AUTHOR=Göbel Kyra , Niessen Cornelia , Seufert Sebastian , Schmid Ute TITLE=Explanatory machine learning for justified trust in human-AI collaboration: Experiments on file deletion recommendations JOURNAL=Frontiers in Artificial Intelligence VOLUME=5 YEAR=2022 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.919534 DOI=10.3389/frai.2022.919534 ISSN=2624-8212 ABSTRACT=

In the digital age, saving and accumulating large amounts of digital data is a common phenomenon. However, saving does not only consume energy, but may also cause information overload and prevent people from staying focused and working effectively. We present and systematically examine an explanatory AI system (Dare2Del), which supports individuals to delete irrelevant digital objects. To give recommendations for the optimization of related human-computer interactions, we vary different design features (explanations, familiarity, verifiability) within and across three experiments (N1 = 61, N2 = 33, N3= 73). Moreover, building on the concept of distributed cognition, we check possible cross-connections between external (digital) and internal (human) memory. Specifically, we examine whether deleting external files also contributes to human forgetting of the related mental representations. Multilevel modeling results show the importance of presenting explanations for the acceptance of deleting suggestions in all three experiments, but also point to the need of their verifiability to generate trust in the system. However, we did not find clear evidence that deleting computer files contributes to human forgetting of the related memories. Based on our findings, we provide basic recommendations for the design of AI systems that can help to reduce the burden on people and the digital environment, and suggest directions for future research.