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Editorial on the Research Topic

E�cient AI in particle physics and astrophysics

Efficient artificial intelligence (AI) (Sze et al., 2020) is increasingly essential for

high energy physics and particle astrophysics applications, especially multi-messenger

astronomy, often in the context of accelerated AI for real-time, low-latency, low-

memory, or low-power system requirements. AI efficiency may be quantified in different

ways depending on the context: from fewer model parameters to fewer operations or

greater speed during training or inference. Methods for improving efficiency include, but

are not limited to, utilization of specialized hardware, custom neural network structures,

pruning parameters, quantization of parameters, efficiency-aware training, knowledge

distillation, physics-inspired models, and embedded symmetries or equivariance. Within

this scope, this Research Topic collects six papers featuring reviews, case studies,

applications, and new approaches exploring efficient AI in high energy physics and

particle astrophysics, including computational, data, and conceptual efficiency.

In “Ps and Qs: Quantization-aware pruning for efficient low latency neural network

inference,” Hawks et al. study machine learning (ML) implementations optimized for

inference in hardware via pruning, removing insignificant synapses, and quantization,

reducing the precision of the calculations. Specifically, the work explores the interplay

between pruning and quantization during the training of neural networks for ultra

low latency applications targeting high energy physics use cases. By studying various

configurations of quantization-aware pruning, the authors find more computationally

efficient models than pruning or quantization alone, and Bayesian hyperparameter

optimization. They also study the effect of these approaches on neural efficiency (Schaub

and Hotaling, 2020) and generalizability.
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In “Inference-optimized AI and high performance computing

for gravitational wave detection at scale,” Chaturvedi et al.

develop a new approach in the application of AI to gravitational

wave detection where NVIDIA TensorRT is leveraged to

optimize the computing time needed for the inference of an

ensemble of AI models. The authors developed the software

needed to optimally distribute inference over 20 nodes in the

ThetaGPU supercomputer at Argonne Leadership Computing

Facility—the equivalent of 160 NVIDIA A100 Tensor Core

GPUs. With this setup, the authors could process an entire

month of the Advanced Laser Interferometer Gravitational-

Wave Observatory (aLIGO) data within 50 s, i.e., 3 times

faster compared to traditional AI models, while retaining full

sensitivity in identifying binary black hole mergers.

In “Nonlinear noise cleaning in gravitational-wave detectors

with convolutional neural networks,” Yu and Adhikari study

nonlinear noise mitigation using convolutional neural networks

(CNNs) for gravitational-wave (GW) detection experiments.

Currently, the sub-60Hz sensitivity of GW detectors like aLIGO

is limited by the control noises from auxiliary degrees of

freedom which nonlinearly couple to the main GW readout.

The authors adopt an explicit “slow×fast” structure in the

CNN design to handle the bilinear noise coupling that can

be viewed as fast channels modulated by slow channels and

achieve a factor of a few noise reduction in both GW main

readout and auxiliary sensors. It was further demonstrated that

the CNN performs well with curriculum learning techniques

by combining data from quiet times and periods with active

noise injections.

In “Graph neural networks for charged particle tracking

on FPGAs,” Elabd et al. develop field-programmable gate

array (FPGA) implementations of graph neural network

(GNN) algorithms for charged particle tracking at the CERN

LHC. The authors introduce an automated translation

workflow, integrated into hls4ml (Duarte et al., 2018), for

converting GNNs into FPGA firmware. Using the public

TrackML challenge dataset (Amrouche et al., 2020), they

benchmark GNN designs targeting different graph sizes,

task complexites, and latency/throughput requirements.

One implementation is optimized for low-latency (less

than 4µs) and high-throughput (2.22MHz or greater)

typical for applications in the FPGA-based level-1 trigger

systems at the LHC (CMS Collaboration, 2020), while

another is optimized to minimize the FPGA resources

needed and scales to larger graph sizes (thousands of nodes

and edges).

In “Applications and techniques for fast machine learning

in science,” Deiana et al. review the work being carried out

by the scientific community to integrate AI methods into

the real-time experimental data processing loop to accelerate

scientific discovery. By summarizing two workshops held by

the Fast ML for Science community, this report includes the

description of a variety of scientific domains including existing

work and applications for embedded AI; potential overlaps

across scientific domains in data representation or system

constraints; and an overview of state-of-the-art techniques for

efficient ML and compute platforms, both cutting-edge and

speculative technologies.

Finally, in “Real-time inference with 2D convolutional

neural networks on field programmable gate arrays for high-

rate particle imaging detectors,” Jwa et al. develop a custom

implementation of a 2D CNN on a Xilinx UltraScale+ FPGA

as a viable application for real-time data selection in high-

resolution and high-rate particle imaging detectors. To meet

FPGA resource constraints, the authors optimize the accuracy

and latency of a two-layer CNN with KerasTuner and further

optimize the network quantization to minimize the computing

resource utilization. The authors use an automated translation

workflow for CNN supported in hls4ml (Duarte et al., 2018)

tools and achieve the first-ever exploration of employing 2D

CNNs on FPGAs for the future Deep Underground Neutrino

Experiment (DUNE).
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