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Resources for Natural Language Processing (NLP) are less numerous for

languages di�erent from English. In the clinical domain, where these resources

are vital for obtaining new knowledge about human health and diseases,

creating new resources for the Spanish language is imperative. One of the

most common approaches in NLP is word embeddings, which are dense

vector representations of a word, considering the word’s context. This vector

representation is usually the first step in various NLP tasks, such as text

classification or information extraction. Therefore, in order to enrich Spanish

language NLP tools, we built a Spanish clinical corpus from waiting list

diagnostic suspicions, a biomedical corpus from medical journals, and term

sequences sampled from the Unified Medical Language System (UMLS). These

three corpora can be used to compute word embeddingsmodels from scratch

usingWord2vec and fastText algorithms. Furthermore, to validate the quality of

the calculated embeddings, we adapted several evaluation datasets in English,

including some tests that have not been used in Spanish to the best of

our knowledge. These translations were validated by two bilingual clinicians

following an ad hoc validation standard for the translation. Even though

contextualized word embeddings nowadays receive enormous attention, their

calculation and deployment require specialized hardware and giant training

corpora. Our static embeddings can be used in clinical applicationswith limited

computational resources. The validation of the intrinsic test we present here

can help groups working on static and contextualized word embeddings. We

are releasing the training corpus and the embeddings within this publication1.
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natural language processing, Spanish language, word embeddings, medical

informatics, neural networks, intrinsic evaluation, semantic evaluation

1 https://zenodo.org/record/6647060#.YwXsfexBw-Q
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1. Introduction

Natural Language Processing (NLP) is an intersecting field

between computer science and linguistics, focusing on the

machine understanding of human languages. The state-of-the-

art techniques for NLP are deep learning methods, which

in order to create models for language understanding, need

large training corpora (Otter et al., 2021). It is known that

languages different from English have less resources for NLP,

particularly in specific domains (Névéol et al., 2018). The

Spanish language is not an exception. Nevertheless, a vibrant

clinical NLP community in Spain and Latin American countries

is creating resources and models to overcome this gap.

There has been a surge of migration from paper-based

clinical records to Electronic Health Records (EHR) over the

last decades, increasing the data availability significantly for

secondary usage (Evans, 2016). However, a large proportion of

EHRs are in the form of unstructured data that does not have

an underlying model, and therefore its information extraction is

exceedingly challenging (Sun et al., 2018).

Text data is an essential part of the EHR because

healthcare professionals, as humans, process logical decisions

through language. These thoughts used for decision-making

are dumped as narratives into the EHR for mnemonic and

legal reasons. These logical decisions are critical to patient

care because they govern diagnostic and treatment planning

processes (Dalianis, 2018). Even though there are attempts to

systematize information by utilizing controlled vocabularies,

this normalization process takes time, needs prior training, and

often leads to coding errors (Horsky et al., 2018). Thus, the

clinical text is an irreplaceable part of the EHR.

There is a need for information extraction from clinical

narratives, and NLP can solve the issues associated with this

task. In NLP, there are specific tasks that can serve to leverage

the information contained in the clinical narratives, such

as text classification, named entity recognition, and machine

translation, to name a few (Dalianis, 2018).

Word embeddings allude to a vectorial representation of

words, storing semantic information that allows the model to

associate different vectors according to the grammatical context

(Goldberg, 2017). These word embeddings can be used for

downstream tasks inside a deep learning architecture. In fact, the

usage of such pre-trained word embeddings inside deep learning

models improves performance, decreases the training time, and

the number of examples needed for training (Kim, 2014; Ma

and Hovy, 2016). This last advantage can be especially beneficial

in the Spanish-speaking medical field because of the scarcity of

available training data.

For the computation of word embeddings a training corpus

is needed. For this reason, we extracted data from three sources:

(1) clinical narratives from The Chilean Waiting List Corpus,

which is a collection of diagnostic suspicions from the waiting

list in Chilean public hospitals (Báez et al., 2020; Báez et al., 2022;

Villena et al., 2021b), (2) amedical journal corpus extracted from

the SciELO library, which is a collection of articles from several

medical journals in Spanish (Villena et al., 2020) and (3) a corpus

constructed from the UnifiedMedical Language System (UMLS)

(Bodenreider, 2004) term graph. We computed embeddings

using Word2vec and fastText algorithms and validated them

using classic intrinsic evaluation tests adapted to Spanish, such

as word pair similarity and semantic textual similarity. For

the latter, the sentences were first translated using Google

Cloud Translation API and then validated by a protocol that

typifies the inadequacies in translation, and applied by two

bilingual clinicians. The computed embeddings are open to

the community2.

The paper is organized as follows. Section 2 highlights

previous works relevant to our research. Section 3 describes all

the steps performed to compute the results; the construction of

the corpora and the computation of the word embeddings, as

well as the method used for validation. Section 4 provides the

results for the different intrinsic tasks. Finally, a discussion of

the results and overall conclusions can be found in Sections 5

and 6, respectively.

2. Related work

Mikolov et al. (2013) formulated two algorithms for

estimating continuous representations of words using log-linear

models: continuous bag-of-words (CBOW) and continuous

skip-gram (skip-gram). These two algorithms calculate a

vectorial representation of a word, called a word embedding,

from words in the same context. Further work in Mikolov et al.

(2013) led to the creation of the Word2vec framework, capable

of employing either of these algorithms to produce embeddings

for the words in a corpus. This framework has since been applied

to various NLP tasks, and serves as the foundation for our work

in this paper.

Most work on word embedding implementations

targets general-domain texts and general evaluation sets.

As demonstrated in Chiu et al. (2016), these general-domain

implementations often do not maintain robust performance

when applied to domain-specific tasks such as biomedical

text analysis, even with the use of larger corpora. As such,

domain-specific resources are a necessity.

Recently, in the biomedical domain, Zhang et al. (2019)

trained biomedical word embeddings for a project named

BioWordVec. These embeddings are capable of employing

subword information, solving the problem of recognition

of rare or out-of-vocabulary (OOV) words in the training

data, unlike previous traditional biomedical word embeddings.

Another project presented in Chen et al. (2019), BioSentVec,

similarly computed biomedical embeddings on the sentence

2 https://zenodo.org/record/6647060#.YqoiSuzMI-Q
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level. However, both of these models are suited for use only

in English, a language abundant in resources for NLP and

in-domain corpora for biomedical tasks, unlike Spanish.

In the Spanish biomedical domain, Santiso et al. (2019)

created word embeddings for negation detection in Spanish-

language health records. They employed both in-domain

and general-domain corpora: unannotated Electronic Health

Records (EHRs) from a Spanish hospital were used as in-domain

data, and the SBWCE corpus3 was used as general-domain data.

These embeddings, however, were not intrinsically evaluated

nor compared performance-wise with other embeddings, and

they were not made available for use. In another work,

Akhtyamova et al. (2020) used the Flair (Akbik et al.,

2019) and BERT (Devlin et al., 2018) models to calculate

word embeddings for the Spanish clinical domain as part

of a named entity recognition (NER) task and Rojas et al.

(2022) computed another Flair language model from clinical

narratives in Spanish. These models utilize contextualized

word embeddings that take into account the word context

upon embedding calculation. While capable of producing high

performance models, these contextualized word embeddings

have high computational requirements and are impractical to

implement under computational resource constraints, unlike

static embeddings.

In Soares et al. (2019), static medical word embeddings

were trained for the Spanish language using the state-of-the-

art fastText (Bojanowski et al., 2016) algorithm. We compare

the results of our computed word embeddings with the

performance of the state-of-the-art word embeddings presented

in Soares et al. (2019), using as performance metrics the

intrinsic evaluation methods elaborated therein, as well as other

evaluation datasets adapted from English for the first time to the

Spanish language, to the best of our knowledge.

In our work, we enrich the corpus of Spanish NLP resources

with novel and computationally efficient word embeddings

trained for Spanish clinical use on a domain-specific Spanish

clinical corpus that we constructed. We further validate the

quality of our embeddings through adapting several English-

language evaluation datasets, some of which have not been used

in the Spanish language to the best of our knowledge, and

we release our training corpus and computed embeddings to

the community.

3. Method

Using different techniques, we gathered a large amount of

text data from the medical field in the Spanish language. We

scraped medical journals to obtain samples from biomedical

language, synthesized new text from controlled vocabularies to

augment the available data, and used actual clinical narratives to

obtain samples of the medical jargon. Then we combined these

3 https://crscardellino.github.io/SBWCE/

corpora to compute word embedding language representations

using two well-known algorithms: Word2vec (Mikolov et al.,

2013) and fastText (Bojanowski et al., 2016).

All the experiments described in this section were performed

on a local machine (except for the embedding computation) and

were developed using the Python programming language.

3.1. Corpora construction

3.1.1. Chilean waiting list corpus

This corpus comprises diagnostic suspicions from users of

the public healthcare system waiting for their first specialty

consultation. These referrals were obtained via Chilean

Transparency Law, a government-wide initiative giving every

citizen the right to request anonymized public data (Martinez

et al., 2019). We got access to 11,826,843 referrals collected by

the authors (Villena et al., 2021b), and a subset of this corpus has

been annotated with entities and relations clinically relevant4.

These diagnostic suspicions were written directly by general

practitioners in a primary-care setting. The description of this

corpus is in Table 1.

3.1.2. Medical journals corpus

It comprises Spanish medical articles5 extracted from the

SciELO website. It was constructed using standard web scraping

extraction techniques (Villena et al., 2020). It consists of 5, 694

articles published between 2002 and 2020 across 34 journals

specialized in health and biology. Descriptivemetrics also shown

in Table 1.

The algorithm used for the extraction of the journals was

constructed using the BeautifulSoup package as follows.

> Initialize dictionary to store the corpus

> Create list with URLs from medical journals

available in www.scielo.cl

> for every journal do

> Instantiate a BeautifulSoup object

> Click on every year available

> for each year do

> Click on every article available

> if the article is in Spanish then

> Save title and body of text in dictionary

> end if

> end for

> end for

> return dictionary

Algorithm 1. Web scraping extraction.

4 https://paperswithcode.com/dataset/chilean-waiting-list-corpus

5 https://doi.org/10.5281/zenodo.5902835
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TABLE 1 Corpora descriptive statistics.

Corpus Sentences Tokens Vocabulary

Chilean waiting list 6,413,083 23,092,135 152,092

Medical journals 500,828 13,520,323 141,319

UMLS heading sequences 942,346 198,800,232 84,189

Total 7,856,257 235,412,690 310,117

UMLS Term Sequences: This process was inspired by Perozzi

et al. (2014) and Tang et al. (2015) who proposed to translate

graphs into node sequences to learn network embeddings. The

UMLS is a compendium of many controlled vocabularies in

the biomedical sciences maintained by the US National Library

of Medicine. This vocabulary is hierarchically organized in a

graph where each node represents a term from the vocabulary,

and each edge represents semantic relationships between these

words. We simulate a random walk on the term graph to create

a corpus of heading sequences. The full description of this

resource is also in Table 1.

The creation of heading sequences works as follows. First,

we define the graph G = (V ,E), where V corresponds to the

set of nodes that in this case represent UMLS terms and E is the

set of edges between two nodes that are semantically related. As

previously stated, u, v ∈ E if u and v are semantically related

terms. Then, let c be a random walk be such that it starts at node

u (c0 = u), and let ci−2 = t, ci−1 = v and ci = x be three

continuous nodes in the chain, t, v, x. The distribution generated

for ci is defined as:

P(ci = x|ci−1 = v) =

{

πvx if (v, x) ∈ E,

0 in another case,

where πvx is the transition matrix from v to x:

πvx = α(t, x) =











1
p if dtx = 0,

1 if dtx = 1,
1
q if dtx = 2,

where dtx ∈ {0, 1, 2} is the shortest path between t and x (it

takes values 0, 1, or 2 because the nodes t, v, x are consecutive

on the chain). We used p = 2 and q = 1 following the work by

Zhang et al. (2019). This random walk was implemented using

the node2vec package.

The Chilean waiting list, the medical journals and the UMLS

heading sequences are all word sequences, the fastText model

(which works with subword information) can share the n-gram

representations between all three corpora, thus consolidating

them into a single corpus. This corpus was preprocessed by

transforming each character to lowercase, removing character

accentuation and removing non-alphabetic symbols. Finally,

the corpus was tokenized by sentence, and each sentence was

tokenized by word.

In sum, we have worked with a corpus of 235 million

tokens, which is a good number compared to, for example,

the 86 million tokens collected by Akhtyamova et al. (2020).

Nevertheless, our corpus is still way below the 13.5 billion tokes

used to calculate BERT for the clinical domain in English (Lee

et al., 2020).

3.2. Embeddings computation

Word2vec and fastText are two of the most used algorithms

for the computation of static word embedding language

representations. Both algorithms use the same principle, where

a shallow artificial neural network is trained to predict the

context of a certain token in a sentence (skip-gram algorithm)

or to predict a token given a set of context tokens (continuous

bag of words algorithm), and then, use the trained parameters

representing each word as the output of the algorithm.

The fastText algorithm uses subword unit combinations,

learning embeddings for n-grams of the characters of each

word. Then, if this method encounters an unknown word, its

embeddings will be induced by the average vector representation

of its constituent n-grams. This presents a straightforward

solution to the out-of-vocabulary (OOV) problem.

The embeddings are computed by standard skip-gram

models considering the subword information given by character

n-grams. Another critical component in this formulation is the

position-dependent weighting of the words: the model learns

position representations and uses them to reweight the vectors

using linear combinations of both encoding and position of

the word.

We chose to work with fastText because, as seen in Zhang

et al. (2019), theWord2vec algorithm is only based on unigrams,

and therefore cannot recognize OOV words. However, we still

trained and used a Word2vec model to perform the other

validation tasks (see Section 4). Word2vec is one of the most

used algorithms when it comes to word embeddings. It allows an

accurate vector representation of words which can be computed

on the CPU without the need for high computing power or

special computing modules (Mikolov et al., 2013). We first

decided to train this model with our corpus merely as a baseline,

but were surprised by the good results in the experiments despite

the lack of subword information.

3.3. Training

As seen in Zhang et al. (2019) and Soares et al. (2019),

fastText computes embeddings by encoding every word through

calculation of the sum vector of its constituent character n-

grams. The positioning weight was calculated using a standard

skip-gram model with a window size of 20. This number was

chosen by creating different models (Word2vec and fastText)
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with different window sizes ranging from 5 to 25 words. Each

model was tested with the validation tasks (see Section 4), and

the model with the best performance was kept. This idea was

first suggested by Chiu et al. (2016), who stated that intrinsic

tasks benefit from bigger window sizes. The setup used for both

Word2vec and fastText was the default (skip-gram) for each

implementation except for the vector dimension, which was set

to 300.

We computed the vector representations using the original

algorithm implementations proposed by the authors of

Word2vec6 and fastText7. Due to the large amount of data

used to compute the representations we utilized two nodes

of 20 CPU cores from a High-Performance Computing

Cluster. The word embeddings can be download from Zenodo

(see text footnote 1).

3.4. Validation dataset

Intrinsic evaluation tests the quality of syntactic or semantic

relationships between words. There exist tasks for intrinsic

evaluation of a clinical word embedding model in Spanish, for

example, the UMNSRS-Sim and UMNSRS-Rel databases for

word pair similarity developed by Pakhomov et al. (2010) and

translated by Soares et al. (2019). The original dataset consists

of pairs of UMLS concepts manually annotated for similarity

and relatedness.

There is an intrinsic evaluation task called sentence pair

similarity, which, to the best of our knowledge, has not been

translated to Spanish before. To implement this task, we used the

BioCreative/OHNLP STS 2019 from Wang et al. (2018, 2020),

which contains 1, 643 sentence pairs, alongside their similarity

score provided by a group of experts on a scale from 0 to 5. Here,

0 means the sentences are completely different, and 5 means

they could be used interchangeably. The Mayo Clinic developed

this dataset in the context of their SemEval Semantic Textual

Similarity (SemEval STS) challenge8.

The translation of these sentences can be challenging since

translating sentences from a specialized domain is not as

straightforward as translating single words, as was cleverly done

by Soares et al. (2019) using bilingual UMLS. Our validation of

the translation was done in two stages, having as input the 1, 643

sentence pairs translated from English to Spanish using Google

Cloud Translation API9.

A random subset of 100 of these sentences was reviewed by

two bilingual domain specialists, who identified problematic

cases in each translation. A translation standard was established

to identify problematic cases based on three types of

6 https://github.com/tmikolov/word2vec

7 https://github.com/facebookresearch/fastText

8 https://sites.google.com/view/ohnlp2018/home

9 https://cloud.google.com/translate

inadequacies. This validation standard was designed for

this specific task and inspired by the work of Castillo-Orueta

et al. (2018) and Ortiz-Gutiérrez and Cruz-Avelar (2018). Thus,

each possible problematic case corresponds to a lexicalization

that has presented at least one of these three inadequacies:

• Terminological inadequacy: the lexicalization in the target

language does not capture the technicality of the concept

in the source language (e.g., the medication concerta

translated as concierto).

• Grammatical inadequacy: the lexicalization in the target

language is incorrect in terms of the grammatical

expressions of the source language (e.g., All the patient’s

questions were answered to the best of my ability. translated

as Todas las preguntas del paciente fueron respondidas lo

mejor que pueden).

• Functional inadequacy: the lexicalization in the target

language is inappropriate to the register or style of the

source language (e.g., by mouth translated as via de la boca).

The inadequacy detection procedure achieved almost perfect

agreement between specialists (Cohen’s kappa coefficient of

0.86). In the 14 cases where the domain experts had

discrepancies, the research team discussed the cases and took

a decision, creating a consolidated validation.Out of these 100

sentences, 31 sentences were classified correct, 30 contained

at least one terminological inadequacy, 30 contained at least

one grammatical inadequacy, and 9 contained at least one

functional inadequacy. If a sentence contained multiple types

of inadequacies, it was classified under the most severe type of

inadequacy present according to the order in which they were

listed above, i.e., terminological—grammatical—functional. The

distribution of these types of inadequacies and the agreement

between specialists is visualized in Figure 1.

The high occurrence of translation errors reveals the

shortcomings of generalized machine translation models when

applied to tasks involving specialized language. While Google

Cloud Translation API displays robust performance for

generalized language use cases, it produces many translation

errors when applied on clinical language, some of which can

produce critical misunderstandings due to the precise nature

of the subject. This implies the necessity of fine-tuned models

for specialized tasks such as clinical translation. Additionally,

since the clinical text is normally written with stress and time

constraints, the original English sentences are not entirely error-

free; such errors can carry over in the automatic translation. For

example, the missing apostrophe in patients symptoms lead to

the translation pacientes.

To perform the word embedding validation using this

dataset, the vectors of each word constituting the sentence were

averaged. Then, the cosine similarity, Euclidean, and Manhattan

distance were calculated. These are the same scores used in the

SemEval STS challenge, allowing us to compare the results. We

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2022.970517
https://github.com/tmikolov/word2vec
https://github.com/facebookresearch/fastText
https://sites.google.com/view/ohnlp2018/home
https://cloud.google.com/translate
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Chiu et al. 10.3389/frai.2022.970517

FIGURE 1

(Left) Distribution of types of specialist-identified translation inadequacies among target language lexicalizations. (Right) Intersection of agreed

inadequacy types between both specialists. Each number represents the size of the set.

TABLE 2 Comparison between proposed embeddings (ours), the

state-of-the-art in English (BioWordVec), and a similar model in

Spanish (SHE) using the UMNSRS-Sim set.

Embedding Corpus Pairs evaluated Pearson

BioWordVec PubMed+MeSH 521 0.665

SHE SciELO 322 0.582

Ours (Word2vec) Mix 268 0.583

Ours (fastText) Mix 286 0.588

Bold values correspond to the best score out of all compared models.

cannot openly share this validated dataset since it is a translation

of the original dataset that is not public and only available by

request to the authors of Wang et al. (2018, 2020).

4. Results

4.1. Word pair similarity

As mentioned above, for the word pair similarity task, we

used the translated versions of UMNSRS-Sim and UMNSRS-

Rel. The results for the former are shown in Table 2, where

we compare our model with the state-of-the-art provided by

Zhang et al. (2019), BioWordVec, and the Spanish model by

Soares et al. (2019) SHE (Spanish Health Embeddings). For

our embeddings, the corpus called Mix refers to a merging of

the Chilean Waiting List, the medical journals, and the UMLS

heading sequences corpora.

As shown in Table 2, our model was evaluated with roughly

half of the original pairs. This is because the pairs of concepts

in which one of the terms had a composed word was deleted.

In the particular case of Word2vec, the out-of-vocabulary words

were also deleted, since this model is unable to recognize

TABLE 3 Comparison between proposed embeddings (ours), and the

state-of-the-art model (BioWordVec) for the sentence pair similarity

task.

Embedding Cosine Euclidean Manthattan

BioWordVec 0.771 0.753 0.752

Ours 0.642 0.608 0.607

The scores stand for the Pearson correlation between proposed embeddings and

referential score.

them, unlike fastText, which uses sub-words information to

create the embeddings, therefore allowing it to represent out-of-

vocabulary words.

4.2. Sentence pair similarity

To compare with the state-of-the-art results, we measure

similarity using cosine, Euclidean, and Manhattan (or Block)

distance for the sentence pair similarity task. Then, the

calculated score is compared with the referential one using the

Pearson correlation. Once again, the results in English prove to

obtain higher scores since the task was evaluated in the original

language it was designed.

5. Discussion

For the first task, sentence pair similarity, we see in Table 3

that both of our models reach similar results as the Spanish

embeddings (SHE). The model in English reaches better results

because the dataset was initially in this language. Even though

the BioWordVec scores are higher, ourmodels are not too far off,
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despite having fewer pairs of words to compare. As previously

discussed, some percentage of similarity between words might

be lost in translation.

As for the second task, it was expected for our model to

underperform compared to BioWordVec, since the translation

of the sentences could have introduced errors. Besides, there is

again the issue of scoring discrepancy, since we do not know

with certainty if the same level of similarity holds for a pair of

translated sentences as it did in the original language.

Our proposal is based on using Word2vec and fastText

algorithms to compute static word embeddings, which

are single-word representations and cannot account for

word polysemy. Nowadays, there is a strong development

of contextualized word embeddings that assign dynamic

representations to words based on their contexts, achieving

state-of-the-art performance in multiple tasks. For the clinical

domain in Spanish, relevant works include (Akhtyamova

et al., 2020; Carrino et al., 2022; Rojas et al., 2022). These

contextualized word embeddings are challenging to compute

and deploy in production environments due to their demanding

infrastructure needs. Usually, a system based on these

embeddings requires costly computation modules to achieve

moderate performance. Hospitals in developing countries could

benefit from systems based on neural architectures, but the

deploying cost might be prohibitive; therefore, solutions based

on lightweight methods such as our static word embeddings

have the most potential to impact developing societies.

6. Conclusion

There is a need to create numerical representations of

clinical narratives and support decision-making, especially for

languages other than English. In this work, we gathered a corpus

for the Spanish language combining clinical text, biomedical

journals, and synthetic sentences. This resulted in a rich corpus

used to train word embeddings using Word2vec and fastText

models. Evaluating these representations within the clinical

context is fundamental, and here, we presented tasks adapted

from the English language. Our results are not far off from the

state-of-the-art for the English language, which is remarkable

considering the size of the training corpora, the differences in

syntactic structure in English and Spanish, and possible loss in

translation upon adapting the tasks.

Given the recent advances in processing power, there is

a growing interest within the NLP research community in

developing new language models for obtaining contextualized

embeddings. However, static embeddings, such as ours, can

be used in clinical contexts with limited computational

resources and training corpora, which is the situation in many

places worldwide. An accurate vector representation of clinical

narratives can improve several tasks, such as named entity

recognition, text classification, and automatic coding, among

many others.

Our group has experience using static word embeddings for

patient classification deployed in a hospital (Villena et al., 2021b)

and using stacked embeddings that combine both static and

contextualized embeddings for named entity recognition (Báez

et al., 2020; Báez et al., 2022) and automatic coding (Villena

et al., 2021a). Evaluating the automatic translation of clinical

sentences has pointed us the need for creating reliable intrinsic

tests created from scratch for the Spanish language, which can

be valuable for both static and contextual word embeddings.

An even more ambitious challenge is to work with clinicians

for different Spanish-speaking countries to make this evaluation

dataset more robust.
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