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The rapid spread of COVID-19 and its variants have devastated communities

worldwide, and as the highly transmissible Omicron variant becomes the

dominant strain of the virus in late 2021, the need to characterize and

understand the di�erence between the new variant and its predecessors

has been an increasing priority for public health authorities. Artificial

Intelligence has played a significant role in the analysis of various facets

of COVID-19 since the early stages of the pandemic. This study proposes

the use of AI, specifically an XGBoost model, to quantify the impact of

various medical risk factors (or “population features”) on the possibility of

a patient outcome resulting in hospitalization, ICU admission, or death.

The results are compared between the Delta and Omicron COVID-19

variants. Results indicated that older age and an unvaccinated patient status

most consistently correspond as the most significant population features

contributing to all three scenarios (hospitalization, ICU, death). The top 15

features for each variant-outcome scenario were determined, which most

frequently included diabetes, cardiovascular disease, chronic kidney disease,

and complications of pneumonia as highly significant population features

contributing to serious illness outcomes. The Delta/Hospitalization model

returned the highest performance metric scores for the area under the

receiver operating characteristic (AUROC), F1, and Recall, while Omicron/ICU

and Omicron/Hospitalization had the highest accuracy and precision values,

respectively. The recall was found to be above 0.60 inmost cases (with only two

exceptions), indicating that the total number of false positives was generally

minimized (accounting formore of the people whowould theoretically require

medical care).
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1. Introduction

The characterization of SARS-CoV-2 risk factors has been at

the forefront of pandemic research since the onset of COVID-

19 (Rod et al., 2020). While trends in public health data

provide valuable insight into the understanding of the attributes

associated with severe COVID-19 illness, artificial intelligence

(AI) provides a dynamic, computational, and quantifiable

approach to describing the features of a population putting

them at higher risk of serious sickness. Specifically, those

experiencing harsher symptoms are more likely to become

hospitalized, admitted to an intensive care unit (ICU), or face

possible mortality. As global deaths from COVID-19 surpass 5.5

million in late January 2022, in the face of a newer and more

transmissible variant of concern (VOC), anticipating deaths is

essential to prepare health care systems and jurisdictions around

the world (World Health Organization, 2022).

Themerits of advising the decision-making processes during

the pandemic have been amplified by the use of AI to better

describe the significance of various medical risk factors (Vaishya

et al., 2020). Algorithms designed to assess the complicated

nature of COVID-19 illness can articulate the complexity of

underlying medical conditions and demographic information,

and inform public health agencies on how these features may

significantly influence the trajectory of a patient’s experience

with the virus. While epidemiological and infectivity modeling

(e.g., SEIR and SIR modeling) have been employed strategically

to characterize population dynamics throughout the pandemic

(Yawney andGadsden, 2020), AI presents a uniquemethodology

to critically interpret medical risk factors.

An eXtreme Gradient Boosting (XGBoost) modeling

approach is proposed herein as a reliable, consistent, and

accurate method for achieving the quantified impact assessment

of various population features and conditions. Specifically, with

the less charted territory of COVID-19 variant research, the

modeling described herein uses an Ontario-wide collection of

positivity data to generate XGBoost models for three scenarios

of outcome (hospitalization, ICU admittance, and death) for

two unique variants (Delta and Omicron). This constitutes six

distinct sets of modeling results, illustrating the attributes of a

population that are more likely to lead a patient to one of the

defined scenario outcomes.

The objective of this study is to describe and evaluate various

population features using AI, ordering them by importance,

to better understand the difference in the risk factors that

are associated with severe illness in the Delta variant vs. the

Omicron variant of COVID-19. The novelty of applying AI

(specifically XGBoost) during the time of rising Omicron cases

establishes this investigation as an entry into the forefront of

pandemic research. This article describes published research

in the cross-sections of AI and COVID-19 (Section 2), a

detailed methods and procedures protocol for manipulation

of the Ontario dataset (Section 3), results from each of the

variant-scenario models (Section 4), and a discussion providing

insights into the significance of the resultant top features

(Section 5). A discussion of the limitations and performance

metrics of the developed models is also provided. The impact

assessment generated by the results of these models provides

key messaging on the factors influencing illness associated with

the new Omicron variant, allowing for the decisive allocation of

hospitalized care resources.

2. Purposing AI to characterize
COVID-19: A review

From the outset of the COVID-19 pandemic, novel

publications in the areas of epidemiology, infectious diseases,

and public health have been at the forefront of the research

realm. Among these fields of interest have been advancements

and unique applications of artificial intelligence, machine

learning, computational modeling, and prediction methods to

characterize, describe, and suggest implications of the various

aspects of the pandemic.

Medically, AI has been applied throughout COVID-19 to

establish diagnosis methods, using chest CAT Scan data and

a neural network AI model to distinguish characteristics of

COVID-19 from patients with influenza type A, influenza

type B, pneumonia, and non-pneumonia (Jin et al., 2020).

The approach to implementing AI and machine learning in

COVID-19 diagnosis through computer tomography was widely

published and has been reported as a contender to radiology-

based diagnosis (Chen et al., 2020; Li L. et al., 2020; Wang et al.,

2020).

Forecasts and predictions of cumulative cases have also

been conducted using AI. Neural Network frameworks

have anticipated next-day COVID-19 cases, on the basis of

cumulative cases in the 5 days prior, the total cases historically,

the total recovered cases, and the cumulative deaths (Huang

et al., 2020). Similar forecasting anticipated the top 15 countries

for new cases in 2020, using a machine learning autoregressive

integrated moving average model, which correctly predicted

that the United States would become the epicenter for the virus

by mid-2020 (Kumar et al., 2020). A very similar application

with matching results used the Eureqa AI model (Li M. et al.,

2020).

The necessity to understand factors dictating the triage of

patients was addressed in a study outlining those who should

receive priority hospitalization based on a series of AI models

(Neural Networks, Random Forest, and more) assessing (as

features) the impact of various symptoms, underlying medical

conditions, and demographics (Pourhomayoun and Shakibi,

2021). Age, gender, respiratory distress, diabetes, hypertension,

and kidney disease were listed as the features corresponding
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most frequently with patient death (Pourhomayoun and Shakibi,

2021).

2.1. Related studies in Ontario, Canada

An application of different AI models (XGBoost, Neural

Network, Random Forest) to predict the possibility of death

from COVID-19 compared various population characteristics

as features, and the degree to which each feature influences

a patient’s future mortality (Snider et al., 2020). This research

found that XGBoost, the same model used in this study, is

a reliable method to train COVID-19 cases for death-based

predictions, with the highest degree of precision and accuracy

(Snider et al., 2020).

A second study following (Snider et al., 2020) had similar

results; from the same three AI models, age is presented as the

most important feature contributing to COVID-19 mortality

(Snider et al., 2021a). Also under consideration in the XGBoost

model were several features overlapping with those described

in this paper, namely dementia, hypertension, diabetes, kidney

disease, and cancer, among others (Snider et al., 2021a).

Another application of XGBoost interpreted various risk

factors and concluded similar findings to the initial AI studies,

specifically that age is the most significant contributor to

mortality (Snider et al., 2021b). An added dimension to this

study focused on the implication of socioeconomic conditions,

and how patients from low-income and ethnically concentrated

regions are more likely to be associated with COVID-19 fatality

(Snider et al., 2021b).

2.2. Variants of concern and AI

The emergence in late 2021 of the Omicron variant was

accompanied by new reports that three doses of a COVID-

19 vaccine will result in a lower likelihood of becoming

symptomatic (regardless of the mutated strain’s greater rate

of infection) (Accorsi et al., 2022). A key barrier in the fight

against the new variant of concern is the insufficient uptake of

vaccinations in the western world, causing a strain on hospitals

and health care workers (del Rio et al., 2022). As management

of the health care system becomes increasingly concerning in

an “endemic” phase of COVID-19, those who are unvaccinated

pose a serious risk to themselves and others as the most likely

patients (next to the elderly) to become seriously ill (Johnson

et al., 2022).

Omicron is reportedly more capable of penetrating immune

systems, with transmissibility remarkably higher (2–3 times

more) than the previous dominant strain, Delta (del Rio et al.,

2022). It has also been reported that Omicron could be 10 times

more transmissible than the original SARS-CoV-2 strain (Al-

Tawfiq et al., 2022). While it has been studied that two doses of

a vaccine can help protect a population, a booster or third dose

can prove beneficial during the peak of the Omicron wave of new

cases (Andrews et al., 2022).

The projected outlook on the pandemic has more recently

evolved from a concern of infection prevention to severity

prevention, and studies out of South Africa show that during

the Omicron wave experienced by that country, at an earlier

point than Canada and the United States, there has been

a “decoupling” of hospitalization and deaths (Madhi et al.,

2022). The decoupling of the incidence rates suggests that

while Omicron is likely to ravage communities much more

frighteningly than Delta, this is not likely to be accompanied

by unfathomable death rates (Madhi et al., 2022). Hence, as

the mutations evolve into less severe yet more transmissible

infections, health care systems will experience an increased

demand for patient care and a new challenge from the initial

months of the pandemic.

In artificial intelligence practices, studies on the variants of

concern and their associated symptoms have been less explored

than other COVID-19 research in computational sciences. A

single focus has arisen as the dominant concern for modeling

applications throughout the onset of the Omicron variant;

namely, the introduction of AI as an advisory tool tomake health

care-related decisions to reduce the stress on an overworked,

under-resourced system (Nadeem et al., 2022). X-Ray and

computer tomography images, as seen in the earlier stages of the

pandemic, are once again being combined with deep learning

and artificial intelligence models to detect specific variants,

including Omicron (Khan et al., 2022).

The limited scope, as identified to date for AI-based

assessments of the COVID-19 variants, is now emerging

as a research area essential for the characterization and

understanding of the virus’ complexity, and the new endemic

phase of the novel coronavirus.

3. Methodology

Data used in this AI analysis of variant impacts on

hospitalization, ICU, and death was feasible using an Ontario

population data package, consisting of individuals who were

tested for COVID-19 from a period of March 2020 until late

December 2021. These data were sourced from ICES under an

agreement to conduct COVID-19 research in Canada. Datasets

were linked using unique encoded identifiers and analyzed at

ICES. Privacy legislation in Ontario permits, without individual

consent, the study and general use of the province’s health care

data, which is intended for the assessment of the health care

system and the safeguarding of public health.

Patient data consisted of an initial population size of

1,018,189 persons. After data cleaning (detailed in this section),

the population was reduced to a size of 608,140 persons.
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TABLE 1 Master list of patient features, prior to filtering, and hyperparameter tuning.

Acute respiratory distress syndrome Age at time of illness Anemia Arrhythmia

Asthma Asymptomatic Cancer History Cancer Ongoing

Cardiac Disease Cardiovascular Disease Chronic Diabetes Chronic Asthma

Chronic Congestive Heart Failure Chronic Dementia Chronic Human

Immunodeficiency Virus

Chronic Hypertension

Chronic Kidney Disease Chronic Obstructive Pulmonary Disease Chronic Obstructive

Pulmonary Disease History

Chronic Rheumatoid Arthritis

Cirrhosis Complex Continuing Care Direct Exposure Cirrhosis Encephalitis

Heart Failure Immunocompromised Liver Disease Liver Failure

Local Health Integration Network Multisystem Inflammatory Syndrome Neurological Disorder Obesity

Other Complications Other Medical Risk Factors Pneumonia Postpartum

Pregnant Previously COVID Positive Public Health Unit Renal Disease

Renal Failure Respiratory Failure Sepsis Sex

Socioeconomic Homeless Socioeconomic Rural Symptom Cough Symptom Fatigue

Symptom Fever Symptom Headache Symptom Other Symptom Shortness of Breath

Symptom Sore Throat Travel Within 14 Days Tuberculosis Underlying Medical Condition

Vaccination Variant of Concern

In this study, an XGBoost modeling method is integrated

with the data to characterize three potential scenarios of

patient outcomes: hospitalization, requirement of intensive care,

or death. From this analysis, SHapley Additive exPlanations

(SHAP) values are generated to indicate the importance and

impact of the various features contributing to rates of all three

scenarios.

Prior to implementing the XGBoost model, a modification

of the dataset was eliminated and prepared the data for use.

First, entries associated with an unknown health outcome (not

definitively corresponding to hospitalized, admitted to ICU, or

fatality) were omitted from the analysis. Also dropped were any

entries with an absent value for age.

Since active cases of the virus could potentially cause a

misrepresentation of the analysis results, entries associated

with individuals still in the hospital or not yet recovered

from COVID-19-related illness were excluded from the dataset.

Following the data cleaning, various conditions or “features”

were included. These features represent the characteristics of any

given patient and are used to predict the dominating causes for

increased rates of hospitalization, ICU admittance, and death.

All initial features are listed in Table 1.

Due to the unique population representation in the

provided dataset, all data associated with individuals who

had a chronic or “diagnosed” condition are combined with

those who had “self-reported” conditions. As an example, this

was applied to the population identified as having diabetes

(among others).

Distinct datasets were created from the master data to

split the population by COVID-19 variant type. For this

modification, patients reported as having contracted the Delta

VOC were grouped, and all patients associated with the

Omicron VOC were separated from the Delta group. All

vaccination statuses (one or multiple doses of Pfizer, Moderna,

and/or AstraZeneca) were grouped into the single variable of

“vaccinated,” which was compared with all patients who were

not vaccinated.

Following the distinction of the two new datasets, specific

features were assessed and dropped based on a variance inflation

factor (VIF) analysis. Features corresponding to relatively high

collinearity were eliminated from the features of consideration.

For this analysis, a VIF greater than 1.5 is considered to be the

threshold for high collinearity, and any feature exceeding this

VIF was eliminated.

Since the purpose of the analysis is to characterize

contributing factors in COVID-19 hospitalization, ICU

entry, and death, these descriptors of the data provided

are converted from features into labels, such that the

XGBoost model would not take these components

into account.

Where X is the analysis data, and Y is the associated

labels, a 70/30 training-testing split on the X and Y values is

executed. In place of a conventional grid search approach to

tune for hyperparameters, a more efficient randomized search

method was used to tune the model. This was undertaken

for parameters such as maximum depth, learning rate, and

scale positive weight, among others. A StratifiedKFold cross-

validation method is also implemented within the model to

generate additional training sets. Three folds (train on two, test

on one) were aimed at reducing the overfitting of the model and

dataset, minimizing the training error, and increasing testing

error. This was undertaken for all datasets.
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TABLE 2 The filtered list of patient features, with modified vaccination statuses and high collinearities removed.

Acute respiratory

distress syndrome

Age at time of illness Anemia Arrhythmia Asthma

Asymptomatic Cancer History Cancer Ongoing Cardiac Disease Cardiovascular Disease

Chronic Diabetes Chronic Congestive

Heart Failure

Chronic Dementia Chronic Human Immunodeficiency Virus Chronic Kidney Disease

Chronic Obstructive

Pulmonary Disease

Chronic Obstructive

Pulmonary Disease

History

Chronic Rheumatoid Arthritis Cirrhosis Complex Continuing Care

Direct Exposure

Cirrhosis

Encephalitis Heart Failure Immunocompromised Liver Disease

Liver Failure Multisystem

Inflammatory Syndrome

Neurological Disorder Obesity Other Complications

Other Medical Risk

Factors

Pneumonia Postpartum Pregnant Previously COVID Positive

Renal Disease Renal Failure Respiratory Failure Sepsis Socioeconomic Homeless

Symptom Fatigue Symptom Fever Symptom Other Tuberculosis Underlying Medical Condition

Unvaccinated/Vaccinated

Logistic loss (a loss function) was used in this model to fulfill

the evaluation and consideration of prediction-based accuracy.

This loss function has been most simply described by Equation

1 (Wu et al., 2021).

L(yk, ŷk) = ((1− yk) ln(1+ e−ŷk ))+ yk ln(1+ e−ŷk ) (1)

Here, yk is the k
th “real” value, and ŷk is the k

th “predicted” value

from the model.

The best hyperparameters are put forward to the XGBoost

classifier, where the model trains using the provided

hyperparameters to make final predictions. The resultant

predictions are detailed in the following section. The filtered list

of features, following the removal of various features from the

collinearity analyses, is presented in Table 2.

4. Results

XGBoost results have been generated in four formats; a

SHapley Additive exPlanations (SHAP) value plot to illustrate

the relative impacts of each feature on the likelihood of each

scenario (hospitalization, ICU, death), performance metrics to

describe the suitability of the model and comparative accuracy,

bar graphs to show the absolute impacts of the top 15 features,

and scatter plots representing the significance of select key

model features.

4.1. Hospitalization

The plot summarizing SHAP values for the hospitalization

analysis is provided in Figure 1.

For both variants, age is the most significant feature

influencing one’s possibility of being admitted to the hospital due

to COVID-19 illness. As the only continuous variable, the SHAP

entry for age illustrates that the older the patient (the redder

the marker), the more likely they are to enter the hospital (the

more positive the SHAP value). All other features are discrete

variables, and thus red marks represent an affirmative case (the

patient does identify with the defined feature) and blue marks

represent a dissident case (the patient does not identify with the

defined feature). Positive SHAP values dictate that the defined

case is a contributor to hospitalization (hence, a blue marker

with a positive SHAP value means that a patient not identifying

with the feature is more likely to be admitted to the hospital than

a patient who does identify with the feature).

The second most significant feature in both variants for

hospitalization is an unvaccinated patient status. In both cases,

it is predicted that those who are unvaccinated, regardless of the

variant, are more likely to be hospitalized than those who are

vaccinated.

Although their positions differ slightly (with the higher

features representing more significant characteristics of a

population), the list of the top 15 features mostly overlaps for

Delta and Omicron cases.

Bar plots presenting the absolute impacts of the top 15

features, and the difference from one feature to another, in

hospitalization predictions, is displayed in Figure 2.
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FIGURE 1

SHAP plots for (A) Delta and (B) Omicron features contributing to rates of hospitalization.

FIGURE 2

Absolute SHAP impact values for (A) Delta and (B) Omicron features contributing to hospitalization.

Figure 2 does not suggest whether or not identifying with

a particular feature will lead to hospitalization; however, the

average absolute SHAP values indicate the level of significance of

a given feature and illustrates the difference between each of the

top 15 features. The collective weight of the remaining features

outside of the top 15 is also presented.

For Delta case hospitalization, age has a mean SHAP

value of 1.41, a significant difference from the rest of the top

features (even from the second highest value, associated with

unvaccinated patients at 0.56). After the fourth top feature

(complications of pneumonia), features are less distinguishable

from one another and have very similar (and for several features,

equal) absolute SHAP values. Hence, it can be inferred that, for

this analysis, most features (five through fifteen) are no more

impactful than others, but age, vaccination status, diabetes, and

pneumonia play the greatest roles.

For Omicron case hospitalization, similar trends are noticed,

with an age mean SHAP value of 1.33, and other features

predicted to be much less impactful. An unvaccinated status had

a relative impact of 0.51 (similar to the Delta cases), and after the

fourth and fifth features (diabetes and chronic kidney disease),

most features are comparable in impact.

Three features of concern are selected for further analysis

into their impacts on a population’s likelihood to be hospitalized;

complications of pneumonia, age, and a medical risk factor

classified as immunocompromised. Scatter plots presenting the

distribution of predicted data for the three features of concern

are presented in Figure 3.
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FIGURE 3

Scatter plots of three features of concern (pneumonia, age, and immunocompromised) for (A) Delta- and (B) Omicron- related hospitalization.

Figure 3 shows nearly identical trends for Delta and

Omicron hospitalization predictions. For those who are

immunocompromised or have complications associated with

pneumonia, most patients have a high likelihood of being

hospitalized. Conversely, those who do not have either of

these classifications are neither more nor less likely to be

hospitalized (not being immunocompromised, or not having

complications of pneumonia will not influence hospitalization

predictions). The general trend for age shows that younger

populations are not predicted to be hospitalized, whereas older

populations are predicted to be hospitalized. This is with the

exception of “extreme” age classifications (approximately 100

years and older) where there is a steep drop in the prediction

of hospitalization (a discussion of this phenomenon is provided

in Section 5).

4.2. Intensive care unit

The plot summarizing SHAP values for the ICU analysis is

provided in Figure 4.

Aligning with the results for the hospitalization results, for

both variants, age is the most significant feature influencing

one’s possibility of being admitted to the ICU due to COVID-

19 illness. The second most significant feature in both variants

for both hospitalization and ICU as seen in Figure 4 is an

unvaccinated patient status. In all cases, unvaccinated patients

are predicted to be more likely to become admitted to the ICU

(and therefore have a more serious illness). Again, it is seen

that, while specific ordering differs slightly from one feature to

another, the top 15 features are mostly matched for Delta and

Omicron ICU predictions.
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FIGURE 4

SHAP plots for (A) Delta and (B) Omicron features contributing to rates of ICU admittance.

FIGURE 5

Absolute SHAP impact values for (A) Delta and (B) Omicron features contributing to ICU predictions.

Bar plots presenting the absolute impacts of the top 15

features, and the difference from one feature to another, in ICU

predictions, are displayed in Figure 5.

For Delta cases in ICU, age has a mean SHAP value of

1.49, which (similar to hospitalization predictions) is much

greater than the second leading feature, an unvaccinated

status at an average absolute SHAP value of 0.54. Almost

identically to Delta cases predicted to be hospitalized in

Figure 2, after the fourth and fifth top features (complications

of pneumonia and asymptomatic carriers, respectively),

features are relatively indistinguishable, and are similar

or equal in SHAP values. Therefore, age, vaccination

status, diabetes, and pneumonia are once again the most

prominent characteristics of predicted ICU admittance (Delta

cases).

For Omicron ICU cases, the results are very similar to those

seen in the Omicron hospitalization bar plot, with (in decreasing

order) age, unvaccinated status, asymptomatic carriers, diabetes,

and chronic kidney disease ranking as the most impactful

features in model predictions. Age has the highest mean SHAP

value of 1.54, with the unvaccinated averaging at 0.70.

The features of concern (complications of pneumonia, age,

and a medical risk factor classified as immunocompromised) are

once again presented as scatter plots in Figure 6.

The recurring trend that was noted for hospitalization

predictions is displayed in Figure 6. The features of concern
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FIGURE 6

Scatter plots of three features of concern (pneumonia, age, and immunocompromised) for (A) Delta- and (B) Omicron- related ICU admittance

predictions.

for Delta and Omicron are akin in behavior, where those

who are immunocompromised or have complications of

pneumonia are predicted to most likely be admitted to ICU,

whereas patients who do not identify with either of these

characteristics are not influenced by themwhatsoever (not being

immunocompromised does not prevent ICU predictions, as

an example). Again, the age scatter plot shows that younger

populations are not predicted to enter the ICU, and aging

patients are predicted to develop a sufficiently serious illness

to substantiate intensive care. The exception of the extremely

elderly population is once again noted and discussed in

Section 5.

4.3. Death

The plot summarizing SHAP values for the death analysis is

provided in Figure 7.

The trends of the death prediction SHAP plot are aligned

with the results of both hospitalization and ICU. Age is once

again the most significant feature influencing one’s possibility of

dying from COVID-19, followed by being unvaccinated against

the virus. This tendency is (as seen in the other results) the

same in both Delta and Omicron predictions. While the top

15 Delta and Omicron features had very similar overlaps in

the hospitalization and ICU analyses (with the exception of few

different features), the death analysis shows several different

features for the two variants.

The death-related top 15 features’ absolute impacts are

presented in the bar plot Figure 8.

For predictions of death, age has the largest mean SHAP

value of all scenarios, reaching 2.7 for Delta cases and 3.1 for

Omicron cases. These values are extremely high relative to the

other features, with vaccination status (once again the second

highest SHAP value) reaching values of 0.72 (Figure 8A) and

0.44 (Figure 8B).
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FIGURE 7

SHAP plots for (A) Delta and (B) Omicron features contributing to prediction of death from COVID-19.

FIGURE 8

Absolute SHAP impact values for (A) Delta and (B) Omicron features contributing to death predictions.

The features of concern (complications of pneumonia, age,

and a medical risk factor classified as immunocompromised) are

once again presented as scatter plots in Figure 9.

The features of concern for Delta and Omicron are once

again similar in their behavior to the presentation of results

for hospitalization and intensive care. Immunocompromised

patients and patients experiencing complications of pneumonia

are more likely to be predicted as terminal patients. Those

who do not identify with either feature are not influenced by

their predictions. The age scatter plot predicts that younger

populations will not likely die from the variants, and aging

patients are more likely to result in fatality. Unlike the trend

seen in hospitalization and ICU predictions, a steep and sudden

drop in the SHAP value scatter plots for age is not noted in the

extremely high ages.

4.4. Performance metrics

The performance metrics for all illness analyses (both

variants) are provided in Table 3.

The bolded values in the table indicate the model that

provided results with the highest achieved performance metric

in that defined category. Hence, the hospitalization predictions

for Delta cases have the highest achieved AUROC, F1 score, and

recall, whereas ICU predictions and hospitalization predictions
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FIGURE 9

Scatter plots of three features of concern (pneumonia, age, and immunocompromised) for (A) Delta- and (B) Omicron- related death

predictions.

in Omicron cases have the highest accuracy and precision scores,

respectively.

5. Discussion

In all studied scenarios (hospitalization, ICU, and death), the

top 15 features contributing to each prediction are noted with

significant overlap. In most cases, the features in Delta variant

predictions align with those of the Omicron variant predictions.

However, the ordering of these features (and therefore, their

level of impactfulness) differs between variants.

Consistently, Delta predictions had the top features (after

age and unvaccinated status) of diabetes, asymptomatic carriers,

and pneumonia. For the Omicron predictions, the top features

were consistently chronic kidney disease and chronic obstructive

pulmonary disease. This was also sporadically accompanied

by features regarding dementia and diabetes. A difference

in the ordering was also noted in the lower-tier features

(those whose significance ranks in the top 15, but not

very high in ranking). For Delta predictions, these features

were cancer and a socioeconomic status “homeless” for

hospitalization and ICU, and cardiovascular disease and obesity

for death.

These key differences speak to the campaigning of many

public health organizations in early 2022: reports of Omicron

cases being highly transmissible, but not causing severe illness

when compared to the Delta variant (Vaughan, 2021; Vilches

et al., 2021). Hence, while common chronic illnesses debilitate

the Delta population more than the Omicron population

(who are more impacted if they identify with pulmonary

and less common chronic diseases), it can be inferred that

Delta may cause severe impacts on a broader population, and

those with less common but more severe medical conditions

should anticipate more severe illness than the average patient if

contracting the Omicron variant.
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TABLE 3 Performance metrics for XGBoost analysis of Delta and Omicron COVID-19 analyses of hospitalization, ICU admittance, and death.

AUROC F1 Score Accuracy Recall Precision

Delta

Hospitalization 0.81 0.35 0.85 0.77 0.23

ICU 0.77 0.25 0.95 0.60 0.15

Death 0.78 0.27 0.96 0.60 0.17

Omicron

Hospitalization 0.78 0.34 0.94 0.61 0.23

ICU 0.57 0.15 0.99 0.13 0.18

Death 0.70 0.27 0.98 0.42 0.20

Maximum values of each metric are emphasized in boldface.

Despite the significant differences in the variants (from

risk factors to transmissibility), model predictions consistently

report that unvaccinated patients (in comparison with those

who had received vaccinations) are highly susceptible to serious

health repercussions from COVID-19. The model suggests that

an unvaccinated patient status is the second leading reason

for hospitalization, admission to intensive care, and death for

patients of either COVID-19 Delta or Omicron variants. On

average, the absolute SHAP value (suggested overall impact)

difference between the unvaccinated feature and the third most

impactful feature for all models is 0.42. This large gap is

exacerbated when considering that the majority of the top

15 features in all models have mean SHAP values between

0.02 and 0.05, generally. This wide difference articulates the

modeled significance of patients identifying as unvaccinated

against COVID-19.

The results consistently indicate that age plays a significant

factor in a patient’s likelihood of experiencing the worst possible

outcomes from COVID-19. In all cases, the younger the

patient results in the lesser likelihood of becoming hospitalized,

receiving admittance to intensive care, or becoming terminally

ill. Oppositely, older patients are predicted to at a higher

likelihood of deteriorating more substantially (regardless of the

variant) and requiring hospital care. The oldest patients are also

predicted to be more likely to die as a result of the virus, whereas

the younger populations (under the age of 40) are almost never

predicted to have fatalities.

In all age scatter plots for hospitalization and ICU (Figures 3,

6), while increasing age has a steadily increasing SHAP value

(indicating a higher prediction of needing care), there are steep

“drops” in the plots after 90 years of age (and commonly at

or around 100 years of age) where the high value in age is

associated with a large reduction in the SHAP value. This implies

that 90–100-year-old patients are not likely to be hospitalized or

admitted to ICU. This result should not be misinterpreted as a

less severe illness; this trend is not identified for the scatter plots

associated with death predictions (Figure 9). In this graphical

summary, the maximum ages correspond with the largest SHAP

values, and hence it is predicted that these patients are extremely

likely to die as a result of COVID-19; for this reason, the sudden

drop in the hospitalization and ICU age plots is likely a result

of elderly patient fatalities occurring prior to admittance to

hospital or ICU in the dataset. Largely, many severe cases of

COVID-19 in Ontario during 2020 were associated with large

numbers of residents in long-term care facilities passing away

due to rapid spread among patients and personal care attendants

(Liu et al., 2020). “Do-not-resuscitate” orders and the rapid

decline of patients in these facilities are also potential reasons

that create challenges in data in which fewer older patients

have historically been admitted to the hospital or ICU. This

provides an unanticipated result in the model predictions, since

(as reported in the initial months of the pandemic), it is assumed

that older patients frequently experience more serious outcomes

from having COVID-19 (Niu et al., 2020).

The scatter plot distributions, in general, are intended to

illustrate the significance of various comorbidities. While the

SHAP plots indicate various features as less impactful than

others (many havingmarkers overlapping with the 0 SHAP line),

the scatter plots can help better inform the analysis. Several

features that have no influence on the predictions for those

patients not identifying with the parameter might in reality be

extremely significant comorbidities for those with the medical

condition defined. As an example, the model is unlikely to

modify any predictions for patients who do not have pneumonia,

but for patients who do have pneumonia, this condition is likely

to be considered by the model as a leading reason for severe

illness or death, and hence acts as a comorbidity for those

patients.

This further analysis suggests that pneumonia, weakened

immune systems (being immunocompromised), underlying

medical conditions, and cardiovascular disease are all predicted

to be concerning comorbidities for those patients associated

with these features (among others). In numbers, this may

also apply to a smaller group of the population. Therefore,

for the larger population, these attributes are of limited

apparent concern but are fatally consequential for the

smaller population.

Vaccination status is a highly relevant feature in all scenarios.

Important to note is that the COVID-19 vaccines have been

proven to decrease in effective protection over time (Howard,
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2022)1. Therefore, while the model may predict SHAP values

for the vaccinated/unvaccinated trait, a patient’s time-since

vaccination and the total number of doses are suspected to

greatly impact their likelihood of becoming hospitalized, getting

admitted to intensive care, or dying. It is anticipated that on

the specific patient level, those who are recently vaccinated (14

days since inoculation) would be predicted to have a much more

negative SHAP value than those who had been vaccinated for

more than a period of 2 or 3 months (or longer).

From the data, it was calculated that of all recorded Delta

cases, a higher percentage of the population was admitted to

the hospital, ICU, or reported as a death when compared to the

Omicron population. 4.650% of Delta cases were hospitalized,

more than two times the hospitalizations noted for Omicron

cases (at 2.096%). This calculation aligns with publicized reports

that, despite being more transmissible, Omicron is less likely to

cause severe illness in patients, unlike the previous dominant

strain of the virus (Delta) (Vaughan, 2021).

5.1. Analysis of limitations and
performance metrics

In epidemiology, the discussion related to “false negatives”

and “false positives” is often associated with testing and

modeling an infectious disease (Blair et al., 2009). In the context

of this study, a false negative refers to a patient who was not

predicted as hospitalized, admitted to ICU, or dead, but actually

was one of these cases, in reality. Therefore, a false positive

describes the situation wherein a patient is claimed to have

been admitted to the hospital/ICU or died but was actually not

associated with any of these scenarios.

From the perspective of decision-making and using

modeling to advise on emerging medical risk factors that pose

a potential insurgence to health care systems, it is ideal to

minimize both forms of false prediction. However, a higher

cost is associated with false negatives, as allocating resources

for a smaller population that will inevitably exceed the resource

threshold will cause a general overwhelming of the system. Over-

accounting for potential hospital beds is less costly on the system

than under-accounting, and therefore it is advised that models

should have as low a count of false negatives as possible.

In artificial intelligence performance metrics, “recall”

assesses the number of actual positive cases, and how many

of these were properly predicted by the modeling (a “true

positive,” predicted positive as well as actually positive) (Seliya

et al., 2009). For this reason, a higher recall value indicates

1 Hilal, W., Chislett, M. G., Snider, B., McBean, E. A., Yawney, J.,

and Gadsden, S. A. (2022). A Survival Analysis Approach Evaluating

the Likelihood of Testing Positive Post-Vaccination for COVID-19.

[Unpublished].

fewer false negatives and the most important metric in each of

this study’s models to be maximized. A maximized value for

precision indicates fewer false positives, which is valuable in the

authenticity of the model but not as vital for the application of

the model in public health decision-making.

Table 3 provides the values of all performance metrics,

including recall and precision. The highest value for the

recall is 0.77, associated with the Delta variant predictions

of hospitalization. The lowest value for the recall is 0.13,

corresponding to the model for Omicron-related ICU

predictions. Hence, while the results presented by the

Omicron/ICU analysis align with the results in other scenarios,

it should be noted that the inference confidence of this particular

modeling scenario is lower than others. Similarly, from this

recall calculation, it is appropriate to conclude that the model

did not sufficiently capture all Omicron ICU entries, incorrectly

labeling a significant number of the patients who were actually

admitted as patients with non-intensive care.

Despite this discrepancy, the same model (Omicron/ICU)

had the highest accuracy of all models, suggesting that the

model addressed this scenario with the highest ratio of

properly predicted (positive or negative) cases out of all

possible cases. Overall the lowest accuracy of all models is the

Delta/Hospitalization analysis at 0.85, albeit a relatively high

value for accuracy.

The models generally have a higher number of false positives

than false negatives, which is preferable. The lowest value for

precision is 0.16 (although still higher than the lowest recall

value) for Delta/ICU, and the maximum value is 0.23 for

Omicron/Hospitalization. Hence, the difference between the

“most precise” and “least precise” is marginal. This broadly

suggests that all models are similar in incorrectly labeling non-

serious patients as severe cases requiring advanced care.

The AUROC value in this context refers to the ability of the

model to differentiate between Hospitalized/Non-Hospitalized,

ICU/Non-ICU, and Death/Alive. The weakest model in this

ability to discriminate between cases is the Omicron/ICU

analysis with an AUROC of 0.57. This is in alignment

with the aforementioned lowest recall being associated with

Omicron/ICU predictions (it can be assumed that the model

with the most false negatives might compete for the lowest

ability to recognize cases appropriately). Conversely, the highest

AUROC (0.81) is associated with the model that also has the

highest value of recall; the Delta/Hospitalization predictions.

The strength of this particular model suggests that it is highly

effective at allowing for inferences and applications in public

health settings, as resource allocation will generally be aligned

with the potential demand for hospitalized care. As COVID-19

cases arise that are associated with highly implicated features

defined by the modeling in Section 4 (cases of COVID-19 in

persons with diabetes, pneumonia, and chronic illnesses), it is

advisable to allocate more resources and hospital beds to account

for the likely influx of patients requiring care.
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6. Conclusion

An artificial intelligence-based approach to modeling and

characterizing the trends in COVID-19 medical and personal

risk factors comparing the differences between the two

recent COVID-19 variants (Delta and Omicron) is a unique

practice of pandemic research. XGBoost results proved that,

consistently, age is the most impactful feature in predictions

of hospitalization, ICU, and death outcomes from COVID-19.

The older populations are routinely anticipated to develop more

serious illnesses, with younger populations avoiding hospital

care and death.

Patients who are unvaccinated or have diabetes, chronic

kidney disease, complications of pneumonia, or cardiovascular

disease, are shown to most frequently have higher significance

in all scenarios, regardless of the variant. In most cases, the

Delta and Omicron variants are consistent in being similar in

their top 15 population features contributing to severe illness.

This indicates that, although some discrepancies are still present

(including that the Omicron variant is more transmissible),

medical risk factors are similar across the board.

Finally, the Delta/Hospitalization model is the

highest ranking application of AI for AUROC, F1, and

Recall performance metric scores. Omicron/ICU and

Omicron/Hospitalization have the highest accuracy and

precision values, respectively. While many of the performance

metric scores are large values (some reaching close to 0.99),

the key metric, “recall,” was mostly above 0.60 with two

exceptions. Suggested by this result is that the XGBoost model

was successful at minimizing the number of false positives

predicted, which would have less costly implications on a bigger

scale (accounting for more of the people who would require

medical care).

The results of this AI-based study present unique and

significant findings on the intricate differences between hospital

care and death factors among the Delta and Omicron variants.

As the endemic phase of COVID-19 is embraced by an

increasing number of jurisdictions, anticipating the need for

future hospital beds will dictate the need for accurate and reliable

modeling of the Ontario population. AI’s role in decision-

making in public health is an important and unparalleled aspect

of designing a health care system that caters to the active and

ever-evolving SARS-CoV-2 virus. As the virus continues to

impact societies worldwide, comparisons and characterizations

of variants of concern will steer the direction of health care, and

advance disciplines in artificial intelligence.
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Nomenclature

Variable/Abbreviation Definition

AUROC Area under the receiver operating characteristic

ICES The institute formerly known as the Institute for Clinical Evaluative Sciences, Ontario

ICU Intensive Care Unit (level of hospitalization characterized as “critical care” for severe illness)

VIF Variance inflation factor

VOC COVID-19 variant of concern

ŷk The kth “predicted” value for AI modeling

yk The kth “real” value for AI modeling
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