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X-ray bone semantic segmentation is one crucial task in medical imaging.

Due to deep learning’s emergence, it was possible to build high-precision

models. However, these models require a large quantity of annotated data.

Furthermore, semantic segmentation requires pixel-wise labeling, thus being

a highly time-consuming task. In the case of hip joints, there is still a need for

increased anatomic knowledge due to the intrinsic nature of the femur and

acetabulum. Active learning aims to maximize the model’s performance with

the least possible amount of data. In this work, we propose and compare the

use of di�erent queries, including uncertainty and diversity-based queries. Our

results show that the proposed methods permit state-of-the-art performance

using only 81.02% of the data, with O(1) time complexity.

KEYWORDS

X-ray image analysis, deep learning, active learning, cluster based sampling,

representative sampling, Monte Carlo Dropout sampling, Shannon’s entropy

1. Introduction

Image segmentation is one of the most important yet, challenging tasks in medical

image analysis (Shah and Sharma, 2018). In recent years, Deep Learning’s (DL)

emergence has made it possible to build models that achieve human-like or superior

performance in many medical imaging tasks, such as segmentation. However, the

DL shortcoming is the need for large quantities of annotated data, often in the

order of thousands (Ronneberger et al., 2015). Additionally, gathering such large

and high-quality datasets, annotated by medical experts, is often very difficult (Kim

et al., 2019; Nguyen et al., 2021) because segmentation requires thorough pixel-

wise labeling, hence being a highly time-intensive procedure (Ozdemir et al., 2021).

Additionally, collecting medical images might be financially expensive (Kim et al., 2019).
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Active Learning’s (AL) goal is to identify which unlabeled

samples are themost interesting to be labeled by a human expert.

In other words, how to maximize the model’s performance

using the least possible amount of data (Ren et al., 2020).

Without AL, this sampling is purely random, which might cause

data redundancy. Hence, the use of AL enables the annotation

process to be as time and financially efficient as possible.

In this work, we explore the use of AL methodologies

in the context of the segmentation of dogs’ femur and

acetabulum bones in X-ray images. Dogs’ coxofemoral joint

radiographic examinations are used worldwide for screening

hip dysplasia and to select better animals for breeding.

Radiographic evaluation is performed by human observation,

being considered a time-consuming, expensive and relatively

subjective process due to differences in classification between

evaluators. Precise segmentation of these bone structures is

noteworthy as it allows further automated diagnosis of canine

hip dysplasia (Moreira da Silva et al., 2021, 2022). However, the

joint regions present high noise, low contrast, overlapping tissue,

and a narrow gap between the femur and acetabulum (Lianghui

et al., 2019). As such, the annotation of these regions requires

increased attention, a greater level of medical specialization and

knowledge of these anatomical structures. Consequently, this

set of factors leads to an increased expenditure of veterinary

medicine professionals’ valuable time in the annotation process.

Therefore, we aim to assemble and compare the effects of

different AL queries to build a high performant U-Net model

with low amounts of annotated data. The developed techniques

will be integrated into the Dys4Vet1 web platform, a dedicated

software for the automated canine hip dysplasia diagnosis.

The rest of this paper is organized as follows: Related work

(Section 2); Methods (Section 3); Results and discussion (Section

4); Conclusions (Section 5).

2. Related work

There are two types of AL queries (Munro, 2021):

uncertainty sampling; diversity sampling. The first aims to fix

themodel’s currently known confusion by sampling data that the

model presents low predictive confidence. Diversity sampling

intends to provide the model with samples of unknown areas

of the feature space, thus narrowing the model’s knowledge gap.

Mahapatra et al. (2018) used AL for X-Ray lung segmentation.

The authors suggest generative adversarial networks (GANs)

to generate diverse images. Then, using a Bayesian Neural

Network, each generated sample’s informativeness is calculated.

The informativeness is calculated through the combination of

epistemic and aleatoric uncertainties (Kendall and Gal, 2017).

The most informative samples are added, at each iteration,

to the labeled training data. With this method, the authors

1 https://www.citab.utad.pt/projects/780/show

reach state-of-the-art performance by using only 35% of the

full annotated dataset. Ozdemir et al. (2018) used Monte Carlo

Dropout (Gal and Ghahramani, 2016) (MCD) to measure

sample uncertainty based on inference variance. Then, content

distance (Gatys et al., 2016) and layer entropy maximization

are used to measure representativeness. The novelty of this

work is that instead of applying uncertainty and then sampling

for diversity, the authors propose a Borda count approach:

samples are ranked for each metric, and sampling is carried

out based on combined rank. On a similar note, in later works,

Ozdemir et al. (2021) proposed a modification of MCD (Gal

and Ghahramani, 2016), where instead of randomly dropping

neuron connections, entire convolutional kernels are dropped.

The uncertainty of each sample is calculated by averaging each

pixel’s variance over the multiple inferences. Additionally, a

variational autoencoder is used to project gaussian distributions

of labeled and unlabeled pools. With both distributions, the

authors calculate underrepresented samples in the labeled

dataset. By combining uncertainty and representativeness, the

authors stay within 2% of the state-of-the-art performance

using only 25% of the data. Zhao et al. (2020) modified a U-

Net to extract and then upscale segmentation maps from deep

and intermediate layers. Then, the authors calculate the dice

coefficient between the model’s final segmentationmap and each

upscaled map. The samples with the highest dice scores’ average

are selected to be labeled. This technique achieves comparable

state-of-the-art performance with 43.16% of the data. However,

the results do not differ much from random sampling, with a

performance difference of <1%. Zhao et al. (2021) introduced

DSAL through the reuse of the previously described technique.

While high uncertainty samples are annotated by a human

expert, in this work the samples with low uncertainty are also

provided to weak labelers (i.e., dense conditional random fields)

to generate pseudo labels. The authors state the incorporation

of pseudo labels further boosts the results. Jin et al. (2022)

proposed a one-shot active learning framework based on

contrastive learning and diversity sampling. First, contrastive

learning is used for feature extraction. Then, this new feature

space is clustered using K-Means++ (Arthur and Vassilvitskii,

2007), and sampling is performed using farthest point sampling

(FPS). While clustering guarantees inter-cluster diversity, FPS

provides intra-cluster diversity. This method was validated in

three different datasets, and it delivered dice score gains when

compared to others.

3. Methods

This section describes the employed methodologies for

the present study. Initially, the used dataset is presented in

Section 3.1. Then, Section 3.2 describes the DL segmentation

model used for the experiments. Lastly, Section 3.3 details the

AL procedure and Section 3.4 details the proposed AL queries.
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FIGURE 1

Example of annotations made for each image. (A) Acetabulum

annotation. (B) Femoral head (that overlaps the acetabulum)

annotation. (C) Combined femoral head and acetabulum

annotations. The X-ray was cut on the y axis for better

visualization. For model training, full images are used.

3.1. Dataset

For this work, DICOM images were collected from

Veterinary Teaching Hospital of the University of Trás-os-

Montes and Alto Douro and from the Danish Kennel Club,

totaling 202 images. Please note that each image corresponds

to a unique patient, avoiding data correlation in subsequent

splitting processes. Then, manual annotation was carried out

for every DICOM. In detail, the acetabulum and femoral head

acetabulum intersection were annotated (Figure 1). With these

annotations, three-channel masks were generated, where each

channel is a binary mask for each class: background, femur, and

acetabulum. Then the images were resized to 544 × 448. The

masks underwent the same resizing through nearest neighbor

interpolation. Finally, a test (15%) and a validation set (15%)

are created, which remain constant throughout the AL cycles.

Additionally, 3% is used as initial training data L0 and the

remaining as the initial unlabeled pool U0.

3.2. Segmentation model

The DL segmentation model we use is the same we propose

in previous works (Moreira da Silva et al., 2022), a U-Net with

EfficientNet (Tan and Le, 2019) modules as the feature-extractor

backbone.

For quantitative results we evaluated the dice score

(Equation 1), as it is the common metric in medical image

segmentation (Siddique et al., 2021).

Dice(P,G) =
2× |G ∩ P|

|G| + |P|
(1)

where

P: Predicted Segmentation

G : Ground Truth

We also use the same loss function of the previous work

(Moreira da Silva et al., 2022), a combination of dice and focal

loss (Equation 2). For this work, we set α = 0.25 and γ = 2.

L(P,G) = (1− Dice(P,G))− α(1− P)γ log(P) (2)

3.3. Active learning procedure

In this section, we present and explain our AL procedures.

We define the unlabeled pool as U = {X ,Y}, where X is the

available feature space to sample from, and Y the corresponding

labels. Please note that we have Y because we generate the

unlabeled pool artificially, as detailed in Section 3.1. In real-

world AL, Y would not be present, so the labels would need to

be provided by an oracle (i.e., human expert) in real-time.

Our AL cycle is formally defined as follows: Given the initial

training data L0, and the initial unlabeled pool U0, at each AL

iteration t, a given acquisition query Q will sample n images

from Ut and then this new subset Un
t ⊆ Ut is added to the

training dataset Lt = Lt−1 ∪ Un
t , removed from the next

iteration’s unlabeled pool Ut+1 = Ut \ U
n
t , and the model is re-

trained. After training, the model is evaluated on the test dataset,

and the resulting metrics are saved. The iteration is incremented

t = t + 1, and this process repeats until the unlabeled pool is

empty U = ∅. For each query Q under study, this entire cycle

is repeated 10 times. Later, we will provide each metric’s average

at each AL iteration t, for each queryQ. This way our results are

more statistically significant.

3.4. Active learning queries

For this study, we employ and compare five different queries:

3.4.1. Random sampling

Randomly sampling n elements from the unlabeled pool

Un ∈R U . This query serves as a baseline.
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3.4.2. Cluster based sampling

First, the unlabeled pool U is normalized according to (3):

UN =

{

x− Umin

Umax − Umin
: x ∈ U

}

(3)

Then the dimensionality of UN is reduced by applying

Principal Component Analysis (PCA) (Pearson, 1901), with 99%

explained data variance. We define the reduced pool as UR.

Then, we use K-Means++ (Arthur and Vassilvitskii, 2007) to

create n clusters inside UR. Then, for each centroid of UR, the

closest element is found. The corresponding n elements in U are

sampled. Thus, this query ensures maximum diversity between

the samples.

3.4.3. Representative sampling

This query requires both the unlabeled pool U and the

training data L. We then apply the same two initial steps of the

previous query to both U and L. Then, also using K-Means++,

two clusters C are created: a training cluster CL, and an

unlabeled cluster CU . For each item in CU it’s representativeness

R is calculated according to (4):

R =
{

d(x,µCL
)− d(x,µCU

) : x ∈ CU
}

(4)

where

µ: Cluster centroid

d: Euclidean distance

R measures the difference between the training and the

unlabeled data. The first n elements of U that have the highest

corresponding R values are sampled. In short, we select the

items that best represent the unlabeled pool population and look

the most different from the current training data.

3.4.4. Monte Carlo Dropout sampling

Monte Carlo Dropout (MCD) is a Bayesian ANN

approximation of the Gaussian process, introduced by Gal

and Ghahramani (2016). It uses the dropout layers (Srivastava

et al., 2014) of a DL model to measure its predictive uncertainty.

It works by turning on dropout during inference, and by running

inference k times, each dropout configuration corresponds to a

Monte Carlo sample from the available models’ space. Thus, we

obtain a predictive distribution enabling the inspection of the

predictive uncertainty. For this study we set k = 30. Then we

obtain each sample’s average prediction P according to (5):

P =







1

k

k
∑

i=1

̥(x) : x ∈ U







(5)

where

̥: DL model

Afterwards, each sample’s uncertainty is calculated using

Shannon’s entropy (Shannon, 1948), according to Equation (6).

Since the used model uses a sigmoid activation function, we

calculate the entropy for the femur (output channel 1) and the

acetabulum (output channel 2) class separately, averaging them

thereafter.

E =

{

1

2

2
∑

c=1





1

H ×W

H
∑

h=0

W
∑

w=0

(−xhwc log2 xhwc)



 : x ∈ P

}

(6)

The first n elements ofU that have the highest corresponding

E values are sampled. As such, we select the items that the

model presents a higher level of uncertainty.We call this method

CWE-MCD (Class-wise Entropy Monte Carlo Dropout).

3.4.5. Representative CWE-MCD

All the previously mentioned queries sample from one of

the following perspectives: uncertainty or diversity. This method

proposes a combination of two techniques: Representative

Sampling and CWE-MCD. To combine both queries, we adopt

the Ozdemir et al. (2018)’s Borda count approach. In short,

we separately calculate the R and E scores for each image in

U . Then each unlabeled image is ranked based on how high

each score is. The final sampling is based on the 15 highest

combined rank.

4. Results and discussion

Initially (t = 0), the labeled dataset L0 has six train images

and the unlabeled pool U0 has 131 images, and at each active

learning iteration, a given query Q will select 15 images (n =

15). We repeat this procedure until we run out of images,

resulting in nine AL iterations (tmax =
⌈

131
15

⌉

= 9). Regarding

the model, at each AL iteration, we train a model from scratch,

using the Adam optimizer with a learning rate of 1e − 2 and

a batch size of eight. Additionally, we use two callbacks that

monitor the validation’s data dice score. The first is a callback

that reduces the learning rate by a factor of 0.1 if the metric does

not improve after eight epochs. Secondly, a callback that halts

the training if the metric does not improve by ten epochs (early

stopping). Therefore, we set the number of epochs to 500.

Also, we train the U-Net with the entire unlabeled pool

combined with the initial training data (L0 ∪ U), achieving a

test dice score of 0.95. We denote this value as the model’s Upper

Bound (UB). The average dice score, for each AL iteration, for

the proposed methods are described in Table 1, and illustrated

in Figure 2. Noticeably, every query (Clustering, Representative,

CWE-MCD, Representative CWE-MCD) performed better than

the baseline (Random) in all iterations. Despite clustering

being a simple technique, in the first iterations, it outperforms

the baseline. As the size and diversity of the unlabeled pool
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TABLE 1 Average dice score at each AL iteration for the proposed methods.

QueryQ
AL iteration t

0 1 2 3 4 5 6 7 8 9

Random 0.02 0.15 0.24 0.34 0.47 0.66 0.79 0.89 0.91 0.95

Clustering 0.02 0.19 0.30 0.39 0.51 0.68 0.81 0.90 0.91 0.95

Representative 0.02 0.25 0.36 0.45 0.58 0.75 0.89 0.94 0.95 0.95

CWE-MCD 0.02 0.23 0.34 0.49 0.63 0.82 0.92 0.94 0.95 0.95

Representative CWE-MCD 0.02 0.24 0.35 0.51 0.64 0.84 0.93 0.94 0.95 0.95

FIGURE 2

Average dice score at each AL iteration for the proposed

methods.

decreases, the performance of the clustering query becomes

identical to the baseline. Both the baseline and the clustering

queries need the entire unlabeled pool as training data to reach

the UB. Nonetheless, clustering still proves suitable in early

AL iterations. The three more advanced methods we build

(Representative, CWE-MCD, Representative CWE-MCD) show

significant dice score gains compared to the baseline. In the first

two iterations, these present closely the same performance. From

the second, CWE-MCD and Representative CWE-MCDprovide

superior performance. This fact can corroborate (Ozdemir et al.,

2021) statement that uncertainty may not be a sufficiently

calibrated metric until the training data size is adequately

large. Additionally, Representative CWE-MCD provides slightly

better results over CWE-MCD and Representative until the

sixth iteration. This is expected, as Representative CWE-MCD

combines the best aspects of the diversity and uncertainty

sampling, thus being a more powerful technique (Munro, 2021).

Despite this slight performance superiority, these three queries

can reach the UB at around 111 training images compared to the

required 137 when using the baseline or the clustering methods.

FIGURE 3

Average query time (in seconds) at each AL iteration for the

proposed methods.

This means that using these queries allowed the same level of

performance with ≈ 81.02% of the data, a saving of ≈ 18.98%

(26 images).

Additionally, we decided to measure the average query time

in seconds, at each AL iteration, for each of the proposed

queries. Figure 3 depicts the results. As expected, the baseline

is almost instant. The clustering technique is also pretty fast,

decreasing times as the iterations increase. One of the best

performing queries, CWE-MCD, presents a significantly higher

time complexity O(n), meaning that the required time scales

linearly to the size of the unlabeled pool. In practice, this

query might be unsuitable for large unlabeled pools. Thus, to

offset the computation times, it might be required to tune the

number of Monte Carlo samples (i.e., number of inferences).

Notwithstanding, representative query presents a linear time

complexity O(1) while still delivering noteworthy dice score

gains, thus being suitable for large unlabeled pools. Lastly,

Representative CWE-MCD presents the same behavior as CWE-

MCD but with a significant additional time overhead due to

representativeness and Borda count computations. In practice,
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the use of this query will be even more limited than the

CWE-MCD due to the increased times. However, its use can

still be advantageous in situations that demand maximum

performance, situations where time is not a constraint, or when

applied to a small subset of the unlabeled pool.

5. Conclusions

In this work, we study and compare the effectiveness

of different AL query strategies in the ambit of the

segmentation of dogs’ femur and acetabulum bones in X-

ray images. In detail, we suggest measuring the uncertainty

by calculating class-wise entropy using Monte Carlo Dropout.

Furthermore, we propose to combine this uncertainty

metric with a representativeness method, inspired by the

works of Ozdemir et al. (2018). This method is superior

to the others, allowing an 18.98% reduction in the amount

of required annotated data. Despite this method being

O(n) in time complexity, representative sampling is O(1)

time complex, with comparable performance levels, thus

suitable for large unlabeled datasets. For future research,

we intend to study other possible combinations of the

entropy and representativeness methods presented in this

paper. In addition, the creation of annotation software

unified with an AL framework, equipped with automatic

pre-annotation capabilities, would allow further time savings

for veterinary professionals.
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