
by Bowling et al. (2019). High fitness is characterized by a low
apoptotic rate, a high proliferation rate, young age. Also cancer cells
are considered to have a high fitness.

In addition to the four phenotypic actions, quiescent cells can
move with a specified probability into a neighboring cell. A CSC
or TC can move into an occupied neighboring cells, killing the
occupant in the process. In this case, the probability of moving into
an occupied cell is lower than the probability of moving into an
empty cell.

CSCs and TCs are the only class of cells that can kill other cells
when moving during quiescence. If the parent cell is a CSC or TC
and the chosen cell has a higher fitness then the phenotypic action
is accomplished only if a sample from some random variable is less
than a threshold to kill, κ ∈ R+(0, 1). A CSC can kill a TC and TC
a CSC only if the fitness is lower.

At each time step, each non-empty cell in the CA grid chooses
an action to execute and attempts to complete such action.
Consider that the cell that is performing the action is located at
x
(p) ∈ �. In certain cases the action will be performed upon a
(randomly chosen) neighboring target cell, located at x(c) ∈ �. As
mentioned above, the target cell need not be empty. In the case of
proliferation, and differentiation, the action can take place when the
occupant of target cell has a lower fitness.

The lineage of each cell is tracked for the purpose of
following tumor cell lineages from their origin, checking howmany
independent tumor masses form throughout the simulation, and
whether the origin is monoclonal or polyclonal.

2.2.4. CA model timeline
Each time-step has the following order of actions (1) Run the

gene expression neural network, (2) Update the gene expressions
based upon the output of the neural network in step 2, (3) Update
the gene expressions via the gene instability process, (4) Update the
phenotype vector based upon the gene expressions of each gene,
(5) Update the states of each cell using the state transition process,
(6) Apply the dedifferentiation process, (7) Apply the phenotypic
action chosen by the cell for that time-step, and apply possible
random walk to a neighboring empty cell, (8) Possibly perform
tumor excision.
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TABLE 3 Shows which genes are activated by certain genes.

Gene Gene activation’s

TP53 TP21, TP16, RB

RB TP53, CCDN1

CCDN1 TP21

MYC TP21 (de-activates), Ras

RAS CCDN1, MYC

2.2.5. CA parameters for HNSCC
The initial seed is set such that the domain has the following

breakdown of each cell type: 64.5% normal tissue cells (NTC;
brown), 6.5% normal stem cells (NSC; yellow), and 29% empty cells
(white). The maximum number of TAC generations is given by
2 = 2. The chance a cell moves when it is quiescent is 0.25. The
chance a tumor cell (TC; red) or cancer stem cell (CSC; purple)
randomly kills another cell during movement, proliferation, or
differentiation is 0.2. The chance that an SC or MSC becomes a
CSC is 2.5×10−6. The chance a non stem cell becomes a stem cell
through dedifferentiation is 10−4. If either there are no stem cells
or there are at least six empty cells in the neighborhood of a non
stem cell, then the process of dedifferentiation will be attempted.
When an excision is performed the number of neighbors around a
TC removed is two.

We consider 10 genes which are given in Table 1. We
set the mutation threshold to M = 0.1 and the minimum
number of positively mutated genes for a cell to be considered
mutated to be four (Anandakrishnan et al., 2019). Using the last
two columns of Table 1 and assuming each phenotypic action
is modified at the same magnitude we obtain the phenotypic
action increment matrices (see Section 2.2.2 and Appendix 1 in
Supplementary material) given by:

D =



































10-6 -10-6 -10-6 0
0 0 -10-6 0

10-6 -10-6 0 10-6

10-6 0 0 0
10-6 0 0 0
-10-6 0 0 0
0 0 10-6 0

-10-6 0 10-6 -10-6

0 0 10-6 0
-10-6 0 10-6 -10-6



































, U = −D. (18)

Using Table 1, we can create the gene type vector, T, that is used
in (A6), (A7), and (A28) which is given by:

T =
[

0 0 0 0 0 1 1 1 1 1
]T

, (19)

where 0 means the gene is a tumor-suppressor and 1 means it is an
oncogene.

Using Table 3, we can create the gene relationship matrix, R,
that is used in (A7) which is given by:

R =



































0 0 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 1 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0



































, (20)

where 0 means the genes are not related and 1 means the genes
are related. Note that in the above matrix we assumed that TP53
is related to all the genes. The main diagonal is zero so that genes
cannot modify themselves during the genetic instability phase of
the model. The chance that a gene modifies the gene expression
of another or that the body tries to repair the gene over or under
expression is 0.45. The maximum amount a gene expression can be
changed during the gene instability stage is 1√

ν
. We let a1 = c̃

c1
and

a2 = c̃
c2

be the initial probabilities of apoptosis for a normal tissue
cell and normal stem cell. Where c̃ is the length of the cell cycle in
hours, c1 is the life span of a cell, and c2 is the life span of a stem
cell. The initial phenotype matrix that is used in Equation (A25) is
given by:

P̃ =



















































p1a1 a1 1− a1(p1 + 1) 0

p1a1
a1

α
1− a1(α

−1 + p1) 0

p2a2 a2 1− a2(p2 + 1)− dd̃ dd̃

p2a2
a2

α
1− a2(α

−1 + p2)− dd̃ dd̃

p2a2
a2

5α2 1− a2((5α)−2 + p2)− dd̃ dd̃

p1a1
a1

5α2 1− a1((5α)−2 + p1) 0



















































, (21)

where p1 is the proliferation factor for normal tissue cell types, p2 is
the proliferation factor for normal stem cell types, α is the apoptotic
factor, d is the differentiation factor, and d̃ is the probability of
differentiation occurring neglecting competition between cells. The
cell cycle length can range anywhere between 8 and 24 h for the
various cells in the body, since we are analyzing the tongue we will
use c̃ = 10h (Beidler and Smallman, 1965). The lifespan of a taste
bud is 250±50 h (Beidler and Smallman, 1965), so c1 = 250h. The
lifespan of a typical stem cell is around 25, 550 h (Sieburg et al.,
2011), so c2 = 25550h. We set α = 1.625, p1 = 0.65, p2 = 14.75,
and d = 1.485 so that equilibrium in the tissue is maintained
when there are no carcinogens in the domain. Note that p1 is less
than 1, since we want most of the new cells to come from TACs
created by SCs, because, biologically speaking, normal tissue cells
rarely proliferate. Since each TAC produces a certain number of
generations, given by 2, then it will produce 22+1 − 2 new cells
so we set

d̃ = 1

22+1 − 2
. (22)

When a cell is a TAC the probability of proliferation increases by
1
3 , so that it will create its 2 generations in as few time-steps as
possible, assuming there is enough available space. The chance that
a gene modifies the probability of a phenotypic action is given by
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FIGURE 2

This figure includes three time-steps. The grid size is 128 × 128 and

no active carcinogens are present. Using the color map for the cell

classes as provided in Table 2. These show (A) the initial seed of the

simulation t = 0, in (B) the domain (tissue) at the halfway point of

the simulation t = 4, 383 steps = 5 years, and in (C) the final

time-step at t = 10 years.

0.35. The maximum value a gene can modify the phenotypic action
by is 10−6.

3. Results

In this section, we present the results of simulations of the CA
model as applied to HNSCC. We will explore what impact the
following have on the results: grid size, number of carcinogens,
carcinogen concentration, and excising the tumor vs. excising the
entire field. We will discuss field growth, changes in probabilities
of phenotypic actions over time, mutation spread rates, and
the number of lineages. By tracking lineages we will also check
monoclonal vs. polyclonal origins.

3.1. Equilibrium

We first ensure that the model can maintain a healthy tissue
structure, if not exposed to a carcinogen. This will show that in
our base model random mutations alone cannot cause cancer on
the time scales considered here due to the low mutational rate of
genes in the healthy body, and the fact that the body is well adept
at repairing mutations as they occur. We run the simulation on
a 128×128 grid for 8,766 time-steps (about 120 months), and as
stated above, with no carcinogens.

In Figure 2, we present three time-steps from a simulation
where no carcinogens were included, with normal tissue cells
(NTC) as the brown cells, normal stem cells (NSC) as the blue cells,
and empty cells are white. Figure 2 shows (Figure 2A) the initial
seed, Figure 2B the domain (tissue) at the halfway point of the
simulation (5 years), and Figure 2C the final time-step (10 years).
We observe that the tissue stayed in equilibrium. The changes
through time are due to cell movement and the natural birth and
death processes. The figures show that, as desired, no mutated cells
(green, yellow) arise and thus no cancer stem cells (purple) or
tumor cells (red) are formed.

3.2. Results with carcinogens

Now we study simulations where carcinogens are present and
cause mutations and, ultimately, cancer. Figure 3 illustrates the

development of a cancer field and tumors within it, where smoking
and alcohol consumption are simulated using carcinogen spatial
distribution (1). The various time-steps show (Figure 3A) the initial
seed, Figure 3B the cancer field at its early development, Figure 3C
the cancer field further developing prior to cancer, in Figures 3D–
F the multiple stages of cancer development. The color map for
the cell classes is as provided in Table 2. The cancer field (green)
is initially minimal and undeveloped, but over time it evolves
and matures, eventually forming tumors (red and purple). These
tumors grow and outpace the growth rate of the cancer field.

We have uploaded four video files to youtube that show the
dynamics of our hybrid CA model. Each video shows from left
to right the carcinogen, the CA dynamics, and the 20 largest cell
lineages. The grid size is 256 × 256 in all these simulations (see
Table 4).

3.2.1. Field development
Regardless of changes to parameters we observe that the field

begins to form where the carcinogen is most concentrated; this can
be verified with Figure 3B. Initially, the field is made up of only
mutated normal tissue cells (green cells) and mutated normal stem
cells (yellow cells). We defined the cancer field as the areas of the
domain that contain cells from the mutated cell classes thus, the
figure shows the cancer field growth over time. Typically, the first
mutated cell is a MNTC due to there being a higher number of
NTC compared to NSC. The field grows outwards as it takes over
normal tissue. Once the first CSC arises, cancer grows quickly. We
observe a number of focal regions of cancer development, and if
untreated, it will fully overgrow the domain. The different focal
points in Figure 3E correspond to different cell lineages, as we show
later.

In Figure 4A, we show the time evolution of the fraction of
all cell classes. The cancer field begins to from once the green
curve starts to grow. Once the field has developed and grown large
enough, the odds of a NSC or MNSC becoming a CSC increases.
Soon after the emergence of the first CSC, TCs begin to form and
grow in a logistic fashion into the domain. As cancer grows the
normal tissue (brown) and field tissue (green) is reduced.

3.2.2. Mutational evolution
Recall we use the term “positive mutation” for mutations

that promote cancer (i.e., upregulation of an oncogene or
downregulation of a tumor suppressor gene). In Figure 5, we show
various graphs that represent the mutational evolution of the genes
over time. In Figures 5A, B the average gene expression is illustrated
for first the tumor suppressors and secondly the oncogenes. In
Figure 5C, we show the time evolution of the fraction of genes that
are positively mutated. In Figure 5A all the tumor suppressor genes
are downregulated, hence positivelymutated. Other than RB, which
decreases at a faster rate, the gene expressions of all the other tumor
suppressor genes decrease at a similar rate. Figure 5B displays
that the oncogenes are upregulated, therefore positively mutated.
The gene expressions of the oncogenes increase at a similar rate
except CCDN1 and RAS, which increase at a faster rate. We see
that the gene expressions between the genes can vary significantly,
principally with P21 and CCDN1. These two genes mutate because
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FIGURE 3

This figure includes time-steps illustrating the development of a cancer field and cancer cells using the color map for the cell classes as provided in

Table 2. These show (A) the initial seed, (B) the cancer field at its early development, (C) the cancer field further developing but prior to cancer, (D)

the first stages of cancer development, (E) further cancer growth, and (F) the final time-step. Parameters are as follows: grid size 256 × 256,

carcinogen spatial distribution 2, both carcinogens activated. A video of this simulation can be found on youtube: https://youtu.be/eKxsrSoDiKs.

they are related to the most genes, and therefore have a higher
weight in the MLP output weight matrix,Wy, in Equation (13).

Figure 5C shows a lag of time before the first positively mutated
genes occur, this is due to the low mutational rate. The initial spike
in mutational rate at the onset of the first mutated cell is due to
the relative size of the domain vs. the mutated cells. Once multiple
genes become positively mutated the progression accelerates, due
to changes in the expression of other genes caused by genetic
instability, as displayed in the period starting at about 20 to 25
months. We observe that all the genes are positively mutated by
about 25 months.

3.2.3. Phenotypic evolution
Next we consider the evolution of a phenotypic actions

of proliferation, quiescence, apoptosis, and differentiation as
functions of time. Figure 4C illustrates the phenotypic evolution
of these actions as the time evolution of the fraction of cells
that underwent each phenotypic action at a given time step. The
probability of apoptosis occurring decreases as the cell population
moves toward being cancerous. This occurs since the majority
of the genes become positively mutated causing apoptosis to
decrease. While the probability of apoptosis decreases, the chance
of proliferation and differentiation increases, which again is caused
by positively mutated genes. Probability of differentiation increases
at a slower rate than proliferation because fewer of the genes
we consider influence differentiation. Finally, for the most part,
the probability of quiescence remains stable—it goes slightly up
and down, due to being balanced against the other phenotypic
actions, and not many genes are influencing it, but otherwise it is
at equilibrium. Figure 4 shows us that apoptosis and proliferation
change the most over time, in particular, as apoptosis decreases, we

TABLE 4 List of youtube videos for the CA dynamics, where we show

from left to right the carcinogen, the CA simulation, and the 20 largest

cell lineages.

Youtube video Showing this e�ect

https://youtu.be/

eKxsrSoDiKs General scenario

Gtf6MoxXCkM Different carcinogen distribution

zngGzjSlPwU Excision of cancer cells

EOFI4Ai1A9U Excision of cancer and field

see that proliferation increases, due to less cells dying before they
can become more cancerous.

3.3. Grid size comparisons

In Figure 6, we show a sample time-step for each grid size we
compare. In Figure 6A the grid size is 64 × 64, in Figure 6B the
grid size is 128 × 128, in Figure 6C the grid size is 256 × 256, and
in Figure 6D the grid size is 512 × 512. When comparing the grid
sizes all the other parameters were the same, both carcinogens were
activated and carcinogen spatial distribution (1) was used. We see
that as the domain size increases, the tumor masses within it also
increase.

The various grid sizes show slight differences in four ways,
all predominantly due to the increase in the number of cells.
Most of the events in the CA are probabilistic, as a result, almost
automatically, as we increase the size of the grid, the chance
of a probabilistic event increases as well. Therefore, the overall
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FIGURE 4

(A) Fraction of the various sub-populations as function of time. (B) Time course of the fraction of mutated cells, thus illustrating the cancer field

growth over time. (C) Evolution of phenotypic probabilities of proliferation, apoptosis, quiescence, and di�erentiation. Parameters are as follows: grid

size 256 × 256, carcinogen spatial distribution 2, both carcinogens activated shows the fraction of cancer cells over time. Parameters are as follows:

grid size 256 × 256, carcinogen spatial distribution 2, both carcinogens activated.

FIGURE 5

In this figure, we show the mutational evolution of the genes. The time course of the average gene expression are shown for in (A) the tumor

suppressor genes, in (B) the oncogenes. In (C), we show the time course of the fraction of genes that are positively mutated. Parameters were

chosen as follows: grid size of 256 × 256, carcinogen spatial distribution 2 was used, both carcinogens were activated.

FIGURE 6

This figure shows a time-step from each of the grid sizes that were considered for comparison. In (A) the grid size is 64 × 64, in (B) the grid size is 128

× 128, in (C) the grid size is 256 × 256, and in (D) the grid size is 512 × 512. Parameters: both carcinogens were activated and carcinogen spatial

distribution 2 was used.
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TABLE 5 In this table, we compare the time-step the first mutated cell

forms, the time step where the first cancer stem cell (CSC) arises, and the

number of cancer cell lineages at the end of the simulations, between the

di�erent grid sizes.

Grid size Time-step
first

mutated
cell forms

Time step
first CSC

# tumor
cell

lineages

64× 64 817 2,872 1

128× 128 748 1,402 1

256× 256 744 1,650 6

512× 512 735 1,082 24

dynamics are the same for each grid size, but the timing of various
main events differ slightly as will be illustrated with the following
table.

In Table 5, we show the time-step at which the first mutated cell
forms. The times are comparable and the first mutated cell is always
an MNTC, due to the fact that a higher ratio of NTC than SC exists
in the domain. We also compare the time-step the first CSC forms
for each grid size. The variation between the smallest grid size as
compared to the remaining three is substantial, due to the fact that
the probability of a CSC forming is minuscule, attempting such an
action within such a small grid size reduces the chances of these
formations drastically in comparison to the larger grid sizes. We
also note that the time for a first TC to develop from a CSC is short
at about 3–4 time steps in all our simulations.

A notable difference arises if we count the cell lineages inside
the cancerous tissue, since a larger domain simply has more space
for different cell lineages to thrive. Table 5 shows the number of
tumor cell lineages at the end of the simulation for each grid size.

3.4. Various carcinogen schedules

In this section, we consider the carcinogens from alcohol
and smoking individually and in combination with one another.
We consider several administration schedules for heavy and light
smokers and drinkers.

In Figure 7, we present the time evolution of the fraction of cells
in the different cell classes for alcohol alone (Figure 7A), smoking
alone (Figure 7B), and alcohol and smoking together (Figure 7C).
In our simulations, alcohol alone does not cause a cancer field to
develop (case A), while smoking alone and smoking with alcohol
generates a cancer field (cases B and C). It would, however, be
premature to conclude that alcohol has no effect on carcinogenesis.
Alcohol causes cancer, but the mechanism might be different and
not fully captured by the 10 genes that we consider here. Also, it is
reported in Hashibe et al. (2009) and LoConte et al. (2018) that the
carcinogenic effect of alcohol is significantly lower than the effect of
smoking.

3.5. Tumor excision

In this section, we examine the dynamics of the field
development after a tumor excision, including the recurrence time.

We consider two types of excisions: (A) killing only the tumor
and cancer stem cells but not the cancer field and (B) killing
all mutated cell classes, including cancer and cancer field cells.
Treatment schedule A corresponds to a targeted treatment such
as an immunotherapy or an oncolytic viral therapy, while scenario
B corresponds to a more global attack such as through radiation
treatment or standard chemotherapy.

In Figure 8, we show the time evolution of the fraction of cells
in the different cell classes. In Figure 8A, we consider the case of
removing the cancer cells but not the cancer field cells and in
Figure 8B, we show the case of removing the cancer and cancer field
cells. Videos for the scenarios of keeping the field and removing
the field are provided at https://youtu.be/zngGzjSlPwU and https://
youtu.be/EOFI4Ai1A9U, respectively. Each video shows from left
to right the carcinogen spatial distribution, the CA grid, and a
visualization that shows the top 20 cell lineages. The excision occurs
in the period of 40–60 months, prior to this period we observe
normal cancer field and tumor development. We can follow the
various sub populations in Figure 8. As the field develops, the
number of normal tissue cells decreases as the number of mutated
cells increases, with TC just starting to form and accelerate its
growth and a very small uptake in CSCs beginning. At the point of
excision there is a spike in the number of empty cells (black), which
is more prominent in case B, and the number of tumor cells is set to
be zero (red and purple). In the case B, the number of mutated cells
(yellow) is reduced to zero as well. After an extended lag the field
restarts its growth at about the same rate as originally. Whereas,
when the field is kept intact (as in case A), the cancer comes back
very quickly.

3.6. Cell lineages

The last feature that we include is an identification of cell
lineages. In Figure 9, we show time-steps that are relevant for the
major developmental stages of field cancerization. We display the
top 20 cell lineages at each time step. The time steps include the
initial seed (Figure 9A), the early development of the cancer field
(Figures 9B, C), the first emergence of cancer cells (Figure 9D),
full cancer development (Figure 9E) where all 20 leading lineages
are cancer lineages, and finally a polyclonal tumor (Figure 9F)
comprised of the fittest cancer lineages. The videos that are listed
in Table 4 show the cell lineage developments over time. Figure 9
shows that the largest cell lineages in the domain are contained in
the cancer field, which is expected because it contains the most fit
cells in the domain.

In all experiments on the 256 × 256 grid where we followed
the lineages we found polyclonal cancer fields. Monoclonal cancers
were only observed at small grid sizes such as 64 × 64 and 128 ×
128.

4. Conclusion

We developed a sophisticated cellular automata model for the
cancer field effect. The model is an extension to existing cellular
automata models (Gerlee and Anderson, 2007; Foo et al., 2014) as
we include the effect of two carcinogens, one related to smoking and
one related to alcohol. The impact on gene expression of oncogenes

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1060879
https://youtu.be/zngGzjSlPwU
https://youtu.be/EOFI4Ai1A9U
https://youtu.be/EOFI4Ai1A9U
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Deutscher et al. 10.3389/frai.2023.1060879

FIGURE 7

We show the time course of the fraction of cells in the di�erent cell classes NTC, MNTC, NSC, MNSC, CSC, TC, and empty for (A) alcohol alone, (B)

smoking alone, and (C) alcohol and smoking together. Grid size 256 × 256.

FIGURE 8

In figures (A, B), we show the time course of the fraction of cells in the di�erent cell classes NTC, MNTC, NSC, MNSC, CSC, TC, empty. In the plots,

we consider the case where we (A) remove only TCs (keeping the field) and (B) we remove all mutated cells (removing the field). Parameters are as

follows: grid size 256 × 256, both carcinogens activated, carcinogen spatial distribution 2, and time elapse of excision following first TC appearance

was 18 months.

and tumor suppressor genes are of significant importance to the
given cancer. Based on the existing literature we also find that
smoking is a potent carcinogen, while the effect of alcohol is
minimal. The gene expression was modeled by a multi-layer neural
network, which can be trained once more data is available. We
admit that our modeling of gene mutations and their impact
on phenotype is simplified. To train the neural network for the
gene expression dynamics, we would need single cell genomic
data. These data need to explain the mutational changes in gene
expression based on carcinogen exposure, plus an understanding of
how mutated genes change the phenotypic actions of proliferation,
apoptosis, quiescence and differentiation. The former could be
obtained from large scale cell profiling. The second question, how
do genes impact phenotype, is still an unresolved holy grail of
genomics.

We demonstrated that when an excision is performed that
removes only the tumor cells but leaves the remaining surrounding
tissue intact, the cancer recurs faster than when removing the entire
field of mutated tissue. When the field is not removed during
excision, the cancer that recurs is more aggressive than before the

field was removed. We observed, by tracking cell lineages, that the
tumor masses mostly form from polyclonal origins.

There are a number of possible extensions to our model that
might yield additional insights. A dynamic mutation threshold
could be considered that depends on a number of factors such as
the number of mutated genes or cell age. This mutation threshold
could also be specific for each gene. For example, in our model we
assumed TP53 is related to all other genes, and, as a result, once it is
mutated, all other genes becomemutated as well. However, it might
be useful to consider a specific order of gene mutations that lead to
cancer.

Telomeres are at the end of the DNA strands and with each
cell division they get cut shorter, eventually becoming so short
that the cell can no longer proliferate and so will enter senescence.
Senescent cells are similar to quiescent cells except they can
not perform any actions and eventually they undergo apoptosis.
Therefore, the model could be enhanced by introducing telomeres.

It would be interesting to include viral infections to the
model such as human papillomavirus (HPV) as input to the gene
expression neural network (Lee and Tameru, 2012).
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FIGURE 9

Important time-steps that show the top 20 lineages throughout the development stages of field cancerization. In the figures we show (A) the initial

seed, (B) early cancer field formation, (C) later cancer field development, (D–F) cancer development. Note that light gray means the cell is not in any

of the top 20 lineages and each color represents a di�erent cell lineage. Parameters are as follows: grid size 256 × 256 and both carcinogens

activated. See also video https://youtu.be/eKxsrSoDiKs.

One of the questions we originally wanted to answer was how
long it would take for a tumor to become large enough to be
detected by physicians, however, we were not able to answer this
question due to the size of the cells requiring at least a domain size
1024 × 1024 to represent the required 1cm detection size. A few
simulations at 1024 × 1024 were run and we found it would take
more than 10 years to fill in the space, thus it would take at least 10
years for the tumor to be detectable.

With regards to efficiency of running the model, as the
complexity increases, the speed of the calculations involved in the
gene expression neural network could be improved with linear
algebra libraries available in CUDA. Using texture memory in the
GPU to store cell neighborhoods would make calculations both
faster and easier, as it has faster bandwidth and built in boundary
conditions. The code could be made more cross compatible by
allowing parallel computation on the CPU and switching from
CUDA to OpenCL.

Finally, we note that there are many aspects of cancer biology
that are not included here. Chemical signaling and feedback
mechanisms among cancer cell sub populations are an important
aspect of cancer growth, as well as the interactions with the immune
response, mechanical aspects of the tissue, and angiogenesis. The
seminal “hallmarks” papers of Hanahan and Weinberg (2000),
Hanahan and Weinberg (2011), and Hanahan (2022) give a rather
complete picture of effects that are important to cancer growth.
As our model is already quite complicated, we did not include all
of these effects here. But they are interesting extensions for future
versions of the model.

We are grateful for the comments of two anonymous
referees. One of them made the following interesting
observation. People with a hereditary carcinogenic birth
defect are predestined to form cancers, even early in their

lives. For example, Rb mutations can lead to Retinoblastoma
and the BRCA gene mutations can increase breast cancer
risks. In such a case, would the entire body be considered
a cancer field? This is an interesting question of further
thought, which certainly exceeds the abilities of our
computational model.
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