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COVID-19 diagnosis using deep
learning neural networks
applied to CT images

Andronicus A. Akinyelu* and Pieter Blignaut

Department of Computer Science and Informatics, University of the Free State, Bloemfontein,

South Africa

COVID-19, a deadly and highly contagious virus, caused the deaths of millions

of individuals around the world. Early detection of the virus can reduce the

virus transmission and fatality rate. Many deep learning (DL) based COVID-19

detection methods have been proposed, but most are trained on either

small, incomplete, noisy, or imbalanced datasets. Many are also trained on

a small number of COVID-19 samples. This study tackles these concerns by

introducing DL-based solutions for COVID-19 diagnosis using computerized

tomography (CT) images and 12 cutting-edge DL pre-trained models with

acceptable Top-1 accuracy. All the models are trained on 9,000 COVID-19

samples and 5,000 normal images, which is higher than the COVID-19

images used in most studies. In addition, while most of the research used

X-ray images for training, this study used CT images. CT scans capture

blood arteries, bones, and soft tissues more e�ectively than X-Ray. The

proposed techniques were evaluated, and the results show that NASNetLarge

produced the best classification accuracy, followed by InceptionResNetV2

and DenseNet169. The three models achieved an accuracy of 99.86, 99.79,

and 99.71%, respectively. Moreover, DenseNet121 and VGG16 achieved the

best sensitivity, while InceptionV3 and InceptionResNetV2 achieved the best

specificity. DenseNet121 and VGG16 attained a sensitivity of 99.94%, while

InceptionV3 and InceptionResNetV2 achieved a specificity of 100%. The

models are compared to those designed in three existing studies, and they

produce better results. The results show that deep neural networks have the

potential for computer-assisted COVID-19 diagnosis. We hope this study will

be valuable in improving the decisions and accuracy of medical practitioners

when diagnosing COVID-19. This study will assist future researchers in

minimizing the repetition of analysis and identifying the ideal network for

their tasks.
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Introduction

Humans have been victims of various pandemics throughout

history, with a few proving disastrous. The globe is dealing

with another deadly and highly contagious virus—COVID-19.

This virus was reported in Wuhan, China, on December 31,

2019 (Zhu et al., 2020), and on March 11, 2020, the World

Health Organization (WHO) declared it a pandemic. According

to Johns Hopkins University database, the COVID-19 pandemic

has infected over 543 million people and killed over 6.3 million

since June 2022. Moreover, more than 185 countries have

reported cases of COVID-19. On November 24, 2021, a new

and highly contagious strain of the COVID-19 virus, called

the Corona Omicron variant, was identified. The WHO noted

that this strain spreads faster than any other COVID variant.

There is an urgent need for techniques that can effectively tackle

COVID-19 and reduce its spread significantly.

Many techniques have been proposed in the literature

for COVID-19 diagnosis. Ardakani et al. (2020) proposed a

DL-based approach for COVID-19 detection. They trained

ten Convolutional Neural Network (CNN)-based pre-trained

models on 1020 Computed Tomography (CT) slices from 108

patients. The results showed that ResNet101 and Xception

produced the best results, achieving an accuracy of 99.51 and

99.02%, respectively. Shi et al. (2020) proposed a machine

learning framework for COVID-19 classification. They used

decision trees to classify subjects into two groups based on

the size of infected lesions. They also used Random Forest to

classify each group as COVID-19 or pneumonia patients. They

evaluated the technique on chest CT images, and it produced

an F1-Score of 0.91. Song et al. (2021) introduced a DL-based

system for CT diagnosis. They evaluated the technique on 88

COVID-19 infected CT images and 86 CT images from healthy

individuals. The method achieved an Area Under Curve (AUC)

of 0.99. According to the authors, the technique can extract main

lesion features, particularly the ground-glass opacity, which is

helpful for doctors.

Ozturk et al. (2020) developed a DL technique for early

detection of COVID-19 cases using chest X-ray images and a

DarkNet model. The method was designed to diagnose binary

and multi-class classification. The technique was evaluated

on 1,125 chest X-ray images consisting of 125 COVID-19

images, 500 no-findings images, and 500 pneumonia images.

The results show that the method produced a classification

accuracy of 98.08% for binary classes and 87.02% for multi-class

classification. Loey et al. (2020) presented a hybrid technique for

coronavirus diagnosis in chest X-ray images using a Generative

Adversarial Network (GAN) and deep transfer learning. They

used a dataset containing 69 COVID-19 images, 79 normal

images, and 158 pneumonia images. Moreover, they used GAN

to increase the size of the dataset to 8,100 images. Different

experiments were performed on threeDLmodels, and the results

show that Googlenet produced an accuracy of 80.6% for four-

class classification, AlexNet produced an accuracy of 85.2% for

three-class classification, and Googlenet achieved an accuracy of

100% for binary classification.

Li et al. (2020) developed a DL model for COVID-19

diagnosis using CT images. They trained the model on 400

COVID-19 CT images, 1,396 community-acquired pneumonia

images, and 1,173 non-pneumonia CT images. The results

showed that ResNet50 produced a sensitivity and specificity of

90 and 96%, respectively. Horry et al. (2020) proposed a semi-

automated DL technique for COVID-19 detection on X-ray

images. They developed a new approach for reducing unwanted

noise from X-ray images based on the GrabCut algorithm

(Rother et al., 2004). They evaluated their model on 400 X-

ray images (100 COVID-19 images) and five DL pre-trained

models, namely VGG16, VGG19, InceptionV3, Xception, and

Resnet50. The results showed that VGG19 achieved the best

precision of 83%. Albahli and Albattah (2020) developed DL-

based COVID-19 classification techniques using three pre-

trained models, namely Inception-ResNetV2, InceptionNet-

V3, and NASNetLarge. They fine-tuned the models on X-ray

images, and the results show that the InceptionNet-V3 model

produced the best classification accuracy of 98.63% (with data

augmentation) and 99.02% (without data augmentation).

This study presents deep learning (DL) based solutions for

COVID-19 diagnosis using CT images and 12 cutting-edge DL

pre-trained models with acceptable Top-1 accuracy. This study

is different from other studies in the following ways:

1. This study presents the results and performance analyses

of 12 pre-trained, state-of-the-art CNN-based models for

COVID-19 diagnosis using CT images. Twelve distinct CNN-

based pre-trained models were trained from end to end

using the original images in an open-source COVID-19

dataset, and the same 12 models were trained using the

transformed images of the COVID-19 dataset. This study

presents the results and performance analysis of the original

and transformed datasets.

2. As shown in Table 1, most of the previously published studies

examined one to five pre-trained CNN models, except for

(Vijayaakshmi, 2019; Ardakani et al., 2020), which evaluated

eight and ten pre-trained models, respectively. This study

analyses the performance of twelve CNNpre-trained network

architectures, which is more than the number of architectures

examined in previous studies. In addition, most researchers

train their models using X-ray images, while this study used

CT images. CT images capture blood vessels, bones, and soft

tissues more effectively than X-Ray images (Vijayaakshmi,

2019).

3. As indicated in Table 1, the dataset used in most studies

contains a small number of COVID-19 images (between

60 and 600 COVID-19 images). The dataset used in this

study has 9,000 COVID-19 images and 5,000 normal images
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TABLE 1 Dataset information from previous studies.

Name Image type Dataset information # of patients # of pre-trained models

Ardakani et al. (2020) CT scan 510 COVID-19, 510 Non-COVID-19 108 10

Horry et al. (2020) X-Ray 100 COVID-19, 200 Normal, 100 Pneumonia 5

He et al. (2020) CT scan 349 COVID, 397 Non-COVID 216 8

Shi et al. (2020) CT images – 2,585 –

Song et al. (2021) CT images 88 COVID-19, 86 Non-COVID 275 4

Ozturk et al. (2020) X-ray Images 125 COVID-19, 500 no-findings images, and 500 pneumonia – 1

Loey et al. (2020) X-ray images 69 COVID-19, 79 normal, 158 pneumonia – 3

Li et al. (2020) CT images 400 COVID-19, 1,396 community-acquired pneumonia, and

1,173 non-pneumonia.

3,322 1

Albahli and Albattah (2020) X-Ray Images 850 COVID-19, 915 normal images, and 500 Pneumonia. – 3

This study CT Images 9,000 COVID-19, 5,000 non-COVID-19 1,537 12

from 1,537 patients. The dataset was used to train the

12 models examined in this study. Experimental results

show that most of the models correctly classified the

COVID-19 and non-COVID-19 images in the dataset with

high confidence. Moreover, the models are compared with

those in three existing studies, and they outperformed the

compared techniques.

Methods

DL is an area of machine learning that focuses on techniques

inspired by the brain neurons (Rong et al., 2019). DL is

rapidly gaining prominence as a tool for image classification

and object detection. The following state-of-the-art DL

network architectures are considered in this study: VGG16,

VGG19, Xception, ResNet50, ResNet101V2, DenseNet169,

InceptionV3, NASNetLarge, DenseNet201, MobileNetV2,

InceptionResNetV2, and DenseNet121. This section presents an

overview of the 12 architectures.

Overview of pre-trained models

VGG16 is a CNN architecture developed by the Visual

Geometry Group at the University of Oxford. The network was

instrumental in winning the 2014 ImageNet competition. It is

widely regarded as one of the finest vision model architectures

to date (Faisal et al., 2021). VGG16 comprises of thirteen

convolutional layers of 3× 3 filters with a stride of 1 (Simonyan

and Zisserman, 2014). It uses same padding and max pool

layer of a 2 × 2 filter with a stride of 2. It maintains this

order of convolution and max pool layers throughout the

architecture. Finally, it has two fully-connected layers and an

output layer. The network was trained on 1.2 million images

with 1,000 classes.

VGG19 is a deeper network compared to VGG16. It consists

of 16 convolutional layers and three fully-connected layers. It

was trained on 1.2 million images with 1,000 classes (Simonyan

and Zisserman, 2014). MobileNet-V2 is a low-weight pre-

trained model comprised of four convolution layers, sixteen

inverted residual and linear bottleneck blocks, and a fully-

connected layer (Sandler et al., 2018). In total, the network

consists of 52 convolutional layers and one fully-connected

layer. The network’s primary design is based on inverted residual

blocks. ResNet-50 (He et al., 2016a) and ResNet-101V2 (He

et al., 2016b) are two ResNet variations that were trained

on the ImageNet dataset. ResNet50 is a 50-layer network (48

Convolution layers, 1 MaxPool, and 1 Average Pool layer).

ResNet-50 additionally includes a variety of residual blocks.

ResNet101 is made up of 101 layers and 33 residual blocks.

Xception is a CNN with 71 layers of depth developed by Chollet

(2017). It begins with two convolution layers and progresses

through depth-separable convolution layers, four convolution

layers, and a fully-connected layer. The depth-wise separable

convolution layers are the most important component of the

network’s architecture.

The Densenet-169 (Huang et al., 2017), DenseNet201

(Huang et al., 2017) and DenseNet121 (Huang et al., 2017)

models are all versions of the DenseNet model, one of the most

recent breakthroughs in neural network-based visual object

recognition. DenseNet is relatively similar to ResNet with a few

key distinctions. ResNet employs an additive method (+) for

combining the previous layer’s (identity) output with the future

layer, whereas DenseNet concatenates (.) the previous layer’s

output with the future layer. Due to the longer path between

the input and output layers, information vanishes before it

reaches its destination. DenseNet was developed to address

the vanishing gradient effect in high-level neural networks.

DenseNet is comprises of one convolutional layer, six transition

layers, ten dense block layers, and one classification layer. Each

dense block comprises a variable number of convolutions of

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2022.919672
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Akinyelu and Blignaut 10.3389/frai.2022.919672

TABLE 2 Information on the pre-trained models used in this study.

Model Top-1 accuracyParametersDepth Input layer

size

VGG16 0.71 138,357,544 23 224× 224

VGG19 0.71 143,667,240 26 224× 224

Xception 0.79 22,910,480 126 224× 224

ResNet50 0.75 25,636,712 50 224× 224

ResNet101V2 0.76 25,613,800 101 224× 224

DenseNet169 0.76 14,307,880 169 224× 224

InceptionV3 0.78 23,851,784 159 224× 224

NASNetLarge 0.83 88,949,818 – 224× 224

DenseNet201 0.77 20,242,984 201 224× 224

MobileNetV2 0.71 3,538,984 88 224× 224

InceptionResNetV2 0.80 55,873,736 572 224× 224

DenseNet121 0.75 8,062,504 121 224× 224

varying sizes. The primary distinction between Densenet-121,

DenseNet169, and DenseNet201 is the model’s depth, size, and

accuracy. Densenet-121, DenseNet169, and DenseNet201 have a

total of 121, 169 and, 201 layers, respectively. They are each 33,

57, and 80MB in size. They each achieved a Top-1 accuracy of

0.750, 0.762, and 0.773, respectively.

InceptionV3 (Szegedy et al., 2016) is a well-known

CNN architecture from the inception family with 48 layers.

It employs label smoothing and an auxiliary classifier

for regularization, and factorized 7 × 7 convolutions to

minimize the number of parameters without compromising

the network’s efficiency. Additionally, batch normalization

iactsas a regularizer between the auxiliary classifier and the

fully-connected layer. InceptionResNetV2 (Szegedy et al.,

2017) is a 164-layer CNN-based model pre-trained on over

a million images from the ImageNet collection. The network

leverages the advantages of the inception network while also

incorporating residual connections. It uses residual connections

to replace the filter concatenation stage in the Inception

architecture. The results of (Szegedy et al., 2017) demonstrate

that residual connections considerably improve inception

network training.

NASNetLarge (Zoph et al., 2018) is a CNN architecture that

obtained a top-1 82.7% accuracy on the imageNet dataset. It

uses a reinforcement learning search method to find the best

architecture configurations. It is made up of both reduced and

normal cells. The normal cells are convolutional cells that return

a two-dimensional feature map (Zoph et al., 2018). Reduction

cells are convolution cells that return a feature map with a

two-fold reduction in feature map and breadth (Zoph et al.,

2018).

All the models used in this study were pre-trained on the

ImageNet dataset (Szegedy et al., 2015). More information on

the pre-trained models is provided in Table 2.

Implementation details

The CNN pre-trained models examined in this study were

built using Keras, an open-source neural network library. The

entire training procedure is divided into two phases: (i) hyper-

parameter search phase and (ii) evaluation. Different models are

assessed during the hyper-parameter search stage, and themodel

with the optimal hyper-parameter configuration is chosen. The

selected model is passed to the evaluation phase for training,

validation, and testing.

A Keras tuner function is used to find the best hyper-

parameter configuration during the hyper-parameter search

stage. There are four types of tuners in the Keras tuner function:

hyperband, Sklearn, Bayesian Optimization, and random search

tuners. The random search tuner is used in this study. The tuner

requires amodel-building function that allows the user to specify

network designs and different ranges of hyper-parameter values.

Various models are constructed iteratively during the search by

invoking the model-building function. The function populates

the search space with values from the user-specified range of

hyper-parameters. The tuner works its way through the search

space while recording the results for each network configuration.

Following the search, the best model can be obtained and fine-

tuned for n epochs, where n is a user-defined number. All the

models in this study were subjected to hyper-parameter tuning.

All the evaluated models are trained for n epochs during the

hyper-parameter search, with n = 2 in this study. We retrieved

the best model (which had previously been trained for two

epochs) and trained it for an additional six epochs after the

search. As a result, the total number of training epochs for the

entire model is eight.

Transfer learning was utilized to optimize the pre-trained

models to the dataset. The output of the pre-trained models is

passed through one average pooling layer, one dropout layer,

and two fully-connected layers. Pooling layers are used to limit

the number of parameters that must be learned and to enhance

computation time. The dropout layer is used to avoid overfitting.

The rate of dropout is set to 0.5. Each pre-trained model has

a unique set of parameters. Various tests were conducted to

ascertain the best number of hyper-parameters for each pre-

trained model. For each model, the last fully connected layer has

two neurons, one for each output (COVID-19 and non-COVID-

19). Tables 3, 4 summarizes the hyper-parameters utilized in

each model. During the studies, it was revealed that freezing all

pre-trained layers prior to fine-tuning resulted in worse results

than fine-tuning without freezing the pre-trained layers. As a

result, all models in this study were fine-tuned without freezing

their pre-trained layers. Figure 1 shows the network architecture

that was employed in this study.

Before training, the images in the dataset were resized to 224

× 224. Moreover, each image was normalized to the range [0,

1]. The images were normalized by dividing their pixel value by

255, the maximum pixel value. Finally, the images were used
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to train the model. Eighty percent of the dataset was used for

training and twenty percent for testing. All the experiments were

carried out on multiple nodes of a cluster computer. The cluster

TABLE 3 Training parameters for the models without data

augmentation.

Model Learning rate Pooling layer Fully-connected

layer

Xception 0.0001 3 80

VGG19 0.0001 5 96

ResNet50 0.0001 5 80

VGG16 0.0001 4 80

ResNet101V2 0.0001 5 112

DenseNet169 0.0001 5 112

InceptionV3 0.0001 5 112

NASNetLarge 0.0001 4 128

DenseNet201 0.0001 5 128

MobileNetV2 0.0001 4 96

InceptionResNetV2 0.0001 5 112

DenseNet121 0.0001 4 112

computer’s specification is as follows: 2 x Intel Xeon E5-2697A

v4 processors, 512 GB DDR4 memory running at 2.4 GHz.

Each node is equipped with 32 cores and 64 threads. Each job

TABLE 4 Training parameters for the models with data augmentation.

Model Learning rate Pooling layer Fully connected

layer

Xception 0.0001 3 128

VGG19 0.0001 4 96

ResNet50 0.0001 3 96

VGG16 0.0001 5 96

ResNet101V2 0.001 3 112

DenseNet169 0.0001 4 80

InceptionV3 0.001 4 96

NASNetLarge 0.0001 4 80

DenseNet201 0.0001 5 112

MobileNetV2 0.0001 3 80

InceptionResNetV2 0.0001 3 96

DenseNet121 0.0001 3 112

FIGURE 1

An overview of the network architecture that was used in this study. All the pre-trained networks are passed through one pooling layer, one

fully-connected layer and one output layer.
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submitted to the cluster used a maximum of three nodes, 20 GB

of memory, and twenty cores.

Performance evaluation

In this study, six performance measures were adopted,

namely: accuracy, precision, sensitivity, specificity, F1 score,

and duration.

Accuracy =
TN + TP

TN + FN + TP + FP

Where TN, TP, FN, and FP refer to true negative, true

positive, false negative, and false positive.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F1-Score =
2 × Precision∗Sensitivity

Precision + Sensitivity

Duration= Ttr + Tval + Ttest , where Ttr , Tval, Ttest refers

to the total amount of time spent by each model during training,

validation and testing, respectively.

Datasets

The dataset used in this study consists of 194,922 CT

images from an international cohort of 3,745 patients aged

0–93 years with findings that are clinically confirmed. The

global cohort consists of patient records gathered from different

sources worldwide, including the China National Center for

Bio-information (Zhang et al., 2020), National Institutes of

Health Intramural Targeted Anti-COVID-19 (An et al., 2020),

Negin Radiology Medical Center (Rahimzadeh et al., 2021),

Union Hospital and Liyuan Hospital of Huazhong University

of Science and Technology (Ning et al., 2020), COVID-19 CT

Lung and Infection Segmentation initiative (Ma et al., 2020)

and Radiopaedia collection (Radiopaedia, 2021). The dataset

was obtained from patients in the following countries: China,

Iran, Italy, Turkey, Ukraine, Belgium, Australia, Afghanistan,

Scotland, Lebanon, England, Algeria, Peru, and Azerbaijan. The

dataset was carefully selected and processed by Gunraj et al.

(2021). Moreover, the decision-making behavior of the dataset

was reviewed by two certified radiologists with 10 and 30 years

of experience (Gunraj et al., 2021). Validation was conducted

to guarantee that decisions generated by models trained on the

dataset are based on relevant visual indications in CT scans.

Using correct, clinically relevant factors, the results shows that

the decision-making behavior of the dataset is consistent with

the interpretation of the radiologists (Gunraj et al., 2021).

In this study, we used a subset of the dataset. The subset

consists of 14,000 CT images from 1,537 patients (9,000 COVID-

19 CT images and 5,000 normal CT images). Kindly note that

the CT images used in this study refers to CT slices of CT

scans. The CT images (slices) are used as input to the pre-

trained models. An example of normal CT images and COVID-

19 CT images are shown in the first and second rows of

Figure 2, respectively. During the experiment, the dataset was

pre-processed to reduce the noise and to allow the DL models

to focus exclusively on learning the critical features of the CT

images. The pre-processing was performed using the OpenCV

Grabcut algorithm (Rother et al., 2004). The GrabCut algorithm

is an image segmentation technique that is based on graph

cuts. The approach uses a Gaussian mixture model to predict

the color distribution of the target object and the background.

After processing the images with the GrabCut algorithm, we

compared the quality of the processed images to the quality of

the original images by building different models with both sets

of images. The results showed that the original images produced

better classification accuracy than the images processed with

GrabCut algorithm. Therefore, for all our experiments, we used

FIGURE 2

Samples of normal CT images (row 1) and COVID-19 CT images

(row 2) used for evaluation (Gunraj et al., 2021).

TABLE 5 Data augmentation values.

Rotation Zoom Width shift Height shift Shear

range range range range range

0.2 0.15 0.2 0.2 0.15
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only the original images for training. Prior to training, the

COVID-19 images in the dataset were labeled 1, and all other

images were labeled 0. The images and their respective labels are

used to build the COVID-19 models.

Table 1 provides the information of some datasets used in

previous studies. As shown in the table, most of the datasets

are small. In a bid to increase the size of a dataset, a researcher

may want to combine different types of medical images [e.g.,

CT scans, Magnetic Resonance Image (MRI), X-Ray images],

and use the combined dataset to build a model. This is not a

common practice, as it can affect the CT system characteristics

in the training pipeline. To address this, distinct models must be

trained for each type of image. For example, the authors in Zopes

et al. (2021) used MRI and CT scans to build a CNN model for

brain scans. However, they did not use the MRI and CT scan to

train the samemodel. They designed a common architecture and

trained separate CNN models for each modality. In this study,

data augmentation was used to increase the size of the training

dataset. The results reported by Ramnarine (2021) indicate that

image transformations can improve the performance of CNN

models. Ramnarine (2021) applied four image transformations

to a lungs cancer dataset, and the results showed that the image

transformations considerably reduced the test loss of CNN

model to half of the original test loss in some cases. Similarly,

data augmentation was also applied to our COVID-19 dataset

to improve the generalizability of the CNN models designed

in this study. The following geometric transforms were applied

to the dataset: random rotations, zooms, shifts, shearing, and

horizontal flips. The specific values for the data augmentation

are shown in Table 5.

Discussion

In this study, 12 popular CNNs are used to examine the

role of artificial intelligence in diagnosing COVID-19 infections.

Different groups of experiments are performed. In the first

group, 12 CNN pre-trained models were fine-tuned from end

to end without data augmentation. The original images in

the COVID-19 dataset were used to fine-tune the 12 models.

TABLE 6 Results without data augmentation.

Model Name Accuracy Precision Sensitivity Specificity F1 score Duration (hours) Confusion matrix

C N

Resnet50 99.93 99.89 100 99.81 1.00 4.55 1,772 2 C

0 1,026 N

ResNet101V2 99.96 100 99.94 100 1.00 6.45 1,771 0 C

1 1,028 N

VGG16 99.64 100 99.44 100 1.00 9.35 1,762 0 C

10 1,028 N

VGG19 99.75 99.72 99.89 99.51 1.00 20.12 1,770 5 C

2 1,023 N

Xception 99.93 100 99.89 100 1.00 6.32 1,770 0 C

2 1,028 N

DenseNet169 93.14 90.31 99.89 81.52 0.95 8.78 1,770 190 C

2 838 N

InceptionV3 98.43 100 97.52 100 1.00 3.68 1,728 0 C

44 1,028 N

DenseNet201 99.607 99.494 99.887 99.12 1.00 14.6 1,770 9 C

2 1,019 N

MobileNetV2 97.929 96.831 100 94.36 0.98 2.73 1,772 58 C

0 970 N

InceptionResNetV2 99.500 99.493 99.718 99.12 1.00 5.98 1,767 9 C

5 1,019 N

NASNetLarge 97.500 96.200 100 93.19 0.98 23.07 1,772 70 C

0 958 N

DenseNet121 99.893 100 99.831 100 1.00 6.07 1,769 0 C

3 1,028 N

C, COVID-19 samples; N, Normal samples.
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FIGURE 3

Classification accuracy and sensitivity of models without data augmentation.

In the second group of experiments, the 12 models were

fine-tuned with data augmentation. The same 12 pre-trained

models were fine-tuned using the transformed images of the

COVID-19 dataset. After finetuning, the trained models were

evaluated on the test dataset, and their result are presented in

this section.

Performance of pre-trained CNN
architecture without data augmentation

Table 6 and Figure 3 shows the performance of the

DL models without data augmentation. The numbers in

bold represent the total number of true positive and true

negative values. As can be seen, all the evaluated models

achieved satisfactory performance indicating their effectiveness

in diagnosing COVID-19 cases in CT images. In terms of

classification accuracy, ResNet101V2, ResNet50, and Xception

produced the best performance achieving an accuracy of 99.96,

99.93, and 99.93%, respectively. The other models achieved an

accuracy of over 99% except for InceptionV3, MobileNetV2,

and NASNetLarge, and DenseNet169. DenseNet169 produced

the lowest classification accuracy of 93.14%. Moreover, all the

models produced very good specificity, except for DenseNet169,

NASNetLarge, and MobileNetV2. The three models produced

a specificity of 81.52, 93.19, and 94.36%, respectively. This

shows that most of the pre-trained models correctly identified

over 99% of non-COVID-19 images. This is crucial, as it

would not be desirable to diagnose healthy individuals as

diseased.

Table 6 also shows the sensitivity achieved by each

model. The results shows that ResNet50, MobileNetV2, and

NASNetLarge diagnosed COVID-19 with the highest sensitivity.

They all achieved a sensitivity of 100%. In the medical domain,

developing a model with very high sensitivity is important. The

high sensitivity of ResNet50, MobileNetV2, and NASNetLarge

makes them a better fit for COVID-19 classification. It shows

that the three models correctly identified most of the COVID-

19 images. Their complex network structures and designs

may be responsible for their improved performance. The

design of ResNet50 is based on an ensemble of residual nets.

The design of MobileNetV2 is based on inverted residual

block and lightweight depth-wise convolutions. NASNetLarge

uses a reinforcement learning search method to optimize

architecture configurations. The residual connections, depth-

wise convolutions, and reinforcement search is likely responsible

for enhancing the training and optimization processes of the

three models, resulting in a more reliable model.

Overall, the 12 pre-trained models achieved an accuracy,

precision, sensitivity, and specificity of over 99%, except for

DenseNet169, InceptionV3, MobileNetV2, and NASNetLarge.

DenseNet169 produced the poorest accuracy, precision, and

specificity, while InceptionV3 produced the poorest sensitivity.

ResNet50, ResNet101V2, DenseNet121, and Xception produced

the best overall result considering the models trained without

data augmentation.
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TABLE 7 Results after data augmentation.

Model name Accuracy Precision Sensitivity Specificity F1 score Duration (hours) Confusion matrix

C N

Resnet50 98.57 97.90 99.89 96.30 0.99 8.68 1,770 38 C

2 990 N

ResNet101V2 94.43 99.75 91.42 99.61 0.95 7.23 1,620 4 C

152 1,024 N

VGG16 98.93 98.39 99.94 97.18 0.99 35.27 1,771 29 C

1 999 N

VGG19 99.07 98.99 99.55 98.25 0.99 10.83 1,764 18 C

8 1,010 N

Xception 99.68 99.72 99.77 99.51 1.00 6.40 1,768 5 C

4 1,023 N

DenseNet169 99.71 99.94 99.61 99.90 1.00 11.57 1,765 1 C

7 1,027 N

InceptionV3 99.54 100 99.27 100 1.00 3.45 1,759 0 C

13 1,028 N

DenseNet201 97.50 96.30 99.89 93.39 0.98 23.35 1,770 68 C

2 960 N

MobileNetV2 94.75 92.47 99.83 85.99 0.96 2.85 1,769 144 C

3 884 N

InceptionResNetV2 99.79 100 99.66 100 1.00 6.75 1,766 0 C

6 1,028 N

NASNetLarge 99.86 99.94 99.83 99.90 1.00 20.93 1,769 1 C

3 1,027 N

DenseNet121 99.36 99.05 99.94 98.35 0.99 5.78 1,771 17 C

1 1,011 N

C, COVID-19 samples; N, Normal samples.

FIGURE 4

Classification accuracy and sensitivity of models with data augmentation.
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Performance of pre-trained CNN
architecture with data augmentation

Data augmentation was applied to the CNN inputs to

increase their generalizability. Table 7 and Figure 4 shows the

result of the models after the application of data augmentation.

The numbers in bold represent the total number of true positive

and true negative values. In terms of accuracy, NASNetLarge

produced the best performance, followed by InceptionResNetV2

and DenseNet169. The three models achieved an accuracy of

99.86, 99.786, and 99.71%, respectively. In terms of sensitivity,

DenseNet121 and VGG16 both achieved the best result, with

both achieving a sensitivity of 99.944%. This shows that the

two models correctly classified most of the COVID-19 images

in the dataset with 99% confidence. The confidence score of a

CNN model is very important, because the higher the score,

the more confident the CNN model is that the prediction will

satisfy the user. In most cases, we want our model to make the

most accurate predictions of COVID-19 samples. A model that

diagnoses a patient as COVID-19 negative when the patient is

infected with the virus will be far more disastrous.

DenseNet201 and ResNet50 also produced very good

sensitivity. Overall, as can be observed in Table 7 and Figure 5,

the sensitivity of most of the models increased after data

augmentation was applied. This shows the impact of image

transformation in reducing overfitting and enhancing the

model’s ability to generalize or adapt to new, previously

unknown data.

FIGURE 5

Comparison between models with data augmentation and models without data augmentation.

FIGURE 6

Localization maps for ResNet101V2, DenseNet169, NASNetLarge, VGG16 (without data augmentation).
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FIGURE 7

Localization maps for ResNet101V2, DenseNet169, NASNetLarge, VGG16 (with data augmentation).

TABLE 8 Comparison with other techniques.

Technique VGG16 VGG19 ResNet50 InceptionV3 Xception MobileNetV2

Acc Sen Spe Acc Sen Spe Acc Sen Spe Acc Sen Acc Sen Spe Acc Sen Spe

Horry et al. (2020) – 80 – – 80 – – 67 – – 65 – 57 – – – –

Song et al. (2021) 84 89 80 – – – 86 93 91 – – – – – – – –

Ardakani et al.

(2020)

83.33 80.39 86.27 85.29 92.16 78.43 94.12 90.20 100 – – 99.02 98.04 100 92.16 97.06 87.25

Ours 99.643 99.436 100 99.750 99.887 99.51 99.929 100 99.81 98.429 97.517 99.929 99.887 100 97.929 100 94.36

Acc, Accuracy; Sen, Sensitivity; Spe, Specificity.

FIGURE 8

DenseNet121 without data augmentation (left image) and with data augmentation (right image).
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Confusion matrix, network depth,
parameter size, and time

Tables 6, 7 shows the confusion matrix for each model.

The true positive and true negative values are highlighted in

bold, while the false positive and false negative values are not

highlighted. As can be seen for all the models, the number of

correct predictions (TP and TN) is very high, while the number

of incorrect predictions (FP and FN) is very low. This shows that

most of the models predicted over 99% of the classes correctly,

confirming their effectiveness in distinguishing COVID-19

CT scans from non-COVID-19 CT scans. Table 2 shows the

parameter size and network depth of each architecture. The

results shows that parameter size and network depth play a role

in the performance of CNN models. As shown, even though

MobileNetV2, DenseNet169, and Xception have the fewest

parameters (3,538,984, 14,307,880, and 22,910,480 million,

respectively), the three network architectures achieved one of

the highest sensitivity values. Additionally, as demonstrated by

the results, the depth of a network has a substantial effect on

the effectiveness of DL networks in classifying COVID-19 cases.

DenseNet169 and Xception have network depths of 169 and 126,

respectively, and they achieved one of the best sensitivities. This

demonstrates that deep networks outperform shallow network

architectures in terms of classification performance.

The time required to train, validate, and test each model

is summarized in Tables 6, 7. MobileNetV2 consumed the least

time, followed by InceptionV3 and ResNet50. It is worth noting

FIGURE 9

DenseNet169 without data augmentation (left image) and with data augmentation (right image).

FIGURE 10

DenseNet201 without data augmentation (left image) and with data augmentation (right image).
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that MobileNetV2 consumed the least amount of time while still

outperforming eight of the 12 models in terms of sensitivity.

MobileNetV2 has a small number of parameters and a shallow

depth, which makes it faster than the other models examined in

this study.

Model interpretation

Although, DL algorithms has produced very good results

in computer vision tasks, one of the biggest challenges of DL

is model interpretability, which is an important component in

model understanding. Typically, DL models are treated as black

box models, because we do not know how the network arrived

at its final output, neither do we know the neurons that are

activated during prediction. To handle this problem, Selvaraju

et al. (2017) designed the Gradient-weighted Class Activation

Mapping (Grad-CAM). The Grad-CAM uses the gradients of

any target concept that flows to the final convolutional layer

to produce localization maps (Selvaraju et al., 2017). The maps

highlight the important regions and patterns in the image that

were activated during the prediction.

In this study, Grad-CAM is used to visualize the patterns

that were activated in the convolution layers of the models

during the COVID-19 prediction. Figures 6, 7 shows the

activations of four models, namely: VGG16, ResNet101V2,

FIGURE 11

InceptionResNetV2 without data augmentation (left image) and with data augmentation (right image).

FIGURE 12

InceptionV3 without data augmentation (left image) and with data augmentation (right image).
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DenseNet169, and NASNetLarge. The four models are selected

because they produced very good results in this study. Figure 6

shows the localization maps of the models that were not

augmented, while Figure 7 shows the localization maps of

the models that were augmented. The localization map is

shown for both COVID-19 and non-COVID-19 images. As

shown in Figure 6, DenseNet169 and NASNetLarge activated

around similar regions of the COVID-19 and non-COVID-19

images. Also, Figure 7 shows that DenseNet169, NASNetLarge,

and ResNet101V2 activated around similar regions. This

activation behavior shows that the three models learned

similar patterns that can be useful for diagnosing COVID-

19 disease.

Comparison with other techniques

The findings of this study are compared to those of three

other studies: Ardakani et al. (2020), Horry et al. (2020), and

Song et al. (2021). Song et al. (2021) introduced a DL-based

system for CT diagnosis. They fine-tuned VGG16 and ResNet50

on 88 COVID-19 infected CT images and 86 non-CT images.

ResNet50 produced the best accuracy of 93%. Ardakani et al.

(2020) presented a performance analysis of 10 DL model, and

the best performing model achieved a specificity, sensitivity

and accuracy of 99.51, 100, and 99.02%, respectively. Horry

et al. (2020) proposed a semi-automated DL technique for

COVID-19 detection on X-Ray images. They evaluated their

FIGURE 13

MobileNetV2 without data augmentation (left image) and with data augmentation (right image).

FIGURE 14

NASNetLarge without data augmentation (left image) and with data augmentation (right image).
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FIGURE 15

ResNet50 without data augmentation (left image) and with data augmentation (right image).

FIGURE 16

ResNet101V2 without data augmentation (left image) and with data augmentation (right image).

approach on 400 X-ray images (100 COVID-19 images), and

five DL pre-trained models. The results showed that VGG19

achieved the best precision of 83%. As can be seen in Table 8,

the fine-tuned models presented in this study outperformed

the techniques proposed in the three studies. They produced

better accuracy, sensitivity, and specificity than the compared

techniques. The improved performance is most likely due to

the diversity of the dataset, quality of the dataset, and the

number of COVID-19 images used to train the models in this

study. Most studies used between 60 and 600 COVID-19 images,

however this study used 9,000 COVID-19 CT images and 5,000

non-COVID-19 CT images. This is higher than the number

of images used in other studies (Ardakani et al., 2020; He

et al., 2020; Horry et al., 2020; Loey et al., 2020; Song et al.,

2021).

As shown in Tables 6, 7, the runtime of the pre-trained

models is fairly high. This is because of the number of layers and

parameters in each of the pre-trained models. The network with

the least number of layers and parameters (i.e., MobileNetV2)

has 53 layers and 3,538,984 parameters, which is still large. This

shows that models with fewer number of layers will execute

faster than themodels examined in this study. Ramnarine (2021)

developed a simple CNN architecture with two convolutional

layer and two fully-connected layer. The model was trained on
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FIGURE 17

VGG16 without data augmentation (left image) and with data augmentation (right image).

FIGURE 18

VGG19 without data augmentation (left image) and with data augmentation (right image).

a dataset with 6,432 lung chest X-ray images, and it executed in

30 s. Moreover, the model achieved an accuracy of 100%.

Training and validation loss

Figures 8–19 show the training and validation loss of the

proposed technique. The training and validation accuracies

achieved by the proposed technique are also shown in the

figures. The models were trained for two epochs during the

hyper-parameter search step, as detailed in Section Performance

of Pre-trained CNNArchitectureWith Data Augmentation. The

best model was chosen at the end of hyper-parameter search

stage and trained for another 6 epochs. The figures depict the

models’ performance during the second training stage. As seen

in the figures, there is no major difference between the training

and validation losses generated in each epoch. There is likewise

no major difference in training and validation accuracy in each

epoch. This demonstrates that the training models do not over-

fit. It also shows that themodels have good generalization ability.

Summary

COVID-19 is a global pandemic that has killed millions

of people worldwide. This study introduced state-of-the-art

DL solutions for effectively diagnosing COVID-19 using CT
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FIGURE 19

Xception without data augmentation (left image) and with data augmentation (right image).

images and 12 pre-trained DL models, including VGG16,

VGG19, Xception, ResNet50, ResNet101V2, DenseNet169,

InceptionV3, NASNetLarge, DenseNet201, MobileNetV2,

InceptionResNetV2, and DenseNet121. Tables 6, 7 show

the performances of the 12 DL models used in this study

with their confusion matrix. As shown in the table, all the

DL networks can effectively distinguish COVID-19 samples

from non-COVID-19 samples with an accuracy within the

range of 93.14–99.86%. The best classification accuracy was

produced by NASNetLarge, followed by InceptionResNetV2

and DenseNet169. The accuracy of the three models is

99.86, 99.786, and 99.714%, respectively. DenseNet121

and VGG16 achieved the highest sensitivity, with both

producing 99.944%. MobileNetV2 is the most efficient

architecture in terms of computational efficiency, followed

by InceptionV3 and ResNet50. All models were fine-tuned

with data augmentation to increase their generalization

performance. The results indicate that the models’ sensitivity

improved after data augmentation was implemented. This

demonstrates the critical role of data augmentation in reducing

overfitting and improving the generalization performance of

the model.

The results of this study are compared to the results

of three other studies. The comparison shows that the

techniques presented in this study outperformed the three

compared techniques. The dataset used in this dataset was

validated in a study performed by the dataset authors (Gunraj

et al., 2021). The validation was performed by two certified

radiologists, and the validation shows that the decision-making

behavior of the dataset is consistent with the interpretation

of the radiologists. This demonstrates the potential of using

DL in CT images as a non-invasive tool for automated

COVID-19 diagnosis. We hope that this study will be

valuable in improving the decisions and accuracy of medical

practitioners when diagnosing COVID-19. This study can

also aid future researchers in eliminating analysis repetition

and determining the optimal network for their tasks. As

future studies, researchers can investigate more efficient DL

models (such as fix-efficientNet) and present a performance

analysis of the models. Moreover, researchers can develop

an ensemble model of pre-trained networks and evaluate

their performance.
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