
TYPE Original Research

PUBLISHED 06 October 2022

DOI 10.3389/frai.2022.988113

OPEN ACCESS

EDITED BY

Sujit Rokka Chhetri,

Palo Alto Networks, United States

REVIEWED BY

Vincenzo Carletti,

University of Salerno, Italy

Zhuoran Liu,

Northwestern University, United States

*CORRESPONDENCE

Erika Pelaez Coyotl

erpelaez@amazon.com

SPECIALTY SECTION

This article was submitted to

Machine Learning and Artificial

Intelligence,

a section of the journal

Frontiers in Artificial Intelligence

RECEIVED 06 July 2022

ACCEPTED 09 September 2022

PUBLISHED 06 October 2022

CITATION

Bhargavi D, Gholami S and Pelaez

Coyotl E (2022) Jersey number

detection using synthetic data in a

low-data regime.

Front. Artif. Intell. 5:988113.

doi: 10.3389/frai.2022.988113

COPYRIGHT

© 2022 Bhargavi, Gholami and Pelaez

Coyotl. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Jersey number detection using
synthetic data in a low-data
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Divya Bhargavi, Sia Gholami and Erika Pelaez Coyotl*

Amazon Web Services, San Francisco, CA, United States

Player identification is an essential and complex task in sports video analysis.

Di�erent strategies have been devised over the years and identification based

on jersey numbers is one of the most common approaches given its versatility

and relative simplicity. However, automatic detection of jersey numbers is

challenging due to changing camera angles, low video resolution, small object

size in wide-range shots, and transient changes in the player’s posture and

movement. In this paper, we present a novel approach for jersey number

identification in a small, highly imbalanced dataset from the Seattle Seahawks

practice videos. We generate novel synthetic datasets of di�erent complexities

to mitigate the data imbalance and scarcity in the samples. To show the

e�ectiveness of our synthetic data generation, we use a multi-step strategy

that enforces attention to a particular region of interest (player’s torso), to

identify jersey numbers. The solution first identifies and crops players in a

frame using a person detection model, then utilizes a human pose estimation

model to localize jersey numbers in the detected players, obviating the need

for annotating bounding boxes for number detection. We experimented with

two sets of Convolutional Neural Networks (CNNs) with di�erent learning

objectives: multi-class for two-digit number identification and multi-label for

digit-wise detection to compare performance. Our experiments indicate that

our novel synthetic data generation method improves the accuracy of various

CNN models by 9% overall, and 18% on low frequency numbers.

KEYWORDS

synthetic data, jersey number detection, low-data regime, convolutional neural

network, ensemble model

1. Introduction

The interest in analyzing team sport videos has increased significantly in

academia and Industry in recent years (Ye et al., 2005; Šari et al., 2008;

Lu et al., 2013; Gerke et al., 2015; Li et al., 2018; Liu and Bhanu, 2019;

Kröckel and Bodendorf, 2020; Wilson, 2020; Vats et al., 2021). This is essential

for sports broadcasters and teams to understand key events in the game and

extract crucial information from the videos. Applications and use cases include

identifying participating players, tracking player movement for game statistics,

measuring health and safety indicators, and automatically placing graphic overlays.
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For broadcasters and teams that don’t have the leeway or

the capital to install hardware sensors in player wearables,

a Computer Vision (CV) based solution is the only viable

option to automatically understand and generate insights from

games or practice videos. One important task in all sports

CV applications is identifying players, specifically identifying

players with their jersey numbers. This task is challenging due

to distortion and deformation of player jerseys based on the

player posture, movement, and camera angle, rarity of labeled

datasets, low-quality videos, small image size in zoomed out

videos, and warped display caused by the player movement (see

Figures 1, 2).

Current approaches for jersey number identification consist

of two steps: collecting and annotating large datasets (Li

et al., 2018; Vats et al., 2021), and training large and complex

models (Li et al., 2018; Liu and Bhanu, 2019; Vats et al.,

2021). These approaches include either sequential training of

multiple CV models or training one large model, solving for

two objectives: identifying the jersey number location (through

custom object detection models or training a custom human

pose estimationmodel) and classifying the jersey number (Gerke

et al., 2015; Li et al., 2018; Liu and Bhanu, 2019; Vats

et al., 2021). These approaches are tedious, time-consuming,

and cost-prohibitive thus making it intractable for all sports

organizations.

In this paper, we present a method to detect jersey numbers

with a set of relatively small and efficient models. We present

a novel approach to synthetic data generation for the task of

detecting jersey numbers in a small dataset. Our test dataset

consists of practice video footage from the Seattle Seahawks

team. To show the effectiveness of our synthetic data generation

approach we use a three-step method to number detection

leveraging pre-trainedmodels. We first identify and crop players

in a video frame using a person detection model. We then

utilize a human pose estimation model for localizing jerseys

on the detected players using the torso key-points, obviating

the need for annotating bounding boxes for number locations.

This results in images that are less than 20 × 25 pixel with

FIGURE 1

Sample frames from practice videos. The frames are sampled a couple of seconds apart with di�erent camera zoom levels o�ering varying

visibility of the jersey numbers.

a high imbalance in jersey numbers (see Figure 4). Finally, we

experiment with two sets of learning approaches for model

training—multi-class and multi-label each yielding an accuracy

of 88%, with an ensemble accuracy of 89% to identify jersey

numbers from cropped player torsos.

To compensate for the low number of examples in

some of the jersey numbers, we propose two novel synthetic

dataset generators—Simple2D and Complex2D. The Simple2D

generator creates two-digit number images from different

combinations of fonts and background colors to mimic those

of the Seattle Seahawks jerseys. The Complex2D generator

superimposes the Simple2D numbers on random COCO

dataset (Lin et al., 2014) images to add more complexity to

the background and make the model training robust. By pre-

training our two Convolutional Neural Networks (CNNs) on

these synthetic datasets, we observe a 9% increase in accuracy on

the ensemble models pre-trained with synthetic data compared

to the baseline models trained only on the Seattle Seahawks

dataset.

2. Related work

2.1. Synthetic data generation

Convolutional Neural Network algorithms, that are

commonly used in most CV tasks, require large datasets to learn

patterns in images. Collecting and annotating large datasets

is a manual, costly, and time-consuming task. Several new

approaches including Active Learning (Settles, 2009), Zero

or Few-shot learning (Larochelle et al., 2008), and Synthetic

data generation (De Campos et al., 2009) have emerged

in recent years to tackle complexities in obtaining a large

annotated dataset. Our work focuses primarily on the use

of synthetically generated data. This idea dates back to the

1990’s (Nikolenko, 2021b) and is an active field of research that

alleviates the cost and efforts needed to obtain and manually

label real-world data. Nowadays, models (pre)-trained on

synthetic datasets have a broad range of utility including feature
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FIGURE 2

Sample practice video frame with various player poses and

orientations.

matching (DeTone et al., 2018) autonomous driving (Siam et al.,

2021), robotics indoor and aerial navigation (Nikolenko, 2021a),

scene segmentation (Roberts et al., 2021), and anonymized

image generation in healthcare (Piacentino et al., 2021). The

approaches broadly adopt the following process: pre-train with

synthetic data before training on real-world scenes (DeTone

et al., 2018; Hinterstoisser et al., 2019), generate composites

of synthetic data and real images to create a new one that

contains the desired representation (Hinterstoisser et al.,

2018) or generate realistic datasets using simulation engines

like Unity (Borkman et al., 2021) or generative models like

GANs (Jeon et al., 2021; Mustikovela et al., 2021). There are

limitations to each of these regimes but one of the most common

pitfalls is performance deterioration in real-world datasets.

Models trained only synthetic datasets don’t generalize to

real-world data; this phenomenon is called “domain shift” (Jeon

et al., 2021).

In order to reduce the need for annotating large dataset

as well as account for the size and imbalance of the

real-world data, we generated two double-digit synthetic

datasets—Simple2D and Complex2D with different levels

of complexity as described in section 3.2.2. This helps

to circumvent the domain shift when only synthetic data

is used and improves generalization on real-world data

for fine-tuning.

2.2. Number identification

Automatic number identification in sports video has evolved

from classical CV techniques including feature extraction using

contrast adjustment, edge detection of numbers (Ye et al.,

2005; Šari et al., 2008; Lu et al., 2013) to deep learning-based

architectures that use CNNs for classification (Gerke et al.,

2015; Li et al., 2018; Liu and Bhanu, 2019; Vats et al., 2021). A

fundamental problem in number identification in sports is the

jersey number distortion due to erratic and continuous player

movement. The spatial transformer-based approach introduced

in Li et al. (2018) tries to localize and better position the

number, so that the classifier has a better chance of an accurate

prediction. The faster-RCNN with pose estimation guidance

mechanism (Liu and Bhanu, 2019) combines the detection,

classification, and key-point estimation tasks in one large

network to correct region proposals, reducing the number of

false negative predictions. This approach needed careful labeling

of the player bounding-boxes and four human body key-

points, shoulder (right, left), hip (right, left), in addition to the

numbers. It also made use of high-resolution number images

(512 pixel). This approach yields 92% accuracy for jersey number

recognition as a whole and 94% on the digit-wise number

recognition task. However, getting the right conditions for it i.e.,

label the dataset for the three tasks, acquiring high resolution

images, and training a large model might be challenging for

real-world cases. Furthermore, a lack of standardization and

availability of public (commercial use) datasets, makes it difficult

to obtain a benchmark for the jersey number identification task.

3. Approach

3.1. Task definition

We define a jersey number as the one or two-digit number

printed on the back of a player’s shirt. The jersey number is

used to identify and distinguish players and one number is

associated with exactly one player. Our solution takes cropped

images of player’s torsos as input and attempts to classify the

jersey number into 101 classes (0–99 for actual numbers and 100

for unrecognizable images or jerseys with no numbers).

3.2. American football dataset

The dataset used for this work consisted of a collection of six

practice videos from two angles for training and additional four

practice videos for testing from the Seattle Seahawks archives.

Half of the videos were from the endzone perspective, the

scoring zone between the end line and the goal line, the other

half were from the sideline perspective, the boundary line that

separates the play area from the sides. Both cameras were placed

on a high altitude to get a panoramic view for the play and

capture the majority of the actions taken by the players. A pitfall

for collecting data using this camera angle is that the size of a

player is less than 10% of the image size when the players are

far away from the camera. In addition, the sideline view has

restricted visibility of jersey numbers compared to end-zone (see

Figure 3). The videos were recorded in 1,280 × 720 resolution

and we sampled frames from each video at 1, 5, and 10 frames

per second (fps) rates. We noticed that images sampled at 5 fps
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FIGURE 3

Examples of frames obtained from the two di�erent angles from the training videos. Left, is the endzone view of the players. Right, is the sideline

view which o�ers better visibility into jersey numbers. Within a play, we can find players, observers with/without football jerseys.

sufficiently captured all the jersey numbers in a play and we

decided to use the same sampling rate throughout our solution.

3.2.1. Jersey number localization

To mitigate the need for annotating player location, jersey

number bounding boxes and consequently training person

and jersey number detection models, we used pre-trained

models for person detection and pose estimation to localize

the jersey number region. This approach prevents the model

from generating correlations with wrong features including

player background, helmets or clothing items, and confining the

learning to the region of interest.

For the number localization we first used a pre-trained

person detector, Centernet (Duan et al., 2019) model (ResNet50

backbone), to detect and crop players from an image. Instead

of training a custom human key-point estimation head (Liu

and Bhanu, 2019), we use a pre-trained, pose estimation model,

AlphaPose, to identify four torso key-points (left and right—hips

and shoulders) on the cropped player images from the person

detection step (see Figure 7). We use the four key-points to

create a bounding box around jersey numbers. To accommodate

inaccuracies in key-point prediction and localization due to

complex human poses, we increased the size of torso keypoint

area by expanding the coordinates 60% outward to better

capture jersey numbers. The torso area is then cropped and

used as the input for the number prediction models discussed

in section 3.2.2. In previous works, the use of high-resolution

images of players and jersey numbers are very common.

However, the videos in our dataset were captured from a bird’s

eye view, where jersey numbers were smaller than 32× 32 pixel.

In fact, the average size of the torso crops is 20 × 25 with the

actual jersey number being even a smaller portion of this area

(see Figure 4).

After player detection and jersey number localization, we

generated 9,000 candidate images for number detection. We

labeled the images with Amazon SageMaker GroundTruth and

observed that 6,000 images contained non-players (trainers,

referees, watchers); the pose estimation model for jersey number

localization simply identifies human body key-points and

doesn’t differentiate between players and non-players. 3,000

labeled images with severe imbalance (see Figure 5) were usable

for the training.

3.2.2. Synthetic data generation

In previous works, a licensed (SVHN— Goodfellow et al.,

2013) or a large custom dataset is used for (pre)-training number

recognition models. We initially investigated the use of two-

digit MNIST (Sun, 2019), however it did not have pixel color

and font variations needed for jersey detection and performed

poorly in our tests. Since there are no standardized public

datasets with permissive licenses, we created two two-digit

synthetic datasets to pre-train our models; a simple two-digit

(Simple2D) numbers with font and background similar to the

football dataset and other with two-digit synthetic numbers

superimposed on COCO (Lin et al., 2014) dataset images

(Complex2D) to account for variations in numbers background.

The Simple2D dataset was generated by randomly selecting

a number from a uniform distribution of 0–9 and scaling it by

a random factor. Color backgrounds (Red, Navy Blue, Green,

Red, Yellow,White) and special font (Freshman ) that resembled

the team jerseys were used to generate these numbers (see

Figure 4). One Light, fiveMedium, and five Hard augmentations

(see Table 1) were used on each digit to be later permuted and

concatenated to obtain 4,000 images (100 × 100 pixel) of each

two-digit number, from 00 to 99. The resulting dataset consisted

of a total of 400,000 images.

Since the real-world images had more complicated

background, textures, and lighting conditions, we decided to

synthetically generate another dataset (see Figure 6) to increase

the robustness and generalization of our pre-trained model.

The complex2D dataset was designed to increase background

noise by superimposing numbers from Sample2D on random

real-world images from the COCO dataset (Lin et al., 2014).

We generated a total of 400,000 images (4,000 per class) with
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FIGURE 4

Distribution of the sizes from person and torso bounding boxes. Note how the great majority of torso sizes is less than 32 × 32 pixel.

FIGURE 5

Distribution of the jersey number labels in the training set. Number 3 has 500+ images while numbers 43, 63, 69, and 93 have 10 images or less.
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noisy backgrounds. Our algorithm is explained in more detail in

Algorithms (1), (2), and (3).

3.2.3. Jersey number detection

After the number localization step above, two models were

sequentially pre-trained with the synthetic datasets (Simple2D

to Complex2D) and fine-tuned with the real-world football

TABLE 1 Synthetic simple 2D data augmentation levels.

Name Augmentations

Light Gaussian noise, optical distortion

Medium Light + grid distortion

Hard Medium + shuffling RGB channels, random shift-scale-rotation

forall the n in 0–9 do
select a jersey background and font color

with a probability of U(1,n) = number of

combinations;

choose a font size with a probability of

U(a,b) if a, b are scaled factors of image

size ;

paste single number with chosen font and

background color and size ;

Algorithm 1. Number generation.

forall the n in 0–99 do

forall the background colors do

generate 1,000 images;

if single digit then
perform light, medium, and hard

augmentations;

scale image to 100 × 100 pixel;

else
perform light, medium, and hard

augmentations on each digit;

concatenate digits ;

scale image to 100 × 100 pixel;

randomly sample 4,000 images per number across

all color combinations ;

Algorithm 2. Simple2D.

dataset (see Figure 7). The idea of training a model with

increasingly difficult samples is called curriculum learning.

This technique has empirically shown accuracy increase and

faster convergence (Weinshall et al., 2018; Hacohen and

Weinshall, 2019). One of the challenges of implementing

curriculum learning ismanually ranking difficulty in the training

set (Weinshall et al., 2018). To address this challenge, the

synthetic data was generated with increasing complexity and our

training regime adopted this order.

FIGURE 6

Synthetic data generation with Simple2D and Complex2D. Simple2D dataset was generated by creating numbers in football dataset jersey colors

and fonts. Several augmentations (Table 1) were applied on these numbers to get Simple2D dataset. The numbers from this dataset were

randomly sampled and randomly placed on COCO dataset images to form Complex2D dataset.
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forall the n in 0–99 do

select a random image from COCO dataset;

select a random jersey number image;

superimpose jersey number at a random

position in the COCO image;

rescale image to 100 × 100 pixel;

continue until 4,000 images per number are

obtained;

Algorithm 3. Complex2D.

Both models used a CNN architecture as backbone and a

final layer predicting classes (jersey numbers). The first model

was a multi-class image classifier to detect two-digit numbers

with a total of 101 different classes (numbers from 0 to 99 plus

an unrecognizable class). The second model was a multi-class

multi-label classifier with 21 classes to detect single digits (10

digits for each side—right, left numbers, plus an unrecognizable

class).

We define the i-th input feature Xi (cropped image of a

player) with the label yi (0–99 for actual numbers and 100 for

unrecognizable). Our multi-class model was trained with the

following loss function:

Lmc =
∑

i

Li = −
∑

i

yi log ŷmc(Xi)

Where yi is the true label and ŷmc is calculated as a softmax

over scores computed by the multi-class model as follows:

ŷmc(Xi) = σ (EZ)

σ (EZ)k =
eZk

∑100
j=0 e

Zj

Where EZ is the output from the last layer of the multiclass

model consisting of (z0, ..., z100) given Xi.

For the multi-label model, the loss function is defined as:

Lml =
∑

i

Li = −
∑

i

yi log ŷml(Xi)

Where yi is the true label and ŷml is calculated as a sigmoid

over scores computed by the multi-label model as follows:

ŷml(Xi) =
1

1+ eEZ

Where EZ is the output from the last layer of the multilabel

model given Xi.

Both models were trained until convergence and the model

from the epoch with the best performance was selected. We

explored the combination of the two models to provide the final

decision and we explain our results in section 4. Our hypothesis

was that the multi-label model would augment performance of

the multi-class model and address generalization issues with

unseen or low data availability for certain numbers. For example,

if 83, 74 were present in the training set but not 73, the right

and left side of prediction nodes for 3 and 7 would have been

activated in the train set for all numbers starting and ending

with 7 or 3 and hence the multi-label model would have enough

samples to predict 73.

We investigated training a custom object detection model to

identify single-digit numbers. The image classification approach

outperformed the object detection model primarily due to lack

of labeled bounding boxes, image quality and small size of

localized jersey numbers (approximately 20× 25 pixel).

4. Experimental results

We trained the backbone CNN multi-class(number-

detection) and multi-label(digit-detection) jersey number

classifiers on the football dataset to establish baseline

performance without the synthetic data. For the multi-

class model, we took the number with the highest softmax

score as the prediction. For the multi-label model, we applied a

threshold of 0.5 to both right and left predicted classes to get the

output. Eventually we computed the final prediction from the

output of the two models.

The baseline model accuracy was 80% for both models. We

experimented with various input image sizes and found optimal

accuracy at 224 × 224 pixel for the multi-class and 100 × 100

pixel for the multi-label model. Our dataset presented a high

imbalance across several numbers where 24% of the numbers

have less than 100 samples and only 5% reach the 400-sample

mark (see Figure 3). Hence, we duplicated data points for each

number to have 400 images in the training set when needed.

Our training pipeline dynamically applies image augmentation

so that no image is seen twice by the models, even when the

base image is the same. We also up sample our test-set images

to maintain 20 images per number.

After establishing the baselines, we investigated the effects

of pre-training with the generated synthetic data on our model

performance. Pre-training on the Simple2D dataset and fine-

tuning on the football dataset, resulted in a performance

improvement of 2% over the baseline (82%), for both, multi-

class and multi-label models. However, pre-training on the

Complex2D dataset and fine-tuning on the football dataset,

resulted in 3% improvement on the multi-class model and 8%

on the multi-label model. By pre-training on both Simple2D and

Complex2D, we achieved 8.8% and 6% improvement above the

baseline in multi-class and multi-label models, respectively.

The best multi-label model (Complex2D + Football dataset)

had positive accuracy improvements on 74 classes, no change
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FIGURE 7

Overview of the approach for extracting data, training, and generating jersey number predictions. Panel (A) describes the high-level football

dataset processing pipeline—identify person in video, pass each person image through the pose estimation model to identify the torso region

and crop them. Panel (B) shows the sequential pre-training of multi-class/label models with synthetic number datasets—Simple2D and

Complex2D as well as fine-tuning on football dataset. Panel (C) represents the inference pipeline that uses data pipeline from (A) to crop jersey

numbers and perform prediction using multi-class/label models (B).

in accuracy in 19 classes, and negative change in accuracy

in 8 classes (drop by 10%). The best multi-class model

(Simple2D + Complex2D + Football dataset) had positive

accuracy improvements on 63 classes, no change in accuracy in

21 classes, and negative change in accuracy in 17 classes (drop

by 7%). In order to validate the hypothesis (section 3.2.3) that

multi-label model could have better performance on numbers

with less images, we compare its results with the best multi-class

model on numbers with less than 50 images in the training set.

We notice an average increase in accuracy of 18.5% for multi-

class model and 20% for multi-label model before and after

training on synthetic data, for these numbers. Despite larger

gains in accuracy shown by the multi-label model, the absolute

accuracy scores for these numbers were better for the multi-

class model, 81% compared to 78% for the multi-label model

(Supplementary Figures).

By analyzing the confusion matrix of the model predictions,

we learnt that the best multi-label model produces false

predictions in two major scenarios (see Figure 8): predicting

one digit rather than both digits, and predicting class 100 for

low-resolution and hard-to-recognize digits. In other words,

the multi-label model is more likely to predict one digit

number and non-number classes when challenged with new

data. The multi-class model, however, has relatively spread-

out false predictions (see Figure 9). Major areas of error for

this model are: predicting one digit rather than both digits,

and mistaking single digits for two digits or unrecognizable

class.

Examining the performance of the two models

independently we noticed that predictions agree in 84.4%

of the test cases, suggesting that despite the different objectives

(multi-class vs. multi-label) there is a robust learning of the

number representations. Furthermore, we notice an additional

improvement of 0.4% by two-model ensemble. Table 2 presents

our results.

4.1. Comparisons with other number
detection approaches

Our solution presents a method to detect jersey numbers

in a low-data regime. We used ResNet50 as our backbone

CNN model and proposed synthetic data generation methods

to improve the results. We used ResNet50 because of the wide

adoption in the ML community, efficient use of resources, and

availability of the pre-trained model. We were able to achieve

comparable results to the state of the art models with orders of

magnitude more trainable parameters.

Table 3 demonstrates the comparison of published methods

vs. our proposed approach.

5. Limitations

The work presented in this paper shows that the number

identification task can be simplified by leveraging synthetic
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FIGURE 8

Images where multi-label predicted class 100. The multi-label model is not sure of the number class when the input image has very low

resolution.

FIGURE 9

Image where multi-class predicted class 100. Confusion for the multi-class model arise when the numbers are rotated or occluded.

datasets. We were able to achieve a similar performance

compared to previous works (Ye et al., 2005; Šari et al., 2008;

Gerke et al., 2015) requiring no change in the data collection

pipeline. Despite these findings, we recognize this approach has

some limitations which we describe in this section.

We were able to achieve 89% accuracy for our test dataset

despite the challenging nature of jersey number identification

in a low-data regime. This performance is on par with some of

the most recent works (Vats et al., 2021). However, the lack of

benchmark datasets for this task and unavailability of tools, is an

crucial barrier for comparing performance across all methods.

The only solution is to label large amounts of high-quality data

and retrain the available solutions in-house. This requires a lot

of computational resources and manual effort to work, which is

not an option for all institutions.

In our jersey detection models, we used ResNet50 as our

base model primarily because of the wide adoption in the ML

community, efficient use of resources and availability of the pre-

trained model. Bigger and more sophisticated models might

provide better accuracy and recall but they come with extra

environmental and financial costs. We recognize that more

investigation is needed here to determine the optimal solution.
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In our solution we chose a three-model pipeline approach

vs. a one-pass prediction model. Our approach comes with a few

limitations including cascading inaccuracies from one model

to the next and increase in latency. However, our choice was

justified by ease of implementation, maintenance and portability

to other domains. Even with this cascading effect, our solution

proves to have a good performance in our highly imbalanced,

limited dataset.

6. Future work

Our approach to increase performance can be broadly

classified into two categories: improving data quality and

quantity or experimenting with different models.

TABLE 2 A comparison of model performance under di�erent

conditions with confidence threshold of 0.5.

Experiment Multi-class Multi-label Ensemble

Without synthetic data

Football dataset 0.8064 0.8

Best (Multi-class +

Multi-label)

0.8028

With synthetic data pre-training

Simple2D + Football

dataset

0.8282 0.82

Complex2D + Football

dataset

0.8306 0.88

Simple2D + Complex2D

+ Football dataset

0.8886 0.86

Best (Multi-class +

Multi-label)

0.8931

6.1. Data quality and quantity

We observed no improvement in model accuracy by

increasing the number of duplicated samples or the number

of image augmentations. The confidence of the predictions

directly correlated with the quality and resolution of the jersey

number crop (input image). In our future works, we plan to

experiment with various image quality enhancement methods in

classical CV and deep learning domains to observe if it improves

performance. Another path that can be considered is to refine

our synthetic data generation pipeline to produce images that

are closer to the real-world dataset.

6.2. Di�erent model strategies

Our current method has minimal labeling effort. However,

by collecting more images of reasonable quality and quantity we

plan to test object detection-based models. One way to improve

frame level accuracy would be to track detected jersey numbers

across both side-line and end-zone views so that in situations

where numbers are partially visible or player pose is complex,

we would be able to obtain predictions with continuity. Tracking

players in team sports like football is still a major challenge in the

sports CV domain and we will evaluate its utility in our future

works.

7. Conclusion

This paper presented a new solution for low-data

regime jersey detection with two-stage novel synthetic

data generation techniques, pose estimation for jersey number

localization and CNN ensemble learning to detect jersey

numbers. Data augmentations during training and the

use of large synthetic dataset provided enough variations

TABLE 3 Summary of published methods in comparison to the proposed method.

Dataset Annotated

data size

Annotations Algorithm nparams (M) Accuracy (%)

Soccer matches premier

league

12,746 Number class and region

of interest sampling

CNN with spatial

transformation block by

Li et al. (2018)

– 86.7%

Soccer matches 3,567 Number bounding box,

person bounding box,

torso keypoints

Pose-guided object

detection by Liu and

Bhanu (2019)

41.5 M 90.44%

National Hockey team 38,456 Number class Multi-task classification

by Vats et al. (2021)

21.5 M 89.6%

American football 3,000 Number class Our proposed three-step

method

4.1 M 89.31%

nparams is the total number of trainable parameters.
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for the model to generalize well and learn numbers.

Our solution is easy to implement, requires minimal

labeling, curation, supervision, and can be customized for

various sports jersey fonts, colors, and backgrounds. Our

framework improves the accuracy of the number detection

task by 9% and can be easily extended to similar tasks

across various Sports communities as well as industries

with similar use cases. Furthermore, our solution did not

require the modification of the data capturing or processing

pipeline that is already in place, making it convenient and

flexible.

Additionally, it introduces a novel data synthesis technique

that can boost custom solution performance in a wide array

of sports. We hope this solution enables the Sport Analytics

community to rapidly automate video understanding solutions.
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