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Causality plays an essential role in multiple scientific disciplines, including

the social, behavioral, and biological sciences and portions of statistics and

artificial intelligence. Manual-based causality assessment from a large number

of free text-based documents is very time-consuming, labor-intensive,

and sometimes even impractical. Herein, we proposed a general causal

inference framework named DeepCausality to empirically estimate the causal

factors for suspected endpoints embedded in the free text. The proposed

DeepCausality seamlessly incorporates AI-powered language models, named

entity recognition and Judea Pearl’s Do-calculus, into a general framework

for causal inference to fulfill di�erent domain-specific applications. We

exemplified the utility of the proposed DeepCausality framework by employing

the LiverTox database to estimate idiosyncratic drug-induced liver injury

(DILI)-related causal terms and generate a knowledge-based causal tree

for idiosyncratic DILI patient stratification. Consequently, the DeepCausality

yielded a prediction performance with an accuracy of 0.92 and an F-score

of 0.84 for the DILI prediction. Notably, 90% of causal terms enriched by

the DeepCausality were consistent with the clinical causal terms defined

by the American College of Gastroenterology (ACG) clinical guideline for

evaluating suspected idiosyncratic DILI (iDILI). Furthermore, we observed a

high concordance of 0.91 between the iDILI severity scores generated by

DeepCausality and domain experts. Altogether, the proposed DeepCausality

framework could be a promising solution for causality assessment from free

text and is publicly available through https://github.com/XingqiaoWang/https-

github.com-XingqiaoWang-DeepCausality-LiverTox.
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Introduction

Causality is the study of the relationship between causes

and effects, which is the foundation of almost every scientific

discipline to verify hypotheses and uncover underlying

mechanisms (Pearl, 2009). Notably, causal inference plays an

essential role in medical practices to test scientific theories

and decipher the etiology for advancing pharmacovigilance,

optimize clinical trial designs, and establish real-world evidence

(Naidu, 2013; Mazhar et al., 2020; Zheng et al., 2020; Ho et al.,

2021). The conventional way to conduct causal inference relies

on randomized controlled trials (RCTs) (Zheng et al., 2020).

In randomized clinical trials, the test subjects are randomly

assigned to one of two groups: the treated group receiving the

intervention (e.g., drug) tested and the control group receiving

an alternative (e.g., placebo) treatment. Causality is established

if the clinical outcome is statistically significant in the treated

group over the control one. However, conducting a randomized

clinical trial is time-consuming, labor-intensive, expensive, and

sometimes even impractical.

Consequently, there has been growing interest in alternative

approaches, such as target trials based on observational data,

to improve the causality assessment in real-world applications

(Frieden, 2017; Gajra et al., 2020; Hernán, 2021). For example,

the U.S. Food and Drug Administration (FDA) released

guidance on a real-world evidence (RWE) program to create

a framework for evaluating the potential use of RWE to help

support the approval of a new indication for a drug already

approved under section 505(c) of the FD&C Act or to help

support or satisfy drug post-approval study requirements

(https://www.fda.gov/science-research/science-and-research-

special-topics/real-world-evidence). Under the 21st Century

Cures Act, the FDA is mandated to evaluate the potential use

of real-world data (RWD) and RWE to support the approval

of a new indication for a drug. Draft guidance has been issued

to address the generation of RWE, including the utilization

of claims and electronic health records (EHRs), two major

RWD sources, in support of regulatory decision-making. In

addition, the FDA has prioritized the creation of an RWE

Data Enterprise (the Sentinel System). An essential part of the

initiative is incorporating EHR data from about 10 million

individuals into the data infrastructure for FDA active drug

safety surveillance (https://www.fda.gov/news-events/fda-

voices/fda-budget-matters-cross-cutting-data-enterprise-real-

world-evidence).

In the past decade, the generation of EHRs has increased

substantially in the U.S., partly due to the Health Information

Technology for Economic and Clinical Health (HITECH)

Act of 2009, which provided $30 billion in incentives for

hospitals and physician practices to adopt EHR systems.

Whereas administrative claims data are highly structured, much

of the potentially useful information contained within EHRs

is unstructured, in the form of laboratory data, visit notes

(e.g., narrative descriptions of a patient’s signs and symptoms,

family history, social history), radiology reports or images, and

discharge summaries. EHRs contain rich clinical information

and complex relations in the data that may not be fully

harnessed using more traditional approaches. The ability of

EHRs to generate quality RWE depends on whether we can

address the challenge in curating and analyzing unstructured

data. In response, FDA seeks to incorporate emerging data

science innovations, such as natural language processing

(NLP) and machine learning, to establish the organizational

framework for ensuring high-fidelity, fit-for-purpose EHR data.

To inform the causal inference framework for EHR-based signal

detection (hypothesis generating), we will evaluate the emerging

approaches that have been proposed or tested.

Accumulated observational data provide tremendous

opportunities to promote target trials for causality

establishment. Thus, there is an urgent need to develop novel

statistical models to effectively estimate causal factors embedded

in the extensive free text-based observational data. Artificial

intelligence (AI) has made substantial progress in a variety of

fields, such as computer vision (O’Mahony et al., 2019), NLP

(Liu et al., 2021), speech recognition and generation (Hannun

et al., 2014), and decision-making (Shrestha et al., 2019).

Despite significant progress in AI, we still face a great challenge

in understanding the mechanisms underlying intelligence,

including reasoning, planning, and imagination (Schölkopf,

2019). Recent hype of AI-powered language models (LMs) and

advanced statistical measures seem to pave a promising way to

enhance the ability of AI in reasoning, such as causal inference

(Veitch et al., 2020; Wang et al., 2021). In our previous work,

we proposed a transformer-based causal inference framework

called InferBERT by integrating the A Lite Bidirectional

Encoder Representations from Transformers (ALBERT) (Lan

et al., 2019) and Judea Pearl’s Do-calculus (Wang et al., 2021).

The proposed InferBERT has been successfully applied for

causality assessment in pharmacovigilance and exemplified

estimation of the causal factors related to opioid-related acute

liver failure and tramadol-related mortalities in the FDA

Adverse Event Reporting System (FAERS) database. However,

there is still much space for improvement for InferBERT to

facilitate real-world applications. First, the proposed InferBERT

has only been used for structure-based data sets (e.g., FAERS),

limiting its application in the free text-based corpus. Although

we proposed a synthetic approach to transforming the different

clinical entities into a sentence-based representation, the

performance of the proposed InferBERT in free text needs to

be further investigated. Second, domain-specific knowledge was

not considered for causal inference, resulting in false positives

or introduction of Irrelevant causal factors.

In this study, we proposed a general AI-powered framework

called DeepCausality by fusing transformer, named entity

recognition (NER), and Judea Pearl’s Do-calculus for causal

inference from free text-based documents. To demonstrate
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FIGURE 1

The workflow of the study: General framework of the DeepCausality, case study with LiverTox, and idiosyncratic DILI (iDILI) patient stratification.

the validity of the proposed DeepCausality, we employed

the LiverTox database (https://www.ncbi.nlm.nih.gov/books/

NBK547852/) to estimate the drug-induced liver injury (DILI)-

related causal terms and further verified by using the American

College of Gastroenterology (ACG) clinical guideline for

idiosyncratic DILI (iDILI) (Chalasani et al., 2021). Furthermore,

we developed a causal tree based on verified causal DILI terms

and utilized it for iDILI patient stratification based on DILI

case reports.

Materials and methods

DeepCausality overview

The proposed DeepCausality is a general transformer-based

causal inference framework for free text, consisting of data

preprocessing, LM development, NER, and Do-calculus based

causal inference (Figure 1).

Data preprocessing

First, the corpus of free text-based documents was split

into sentences. Then, an endpoint was assigned to each

sentence based on the investigational causal question. For

example, suppose you investigate causal factors of lung cancer

etiology. The sentences describing the patient with lung cancer

and related symptoms and clinical outcomes were labeled as

positives, and vice versa. Consequently, we used D to denote

the preprocessed corpus of free text-based documents, where

di = (xi, yi) ǫ D indicates the i-th instance in the dataset D, i =

1,2, . . . , N, N (total number of instances), with xi (i.e., sentence)

and yi (i.e., endpoint) being the text sequence. We employed
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tf-idf [i.e., term frequency (tf)-inverse document frequency

(idf)] values to investigate the distribution of terms in the

corpus, which could be calculated based on the below formula,

tf − idf
(

t, d
)

= tf
(

t, d
)∗

idf (t) (1)

tf
(

t, d
)

=
count of t in d

number of words in d
(2)

idf (t) = log(N/(df + 1)) (3)

where t, d, N denote term, documents, and number of

documents, respectively. The higher tf-idf value signified its

importance in the document and corpus.

Language model development

Conditional probability distribution among words (i.e.,

tokens) in the text corpus is the basis for causal inference.

LM uses various statistical and probabilistic techniques to

determine joint probability among the words in the corpus.

Specifically, a transformer-based LM could generate all joint

probability among tokens as a gigantic probabilistic model

using the Masked-Language Modeling (MLM) training

strategy, allowing casual assessment among all the variables

in the corpus. Two major types of transformer-based LM

architectures, Bidirectional Encoder Representations from

Transformers (BERT) (Devlin et al., 2018) and its derives

(Lan et al., 2019; Liu et al., 2019; Sanh et al., 2019; Clark

et al., 2020), and Generative Pre-trained Transformer

(GPT) models (Brown et al., 2020), currently dominate

the field. Furthermore, efforts have also been made to

develop transformers based on the domain-specific corpus

[e.g., BioBERT (Lee et al., 2020), ClinicalBERT (Huang and

Altosaar, 2019), SciBERT (Beltagy and Lo, 2019), LEGAL-BERT

(Chalkidis et al., 2020)] for performance enhancement in

specialized domains. Some reports have demonstrated that

domain-specific pre-training is a solid foundation for a wide

range of downstream domain-specialized NLP tasks (Gu et al.,

2021).

With the pre-trained LM, the conditional probability

distribution given free text is estimated by the LM-based

downstream task. The pre-trained LM computes the attention

between tokens. Then, the classification ([CLS]) special token

representing the semantic information of the whole sequence

is fed into the input layer of the downstream classification

model. The softMax layer is adopted as the output layer to

access the conditional probability distribution. We use the

following cross entropy loss function for the classification of

input text sequences:

LOSS(D) = −
∑N

1
(yi∗log

(

p (xi)
)

+
(

1− yi
)

∗log(1− p(xi))), i = 1, 2, . . . , N (4)

where p(xi) is the output of the classification model for text

sequence xi, which is a calculated probability of the predicted

class of xi. yi is the ground truth label of xi.

By training the classifier with dataset D, we can estimate

the conditional probability distribution P(endpoint|X), where

training dataset X = {x1, x2, . . . , xN }. Then, we use the model

to predict all the text sequences for each instance in the dataset

D. We denote the output of the classifier as p(xi), where p(xi) is

the probability of the endpoint presented for instance di.

Name entity recognition

According to the task field, our framework adopts a domain-

specific NER method, a text mining technique, to extract the

name entities in the free text. The NER method can predict the

span and category of name entities in the text according to the

task with a domain-specific NER method.

For each instance, di in dataset D, the NER method

recognizes all the name entities in the text sequence xi. Then,

we get the set of name entities neri corresponding to xi, where

neri= {neri1, neri2, . . . , neriM}, with M being the total number

of name entities in the text sequence xi. Next, we combined and

unified all the name entities in set nericorresponding to the text

in the extracted dataset D. As a result, we obtained the unique

name entity set NER, where NER =
⋃

neri, i = 1, 2, . . . ,N;

It is the union of neri. Then, the recognized name entities were

fed into the Do-calculus component of the framework as causal

factor candidates.

Do-calculus based causal inference

In our previous work, we performed causal inference on

structured data by using the Do-calculus mechanism to check

whether each feature in the structured data was the cause of

the endpoint. In this study, to perform causal inference on the

free text, we first extracted name entities in free text and then

considered these name entities as causality candidates to infer

potential causal factors.

In the proposed framework, the classifier model calculates

the conditional probability distribution of the endpoint given

the free text sequence. Then, the extracted name entities in each

instance sequence act as the endpoint’s candidate causal factors.

To empirically estimate the candidate name entities in each

instance causing the endpoint, we adopted Judea Pearl’s Do-

calculus framework (Tucci, 2013; Pearl and Mackenzie, 2018).

Do-calculus aims to investigate the interventional

conditional probability distribution of P[endpoint

= true|DO(ner)] by counterfactually changing the

appearance of the name entity ner. We use the conditional

probability distribution expectation to represent the

DO(ner) and NOT DO(ner). Suppose there exists a

statistically significant difference when comparing the

interventional conditional probability distributions of
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P[endpoint = true|DO(ner)] and P[endpoint = true|NOT

DO(ner)]. In that case, the causality relationship will

be established.

Based on the Classification Prediction p(xi) from

the developed classifier, the Do-calculus procedure was

performed to estimate the cause of the endpoint. The pseudo-

code of the name entity-based Do-calculus procedure is

shown below:

Input:Classification Prediction result p(x),

dataset D, NER results, statistic test threshold

thr

Output:Do-calculus results C

1. set C = {} // C is the set of

established causes

2. for ner in NER do // for each name entity

3. set S1 = {} // S1 contains all results of

DO (ner)

4. set S2 = {} // S2 contains all results of

NOT DO (ner)

5. for di in D do // for each instance in

the dataset

6. S1 ← p(endpoint|DO (ner) // probability of

DO (ner).

7. S2← p(endpoint|NOT DO (ner) // probability

of NOT DO (ner).

8. z-score = ztest (S1, S2) // perform z-test

based on S1 and S2

9. if z-score > thr then

10. C←ner // C consists of all

established causes

11. return C;

Algorithm 1. Name entity-based Do-calculus algorithm.

For all the extracted name entities, we applied the name

entity-based Do-calculus algorithm to check whether it was the

cause of the endpoint. For a name entity ner, if ner ǫ xi, we say

instance di meets the condition of DO (ner), while if ner xi,

then it doesn’t. For ner, we assigned the conditional probability

p[endpoint|DO (ner)] or p[endpoint|NOT DO (ner)] to sets

S1 and S2 respectively. S1 is the set of conditional probability

of DO (ner), while S2 consists of conditional probabilities of

those instances NOT DO (ner). We used the one tail z-test

to evaluate whether the probabilities in S1 were significantly

different to S2.

We perform one tail z-test between S1 and S2. If the p-value

is less than a threshold like 0.05, we view the ner as a cause of

the endpoint. To establish all the causal terms of the endpoint,

we evaluated every candidate name entity. The generated term

set C is the set of all the name entities that satisfy the statistical

significance test.

Case study: Causal inference of
idiosyncratic DILI based on LiverTox

Clinical knowledge of idiosyncratic DILI

iDILI is a rare adverse drug reaction, but common in

gastroenterology and hepatology practices. The symptoms

of iDILI have multiple presentations, characterized

from asymptomatic elevations in liver biochemistries to

hepatocellular or cholestatic jaundice, liver failure, or chronic

hepatitis (Chalasani et al., 2021). Causal factors associated

with iDILI recommended by ACG Clinical Guideline could

be divided into three types: host, environmental, and drug-

related factors (Chalasani et al., 2021). Specifically, host

factors include age, gender, pregnancy, malnutrition, obesity,

diabetes mellitus, co-morbidities (e.g., underlying liver disease),

and indications for therapy. Environmental factors include

smoking, alcohol consumption, infection, and inflammatory

episodes. Drug-related factors consist of the daily dose,

metabolic profiles, class effect and cross-sensitization, and drug

interactions and polypharmacy. Furthermore, the ACG clinical

guideline also suggested an algorithm to evaluate suspected

iDILI by integrating DILI-related clinical measurements and

iDILI-associated causal factors (Chalasani et al., 2021).

Data preprocessing of the LiverTox database

LiverTox R©, launched by the National Institute of Diabetes

and Digestive and Kidney Diseases (NIDDK) and the National

Library of Medicine (NLM), is a DILI atlas dedicated

to providing up-to-date, easily accessed information and

comprehensive clinical information on iDILI for both physicians

and patients (Hoofnagle, 2013). There are 1,095 drug records

in the LiverTox database, which are available at https://ftp.

ncbi.nlm.nih.gov/pub/litarch/29/31/. For each drug record, the

informationwas organized based on different sections, including

Introduction, Background, Hepatotoxicity, Mechanism of Liver

Injury, Outcome and Management, Case reports, Chemical and

Product Information, and References.

To demonstrate the utility of the proposed DeepCausality

framework, we employed drug records stored in the LiverTox R©

database. The purpose is to use our proposed DeepCausality

to estimate the causal factors related to iDILI. For each drug

record, we extracted the text from four sections, Introduction,

Background, Hepatotoxicity, and Mechanism of Liver Injury,

which are the major sections that describe the synthesized

knowledge on hepatoxicity. The DILI Likelihood score is

embedded in the hepatoxicity section. Each sentence except

the one that included the DILI likelihood score in these four

sections was considered as xi, and all the extracted sentences

were considered as D.

Domain experts developed the DILI likelihood score to

categorize drugs based on the likelihood of drugs associated

with the known potential of DILI for causing liver injury. The
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DILI likelihood score is largely opinion-based and derived from

published medical literature to categorize the possibility of the

drug causing idiosyncratic liver injury, including Category A –

well known, Category B – known or highly likely, Category C –

probable, Category D – possible, Category E – not believed or

unlikely, and Category X – unknown. We labeled each sentence

xi according to the DILI likelihood score. Specifically, if the

sentence xi from the drug with a DILI likelihood score was

either Category A or Category B, we assigned the sentence a

label yi as iDILI positives. Otherwise, the sentence was labeled

as iDILI negatives.

Language model selection

Considering the LiverTox database provided the

summarized knowledge on DILI mainly based on medical

literature, we selected BioBERT as the domain-specific language

model to develop DeepCausality. BioBERT was developed

on top of the pre-trained BERT model by further fine-tuning

with biomedical-specific corpora, including PubMed abstracts

(PubMed) and PubMed Central full-text articles (PMC) using

MLM (Lee et al., 2019). BioBERT has shown its superiority in

various biomedical-related downstream tasks over the state-of-

the-art NLP approaches. To make BioBERT more specific for

the DILI application, we further fine-tuned the BioBERT model

with the extracted sentences D from LiverTox. Consequently,

the fine-tuned BioBERT could represent the joint conditional

probability among words involved in the extracted sentence D.

Biomedical entity recognition

Given that many words in the corpus were not biomedical

specific, there was the potential risk of bringing false positives

during the causal inference process. Therefore, we employed

biomedical entity recognition to extract different biomedical-

related terms and limit the causal inference within these

domain-relevant terms. In this study, we used biomedical

entity recognition and a multi-type normalization tool (BERN)

to extract biomedical-related terms, including gene/protein,

disease, drug/chemical, species information, and genetic variants

(Kim et al., 2019). The BERN is a series of BioBERT-named

entity recognition models with probability-based decision

rules to recognize and discover different biomedical entities,

accessible through https://bern.korea.ac.kr. Here, we only

considered extracted name entities with more than a frequency

of 50 across the corpus as causal factor candidates for

further analysis.

NER-based Causal inference

The named entity-based Do-calculus strategy was developed

to carry out the causal inference within biomedical entities

extracted using the BERN. The potential causal terms of iDILI

were enriched if the adjusted p value was less than 0.05 based

on the one-tail z-test calculation. Furthermore, other statistical

measures were also provided, including z-score, average DO

probability, and average not DO probability.

We further developed a knowledge-based causal tree to

organize the enriched causal factors by following the ACG

clinical guideline for iDILI diagnosis (see Clinical knowledge

section). Specifically, the enriched causal terms were classified

into different causal factors of iDILI, including Concomitant

diseases, History of other liver disorders, Physical findings,

Laboratory results, Symptoms and Signs, Clinical outcome,

Covering host, Environmental, and Drug-related. Furthermore,

the liver enzymes test results were also incorporated into the

proposed knowledge-based causal tree to facilitate the iDILI

patient stratification.

Real-world application: Idiosyncratic DILI
(iDILI) patient stratification

In the LiverTox database, some drug records contained one

or more case reports related to DILI, which were curated from

scientific literature or liver-specific clinical databases such as

DILI Network (DILIN). The case report comprised the findings

from a clinical laboratory, radiologic and histologic testing

summarized in a formulaic table titled Key Points, and a short

concluding discussion and comment on DILI severity. The key

points included iDILI patterns and severity scores, which served

as the ground truth for iDILI patient classification. The DILI

patterns were divided into three categories (i.e., Hepatocellular

- R > 5, mixed - 2<R<5, and cholestatic - R < 2) by the

ratio between serum alanine transaminase (ALT) and aspartate

transaminase (AST). The severity score was based on five levels:

1+, Mild; 2+, Moderate; 3+, Moderate to Severe; 4+, Severe;

and 5+, Fatal.

Because iDILI is a multifactorial endpoint caused by

different underlying mechanisms, it was crucial to stratify iDILI

patients into different DILI pattern subgroups to facilitate

subsequent treatment regimen development. To demonstrate

whether the developed knowledge-based causal tree could be

utilized to categorize the iDILI patients, we extracted a total of

175 case reports from LiverTox for further analysis. First, we

classified the patients by extracting the causal factors involved

in the developed knowledge-based causal tree from each case

report. Second, we verified the iDILI patient stratification results

by comparing them to the ground truth classification results

based on the DILI pattern and severity scores.

Robustness evaluation

The proposed DeepCausality framework employed

transformer-based LMs to learn the joint probability among
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variables for causal inference. However, this process can be

less robust due to different random seeds, even though the

same hyper-parameters were chosen. Toward real-world

applications, the robustness of the proposed framework was

investigated based on the strategy developed in our previous

study (Wang et al., 2021). Specifically, we employed the

proposed DeepCausality to run parallel experiments with

the same hypermeters three times. Then, the enriched causal

terms in the three repeated experiments were compared

using a Venn diagram and the percentage of overlapped

terms (POT) strategy (Wang et al., 2021). The POT could

be calculated based on two steps: (1) rank the enriched

terms based on z scores from high to low in each run, and

(2) calculate the POT using the number of the overlapping

terms among three repeated runs divided by L. L denotes

the number of enriched terms of each subset of the ranked

enriched term list. In this study, L was set from 1 to 30 at

one interval.

Implementation of the DeepCausality

To facilitate the application of our model, we developed

a standalone package for the readers’ convenience. The

proposed DeepCausality framework was exemplified based on

a BioBERT (BioBERT, https://github.com/dmis-lab/biobert) and

BERN under Python 3.6 TensorFlow version 1.15. We evaluated

our proposed DeepCausality model on one NVIDIA Tesla

V100 GPU. For the LiverTox dataset, the average runtime

was approximately 8 h. We incorporated the Do-calculus

causal function into the BioBERT source code, which easily

migrated into other transformers. All the source code and the

processed data sets used in this study are publicly available

through https://github.com/XingqiaoWang/https-github.com-

XingqiaoWang-DeepCausality-LiverTox.

Results

Data preprocessing of the LiverTox
dataset

Figure 2 illustrates the sequence length of the extracted

14,361 sentences from four sections (i.e., Introduction,

Background, Hepatotoxicity, Mechanism of Liver Injury)

of LiverTox. The average and standard deviation of the

sequence length of the extracted 14,361 sentences is 26.84

± 15.58. Furthermore, the extracted 14,361 sentences

contain 15,804 unique words (Supplementary Table S1).

We observed the top ten terms based on the term frequency-

inverse document frequency (Tf-idf) values, including iu,

hydroxycut, clobazam, dabrafenib, dapsone, germander,

progesterone, asparaginase, barbiturate, and CDC. These

FIGURE 2

The distribution of sequence length and the top 10 terms based

on Tf-idf values.

TABLE 1 Data information of preprocessed sentences in LiverTox.

Dataset iDILI

positive

iDILI

negative

Positive

ratio

Total

Training set 3,218 9,706 0.249 12,924

Test set 360 1,077 0.251 1,437

Total 3,578 10,783 0.249 14,361

top ten terms were not directly associated with any

current knowledge of iDILI, indicating the causal factors

could not be enriched by the simple frequency-based

strategy.

Fine-tune BioBERT model with LiverTox
data

Considering that LiverTox is summarized from literature

and clinical reports, we employed BioBERT to establish the

joint probability between variables. For that, we divided the

extracted 14,361 sentences into two sets with a ratio of 9:1 in

a stratified manner, with the ratio between positives (i.e., iDILI

positives) and negatives (i.e., iDILI negatives) kept constant for

both sets. It resulted in 12,924 (14,361 × 90% = 12,924) and

1,437 (14,361 × 10% = 1,437) sentences in training and test

sets, respectively (Table 1). Then, we employed BioBERT-Base

v1.1 (+ PubMed 1M), consisting of 12 transformer layers, 128

embeddings, 768 hidden, and 12 heads with 11M parameters.

We further fine-tuned the BioBERTbase model with the 12,924

sentences in the training set. We determined the optimized

models based on the text classification result in the test set for

iDILI sentence prediction. Specifically, we set the maximum

sequence length to 128 and the mini-batch size to 128. A total of
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FIGURE 3

(A) The trend of cross-entropy loss and accuracy across the di�erent training steps in the fine-tuned BioBERT model; (B) Prediction

performance metrics of the optimized fine-tuned BioBERT model on the test set.

2,500 training steps were implemented with a 500-step warmup,

and the checkpoint step was set to 200 for recording the

prediction results.

Figure 3A depicted the trends of cross entropy loss and

accuracy while increasing the number of training steps based

on the text set. The cross-entropy loss decreased dramatically

before 400 training steps and became stable between 400

and 800 training steps. Then, it increased after 1,000 steps,

indicating the potential of overfitting phenomena. Meanwhile,

the accuracies of the dataset tended to be stable after training

step 400. Thus, we selected the optimized fine-tuned model

based on the training step with the minimum loss (i.e., 800),

where the accuracy value also showed no dramatic changes.

The optimized fine-tuned model yielded a high accuracy

of 0.92, an F1-score of 0.84, a precision of 0.86, and a

recall of 0.82 in the test set, indicating the optimized fine-

tuned model well captured the relationship between variables

(Figure 3B).

Biomedical-based named entity
recognition

To carry out the causal inference within the biomedical-

based NER terms, we employed the BERN to extract the

biomedical-related terms from the preprocessed sentences.

We obtained a total of 87 biomedical-related terms that

were divided into three categories using BERN, including 16

drugs, 11 genes, and 60 diseases (see Supplementary Table S2).

Through the biomedical-based NER, we narrowed down

the total terms (unique words) in the preprocessed

sentences from a total of 15,804 to 87, with a 99.4%

compression rate.

Causal inference using NER-based
Do-calculus

To further investigate whether the performance of the

proposed DeepCausality could identify the causal terms of

iDILI, we implemented NER-based Do-calculus to uncover

the predictors from the fine-tuned BioBERT model (Table 2).

Of 87 Biomedical-based name entities, 24 name entities were

enriched with an adjusted p value < 0.05 based on a one-tail

z-test using the NER-based Do-calculus. We excluded 4 drug

entities, including iron, isoniazid, rifampin, and acetaminophen,

since our objective is to identify the causal factors related

to iDILI. For example, acetaminophen is a protype drug

for dose-dependent drug-induced liver injury (DILI), which

is not idiosyncratic in nature (Jaeschke, 2015). Furthermore,

18 of 20 enriched causal terms were highly consistent

with current knowledge of iDILI, yielding an enrichment

rate of 90% (Chalasani et al., 2021). These name entities

were distributed into different categories, including Liver

Enzymes, Concomitant diseases, History of other liver disorders,

Physical findings, Laboratory results, Symptoms and Signs, and

Clinical outcomes based on the ACG clinical guideline for

iDILI diagnosis.

Table 2 lists enriched causal factors ranked based on

the Z score. The causal factor (Z score) are as follows: for

Liver Enzymes, alkaline phosphatase (3.772), ALT (2.561);

for Concomitant diseases, tuberculosis (2.470), rheumatoid
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TABLE 2 Causal inference results for idiosyncratic DILI.

Elements Z score Probability

of DO

value

Probability

of not DO

value

Probability

difference

Liver Enzymes

Alkaline

phosphatase

3.772 0.398 0.244 0.154

ALT 2.561 0.307 0.244 0.064

Concomitant diseases

Tuberculosis 2.470 0.382 0.244 0.138

Rheumatoid

arthritis

1.759 0.334 0.244 0.089

History of other liver disorder

Cholestasis 4.827 0.547 0.244 0.303

Cholestatic

hepatitis

3.653 0.499 0.244 0.255

Physical findings

Fever 6.508 0.383 0.241 0.141

Pain 2.377 0.395 0.244 0.150

Laboratory results

Lactic acidosis 3.181 0.460 0.244 0.216

Symptoms and signs

Hypersensitivity 3.966 0.383 0.243 0.139

Skin rash 2.066 0.333 0.244 0.088

Jaundice 1.773 0.274 0.244 0.030

Stevens

Johnson

syndrome

1.669 0.335 0.245 0.090

Clinical outcome

Hepatic failure 4.119 0.437 0.244 0.193

Cirrhosis 2.944 0.391 0.244 0.147

Liver failure 2.905 0.366 0.244 0.122

Sinusoidal

obstruction

syndrome

2.490 0.403 0.244 0.159

Acute liver

failure

1.669 0.326 0.244 0.082

arthritis (1.759); for History of other liver disorder, cholestasis

(4.827), cholestatic hepatitis (3.653); for Physical findings,

fever (6.508), pain (2.377); for Laboratory results, lactic

acidosis (3.181); for Symptoms and Signs, hypersensitivity

(3.966), skin rash (2.066), jaundice (1.773), and Stevens-

Johnson syndrome (1.669); for Clinical outcome, hepatic

failure (4.119), cirrhosis (2.944), liver failure (2.905),

sinusoidal obstruction syndrome (2.490), and acute liver

failure (1.669).

Figure 4 illustrates the developed knowledge-based causal

tree with enriched causal factors based on the ACG clinical

guideline for iDILI diagnosis. The proposed knowledge-based

prediction tree could be divided into two major components:

liver enzyme test and clinical observations. The liver enzyme

test, including ALT and AST, divides iDILI patients into different

DILI patterns, including hepatocellular, mixed, and cholestatic.

Clinical observations could further classify the iDILI patients

based on their severity and clinical symptoms.

iDILI patient stratification

To demonstrate the proposed knowledge-based causal tree

could be utilized for iDILI patient stratification, we stratified

175 patients’ case reports in the LiverTox dataset based

on the developed causal tree and compared expert-based

patient stratification results. There was a high correlation

between the R (ALT/AST) values determined by DeepCausality

and the experts, with a Pearson correlation coefficient of

more than 0.9 (Figure 5). Furthermore, we observed that the

clinical observations in the developed causal tree could be

used to classify the patients into different severity groups,

distinguished by the R scores estimated by DeepCausality

(Figure 6).

Robustness of DeepCausality

To ensure the proposed DeepCausality could generate

reproducible causal inference results, we investigated the

robustness of causal inference results by running the

DeepCausality three times (see Supplementary Table S3).

Figure 7 depicted the POT enrichment after three different

runs. We found highly reproducible results from three

parallel runs of DeepCausality, with an average POT of 0.923.

Furthermore, the Venn diagram indicates 87.5% commonality

of enriched causal terms after three runs. Altogether, the

proposed DeepCausality framework could generate highly

repeatable results without interfering with factors such as

initial seeds.

Discussion

Causality is one of the most critical notions in every

branch of science. Causal inference based on observational

data has gained more and more momentum as an alternative

to the conventional random controlled trial-based causality

assessment. Notably, More and more advocates promote using

RWD and RWE to monitor post-market safety and adverse

events and make regulatory decisions in drug development.

An essential resource of RWD, observational data such as

EHRs, clinical reports, and patient narratives are typically

free text-based, posing a significant challenge to uncovering

hidden causal factors. AI-powered LMs such as transformers
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FIGURE 4

The proposed knowledge-based causal tree based on the ACG clinical guideline on iDILI patient diagnosis: ULN denotes upper limits of normal.

have shown great potential in various NLP tasks such as

text classification, information retrieval, question & answering,

and sentimental analysis. However, leveraging these AI-

powered LMs to conduct causal inference as a human

does is still at the infant stage. To bridge this gap, we

proposed DeepCausality, a general AI-powered causal inference

framework for free text. We exemplified the utility of

the proposed DeepCausality for iDILI-related causal factor

identification based on LiverTox and applied it to iDILI

patient stratification. Consequently, DeepCausality identified 20

causal factors for iDILI, and 18 (90%) were aligned with the

current clinical knowledge of iDILI. Furthermore, the developed

knowledge-based causal tree was used to classify iDILI patients,

which was highly consistent with stratification results based on

domain experts.

AI-based language models such as transformers rely on

a pre-trained model with a large corpus and then use

the learned knowledge to solve the downstream tasks. In

this study, without training on a large number of DILI-

related literature and clinical reports, we hypothesized the

accumulated knowledge from these large corpora of documents

could be an alternative to accelerate the training process

of transformer-based LMs. Furthermore, we introduced the

FIGURE 5

The correction between the R scores (ALT/AST) calculated by

DeepCausality and expert: ALT and AST stand for Alanine

transaminase and aspartate transaminase, respectively.

domain-specific named entity recognition (NER) step into the

general framework, aiming to eliminate the false positives

and irrelevant enrichment in the causal inference process. If
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FIGURE 6

The distribution of iDILI patients stratified by DeepCausality

across the di�erent severity levels defined by domain experts.

FIGURE 7

Robustness evaluation of the proposed DeepCausality: The

Venn diagram illustrates the overlapping of the enriched causal

terms by three parallel runs. The dotted-line curve illustrates the

percentage of overlapping causal terms (POTs) among the three

repeated runs across ranked order terms by z scores.

available, this step could also be substituted with domain-specific

ontology and knowledge graphs.

One of the initial attempts conveyed in this

study was to use the developed knowledge-based

causal tree for iDILI patient stratification. The high

consistency of iDILI patient stratification results from

DeepCausality with determination by experts is encouraging.

However, it is worth pointing out the causal tree was

developed based on prior knowledge of iDILI diagnosis,

indicating that expert knowledge is still an indispensable

component to facilitating AI-based approaches in

real-world applications.

It is also worth investigating a few aspects of the proposed

DeepCausality for potential improvements. In this study,

to showcase the proposed DeepCausality, we employed a

biomedical-based free text in LiverTox. Additional validation

of the utility in other domains is highly recommended.

To facilitate the process, all developed codes, scripts, and

processed datasets are open to the public through https://

github.com/XingqiaoWang/https-github.com-XingqiaoWang-

DeepCausality-LiverTox. Additionally, the BERT-based model

was incorporated into the DeepCausality framework presented

here. Some generative-based transformers, such as Generative

Pre-trained Transformer 3 (GPT3), do not need intensive

task-specific training (Brown et al., 2020), which may be a

more efficient way to conduct causal inference. Lastly, although

DeepCausality could identify the causal factors, it could not

classify the identified causal factors further into cofounders

or colliders. It may be solved by developing directional DO-

calculus statistics in the Bayesian networks derived from

the transformers.

In conclusion, DeepCausality provided an AI-powered

solution for causal inference in free text by integrating

transformers, NER, and Do-calculus into a unified framework.

DeepCausality is proposed for real-world applications to

promote RWE collection and utilization.
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