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Graph structured data is ubiquitous in daily life and scientific areas and has attracted

increasing attention. Graph Neural Networks (GNNs) have been proved to be effective

in modeling graph structured data and many variants of GNN architectures have

been proposed. However, much human effort is often needed to tune the architecture

depending on different datasets. Researchers naturally adopt Automated Machine

Learning on Graph Learning, aiming to reduce human effort and achieve generally

top-performing GNNs, but their methods focus more on the architecture search. To

understand GNN practitioners’ automated solutions, we organized AutoGraph Challenge

at KDDCup 2020, emphasizing automated graph neural networks for node classification.

We received top solutions, especially from industrial technology companies like Meituan,

Alibaba, and Twitter, which are already open sourced on GitHub. After detailed

comparisons with solutions from academia, we quantify the gaps between academia and

industry on modeling scope, effectiveness, and efficiency, and show that (1) academic

AutoML for Graph solutions focus on GNN architecture search while industrial solutions,

especially the winning ones in the KDD Cup, tend to obtain an overall solution (2) with

only neural architecture search, academic solutions achieve on average 97.3% accuracy

of industrial solutions (3) academic solutions are cheap to obtain with several GPU hours

while industrial solutions take a few months’ labors. Academic solutions also contain

much fewer parameters.

Keywords: Graph Neural Networks, Automated Machine Learning, data challenge, node classification, graph

machine learning

1. INTRODUCTION

Graph structured data has been prominent in our lives and various tasks are studied based upon,
including a recommendation on Social Networks (Fan et al., 2019), traffic forecasting on road
networks (Li et al., 2018), drug discovery on molecule graphs (Torng and Altman, 2019), and link
prediction on the knowledge graph (Zhang et al., 2020). Graph Neural Networks (GNN) (Kipf and
Welling, 2017) have been proved to be effective in modeling graph data and tremendous GNN
architectures are proposed every year (Hamilton et al., 2017; Veličković et al., 2018; Wu et al., 2019;
Xu et al., 2019).
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When applying GNN on graph structured data, expertise and
domain knowledge are often required and numerous human
effort is needed to adapt to new datasets. Automated Machine
Learning (AutoML) (Yao et al., 2018; Hutter et al., 2019) aims
to reduce human efforts in deploying various applications.
AutoML, especially Neural Architecture Search (NAS), has
been successfully explored in tremendous applications,
including Image Classification (Tan and Le, 2019), Object
Detection (Tan et al., 2020), Semantic Segmentation (Nekrasov
et al., 2019), Language Modeling (Jiang et al., 2019), and
Time Series Forecasting (Chen et al., 2021). As a result,
researchers have started to explore Automated Graph Neural
Networks (AutoGraph). AutoGraph researchers focus mainly
on automatically designing GNN architectures by NAS. The
majority of these methods focus on designing the aggregation
functions/layers in GNNs with different search algorithms (Zhou
et al., 2019; Gao et al., 2020; Peng et al., 2020; Yoon et al., 2020;
Li et al., 2021). Other works, SANE (Zhao et al., 2021) and
AutoGraph (Li and King, 2020), provide the extra dimension
of layer-wise skip connections design; GNAS (Cai et al., 2021),
DeepGNAS (Feng et al., 2021), and Policy-GNN (Lai et al.,
2020) learn to design the depth of GNNs. DiffMG (Ding et al.,
2021) proposed to use NAS to search data-specific meta-graphs
in the heterogeneous graph, and PAS (Wei et al., 2021) is
proposed to search data-specific pooling architectures for graph
classification. The recently proposed F2GNN (Wei et al., 2022)
method decouples the design of aggregation operations with
architecture topology, which is not considered before.

Despite the rich literature from academia, we ask the question
of how AutoGraph is used by industrial practitioners. Toward
this end, we organized the first AutoGraph challenge at KDD
Cup 2020 and collaborated with 4Paradigm, ChaLearn, and
Stanford University. This challenge asks participants to provide
AutoGraph solutions for the node classification task. The code
is executed by the platform on various graph datasets without
any human intervention. Through the AutoGraph challenge,
we wish to push forward the limit of AutoGraph as well as to
understand the gap between industrial solutions and academic
ones. In this article, we first introduce the AutoGraph challenge
setting. Then, we present the winning solutions which are open
sourced for everyone to use. Finally, we experiment further and
compare with NAS for GNN methods and quantify empirically
the gap with respect to top solutions.We conclude three gaps of

AutoGraph between academia and industry: Modeling scope,

Effectiveness, and Efficiency.

2. CHALLENGE BACKGROUND

2.1. General Statistics
The AutoGraph challenge lasted for 2 months. We received over
2200 submissions and more than 140 teams from both high-tech
companies (Ant Financial, Bytedance, Criteo, Meituan Dianping,
Twitter, NTT DOCOMO, etc.) and universities (MIT, UCLA,
Tsinghua University, Peking University, Nanyang Technological
University, National University of Singapore, IIT Kanpur, George
Washington University, etc.), coming from various countries.
The top three teams are aister, PASA_NJU, and qqerret.

The top 10 winners’ information is shown in Table 1. The 1st
winner aister comes from Meituan Dianping, a company on
location-based shopping and retailing service. This makes the
challenge particularly valuable since we can compare academic
solutions with industrial best AutoGraph practices.

2.2. Problem Formulation
The task of the AutoGraph challenge is node classification under
the transductive setting. Formally speaking, consider a graph
G = (V , E), where V = {v1, · · · , vN} is the set of nodes, i.e.,
|V| = N and E is the set of edges, which is usually encoded
by an adjacency matrix A ∈ [0, 1]N×N . Aij is positive if there
is an edge connecting from node vi to node vj. Additionally, a
matrix X ∈ R

N×D represents the features of each node. Each
node vi has a class label yi ∈ L = {1, · · · , c}, resulting in the
label vector Y ∈ LN . In the transductive semi-supervised node
classification task, part of the labels are available during training
and the goal is to learn a mapping F :V → L and predict classes
of unlabeled nodes.

2.3. Protocol
The protocol of the AutoGraph challenge is straightforward.
Participants should submit a python file containing a Model

class with the required �t and predict methods. We prepare an
ingestion program reading the dataset and instantiate the class
and call �t and predict method until the prediction finishes or
the running time has reached the budget limit. The ingestion
program outputs the model’s prediction on test data and saves
it to shared space. Then, another scoring program reads the
prediction and ground truth and outputs evaluation scores. The
execution of the program is always on the challenge platform.
When developing locally, we provide a script to call model.py

file methods directly.

2.4. Metric
We use Accuracy (Acc) and Balanced Accuracy (BalAcc) as
evaluation metrics, defined as

Acc =
1

|�|

∑
i∈�

1ŷi=yi , BalAcc =
1

|C|

∑
i∈C

Recalli,

where � is the set of test nodes indexes, yi is the ground truth
label for node vi, ŷi is the predicted label for node vi, C is the set
of classes, and Recalli is the recall score for class i. Accuracy
(Acc) is used in the challenge to rank participants and Balanced
Accuracy (BalAcc) is applied for additional analyses since it
takes into account the imbalanced label distribution of datasets.

2.5. Datasets
A total of 15 graph datasets were used during the competition:
Five public datasets were directly downloadable by the
participants so they could develop their solutions offline.
Five feedback datasets were made available on the platform
during the feedback phase to evaluate AutoGraph algorithms on
the public leaderboard. Finally, the AutoGraph algorithms were
evaluated with 5 private datasets, without human intervention.
These datasets are quite diverse in domains, shapes, density, and
other graph properties because we expect AutoGraph solutions
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TABLE 1 | General information about winning teams.

Place Team name Institute Place Team name Institute

1st aister Meituan Dianping 6th SmartMN-THU Tsinghua University

2nd PASA_NJU Nanjing University 6th JunweiSun
Beijing University of Posts

and Telecommunications

3rd qqerret Ant Financial 8th u1234x1234 Self-employed

4th common Alibaba Inc. 9th AML Ant Financial

5th PostDawn Zhejiang University 10th supergx Nanyang Tech. University

10th daydayup Hikvision Inc.

Two teams tie in the 6th and 10th place. We list them both.

TABLE 2 | Statistics of all datasets.

Dataset Phase Domain #Node #Edge #Feature #Class Avg Deg Directed? Weighted? Skewness

a Public Citation 2.7K 5.3K 1.4K 7 1.9 F F 5

b Public Citation 3.3K 4.6K 3.7K 6 1.4 F F 3

c Public Social 10K 733K 0.6K 41 73.3 F F 81

d Public News 10K 2,917K 0.3K 20 291.7 T T 467

e Public Finance 7.5K 7.8K 0 3 1.0 F F 111

f Feedback Sales 10K 194K 0.7K 10 19.4 F F 18

g Feedback Citation 10K 41K 8K 5 4.1 F F 6

h Feedback Medicine 10K 2,461K 0.3K 23 246.1 T T 1,773

i Feedback Finance 15K 16K 0 3 1.1 F F 213

j Feedback Medicine 11K 22K 0 9 2.0 F F 227

k Private Sales 8K 119K 0.7K 8 14.9 F F 6

l Private Citation 10K 40K 7K 15 4 F F 34

m Private News 10K 1,425K 0.3K 8 142.5 T T 360

n Private Finance 14K 22K 0 10 1.6 F F 61

o Private Social 12K 19K 0 19 1.6 F F 62

“Avg Deg” is the average number of edges per node. “Directed” and “Weighted” indicate the two properties of a graph. “Skewness” here is calculated by the number of nodes in the

largest class divided by the number of nodes in the smallest class.

to have good generalization ability. On the other hand, we
intentionally keep the characteristics of 5 feedback datasets and 5
private datasets similar to enable transferability. We summarize
dataset statistics in Table 2. The licenses and original sources of
these datasets are also provided1.

3. SOLUTIONS

In this part, we introduce various methods suitable for the
AutoGraph challenge, including the provided challenge baseline
and solutions from top-3 winners.

3.1. Baseline (GCN(L2))
In the provided baseline, there is no feature engineering except
for using the raw node features. For graphs without node features
(e.g., dataset i and j), one hot encoding is used to unroll the
node lists to a dummy feature table. During model training, an
MLP is first used to map node features to the same embedding

1https://github.com/AutoML-Research/AutoGraph-KDDCup2020

dimension. Then a two layer vanilla GCN is applied for learning
node embeddings. Another MLP with softmax outputs the final
classification. Dropout is used. All the hyperparameters are fixed
by our experience. There is no time management since the model
is simple and one full training will not cost more time than the
allowed budget.

3.2. First Placed Winner
The 1st winner is from team aister. Their code is open
source here2. The authors use four GNN models, two spatial
ones: GraphSage (Hamilton et al., 2017) and GAT (Veličković
et al., 2018), and two spectral ones: GCN (Kipf and Welling,
2017) and TAGConv (Du et al., 2017) to process node features
collectively. For each GNN model, a heavy search is applied
offline to determine the important hyperparameters as well as the
boundaries. In the online stage, they use a smaller search space to
determine the hyperparameters. In order to accelerate the search,
they do not fully train each configuration but instead early stop

2https://github.com/aister2020/KDDCUP_2020_AutoGraph_1st_Place

Frontiers in Artificial Intelligence | www.frontiersin.org 3 June 2022 | Volume 5 | Article 905104

https://github.com/AutoML-Research/AutoGraph-KDDCup2020
https://github.com/aister2020/KDDCUP_2020_AutoGraph_1st_Place
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Xu et al. AutoGraph Analyses

FIGURE 1 | Illustration of AutoGraph scope. Industrial people provide a full pipeline solution that covers data preprocessing to evaluation. Academic researchers

focus mainly on model architecture and hyperparameter optimization.

at 16 epochs if the validation loss is not satisfactory. Additional
features are used: node degrees, distribution of 1-hop and 2-hop
neighbor nodes’ features, etc.

3.3. Second Place Winner
The 2nd winner is from team PASA_NJU. Their code is open
source here3. They also split the solution into two stages: offline
stage and online stage. In the offline stage, the authors train a
decision tree based on public data and other self collected datasets
to classify graph types into one of three classes. Then they use
GraphNAS (Gao et al., 2020) to search massively optimal GNN
architectures including aggregation function, activation, number
of heads in attention, and hidden units. In the online stage,
the authors rapidly classify the dataset and fine tune the offline
searched model.

3.4. Third Place Winner
The 3rd winner is from team qqerret. Their code is open
source here4. The core model is a variant of spatial based
GNN, which aggregates 2-hop neighbors of a node with
additional linear parts for the node itself. Basically, the new

embedding of node i is ĥ(i) =
∑

j∈N2(i)
ajh(j) + α(wh(i) +

b). Additionally, in the GNN output layer, a few features
per node are concatenated for the final fully connected layer,
including the number of edges, whether this node connects to
a central node that has a lot of edges, the label distribution
of 1-hop neighbor nodes, and the label distribution of 2-hop
neighboring nodes.

4. RESULTS

We conduct additional experiments after the AutoGraph
challenge to further analyze the results. We first reproduce
winning solutions and then we compare them with academic
solutions. Three gaps are concluded. The first gap is presented
as follows and two other gaps are concluded in section 4.2.

Gap #1: Modeling Scope Is the First Gap of AutoGraph

Between Academia and Industry. In academia, researchers
focus mainly on Neural Architecture Search methods to find
better GNN architectures. Their contributions differ in their
search space, search strategy, and evaluation methods. However,

3https://github.com/Unkrible/AutoGraph2020
4https://github.com/white-bird/kdd2020_GCN

industrial solutions, e.g., 1st solution, focus more on feature
engineering and model ensemble. For GNN architectures, they
prefer the existing ones with little modification. In other words,
industrial people provide a full pipeline solution including
data preprocessing, feature engineering, model architecture,
hyperparameter optimization, and model ensemble, while
academic researchers focus on the model architecture part
only. The gap is also illustrated in Figure 1. It might be an
interesting direction for both groups to merge, i.e., AutoGraph
researchers could explore the automated feature engineering and
automated ensemble, and AutoGraph practitioners could adopt
NAS methods for GNN.

4.1. Reproducing Winning Solutions
We reproduce all winning methods on all the datasets and
include their results in Table 3. We observe that all three winning
solutions are close in performance and all significantly beat the
GCN baseline. On the other hand, in the AutoGraph challenge,
due to the nature of the competition, we rank methods based
on their accuracy. We state that this is not sufficient to evaluate
solutions comprehensively from the scientific perspective. We
add the balanced accuracy here just to show that for some
methods that show close performance in accuracy, they could
diverge a lot in balanced accuracy. Regarding both accuracy
and balanced accuracy, we conclude that 1st solution, which
comes from Meituan Dianping Company, is indeed the best
among the top winners. Thus, we will later use their solutions for
comparison with academic solutions. These winning solutions
are already open sourced, which are reproducible and lower the
barriers to using AutoGraph.

4.2. Neural Architecture Search for GNN
We further adopt NAS methods for GNN and compare with the
baseline and 1st solution coming from the industry. We choose
the recent F2GNN (Wei et al., 2022) in our experiment, which
searches for data-specific GNN topology. To compare fairly with
GCN baselines, we fix the aggregation to GCN and search only
the GNN topology, which we call F2GCN. Since F2GCN requires
at least 4 layers, we also run a 4 layer GCN baseline for better
comparison. The results are given in Table 4.

Gap #2: Effectiveness Is the Second Gap of AutoGraph

Between Academia and Industry. We observe from Figure 2

and Table 4 that all baselines and F2GCN methods are not
as good as 1st winning solution. However, for many datasets,
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TABLE 3 | Accuracy and Balanced accuracy of top methods on all datasets (%).

Dataset Phase Baseline (GCN(L2)) 1st solution 2nd solution 3rd solution

Acc BalAcc Acc BalAcc Acc BalAcc Acc BalAcc

a Public 85.7 84.9 88.5 87.8 88.2 87.2 87.2 85.5

b Public 71.4 67.8 75.2 71.2 75.8 71.2 75.6 69.0

c Public 86.5 72.0 94.3 87.5 94.2 90.9 95.4 91.3

d Public 93.7 6.1 96.5 48.7 95.1 28.8 94.6 21.0

e Public 59.6 38.8 88.7 92.8 88.5 90.7 88.8 92.8

f Feedback 86.6 78.2 92.8 92.1 92.3 92.1 92.4 91.4

g Feedback 94.7 92.8 95.3 93.5 95.6 93.8 95.8 94.2

h Feedback 90.4 8.8 93.5 26.3 92.2 17.6 92.1 16.6

i Feedback 88.2 59.2 88.4 87.5 88.4 92.6 88.5 91.1

j Feedback 90.7 68.1 95.9 89.0 96.1 93.7 96.6 93.3

k Private 93.5 92.2 95.5 94.4 95.5 94.4 94.8 93.1

l Private 90.9 84.5 94.9 92.6 94.7 91.8 94.5 92.6

m Private 85.5 24.5 98.1 79.7 95.7 69.0 98.0 79.4

n Private 85.6 47.3 99.0 97.3 99.0 98.4 98.9 97.0

o Private 49.6 15.6 91.0 84.6 91.3 90.6 91.4 88.5

The baseline is a two layer GCN. Bold values are best in comparison with other methods.

TABLE 4 | Accuracy comparison of GCN baselines, F2GCN, and industrial best

solution (%).

Dataset GCN(L2) GCN(L4) F2GCN(L4) 1st solution

a 85.7 84.4 84.4 (95.4) 88.5 (100)

b 71.4 70.5 71.3 (94.8) 75.2 (100)

c 86.5 82.3 92.8 (98.4) 94.3 (100)

d 93.7 93.6 93.9 (97.3) 96.5 (100)

e 59.6 87.5 88.4 (99.7) 88.7 (100)

f 86.6 87.6 92.1 (99.2) 92.8 (100)

g 94.7 93.4 95.3 (100) 95.3 (100)

h 90.4 90.3 90.1 (96.4) 93.5 (100)

i 88.2 87.6 88.3 (99.9) 88.4 (100)

j 90.7 83.6 95.3 (99.4) 95.9 (100)

k 93.5 93.2 93.4 (97.9) 95.5 (100)

l 90.9 89.1 92.9 (97.9) 94.9 (100)

m 85.5 86.1 86.1 (87.8) 98.1 (100)

n 85.6 95.2 96.7 (97.7) 99.0 (100)

o 49.6 71.8 88.8 (97.6) 91.0 (100)

Avg − (97.3) − (100)

L2, L4 mean 2, and 4 layers for the GNN architecture. Numbers in parentheses are the

relative accuracy with respect to 1st solution. We regard 1st solution as 100%. The last

line is the average percentage.

e.g., e, f, g, i, j, F2GCN is very close to the best industrial
solution. On average, F2GCN which focuses only on architecture
search reaches 97.3% of the best solution. Note that the
1st solution constructs additional node features and uses
multiple GNN architectures for ensemble while F2GCN does
not use any feature engineering or model ensemble. This
shows the effectiveness of the winner’s engineering practices
and F2GCN’s adaptive architecture search. The winning teams
also have access to public datasets and the public leaderboard

FIGURE 2 | Accuracy improvement with respect to baseline.

to iteratively fine tune their methods. F2GCN does not assume
any prior knowledge of the datasets, which shows further
its effectiveness.
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TABLE 5 | Number of parameters of baseline, 1st solution and F2GCN (Unit:

Millions).

Dataset GCN(L2) F2GCN(L4) 1st solution

a 0.023 0.908 (75.7) 1.199 (100)

b 0.059 0.700 (44.2) 1.583 (100)

c 0.011 1.598 (98.0) 1.631 (100)

d 0.006 0.042 (3.20) 1.296 (100)

e 0.121 0.354 (31.8) 1.114 (100)

f 0.013 0.039 (2.30) 1.688 (100)

g 0.134 0.313 (13.1) 2.389 (100)

h 0.006 0.271 (20.9) 1.294 (100)

i 0.241 2.269 (113.0) 2.013 (100)

j 0.171 0.834 (60.6) 1.376 (100)

k 0.012 1.478 (108.0) 1.395 (100)

l 0.108 0.614 (25.6) 2.395 (100)

m 0.005 0.010 (0.80) 1.278 (100)

n 0.218 0.488 (27.8) 1.756 (100)

o 0.192 0.822 (52.5) 1.565 (100)

Avg − (45.1) − (100)

Numbers in parentheses are the relative number of parameters with respect to 1st

solution. We regard 1st solution as 100%. The last line is the average percentage.

To better understand the solutions, we calculate the number
of parameters of the baseline, F2GCN, and the 1st solution, as
shown in Table 5.

Gap #3: Efficiency Is the Third Gap of AutoGraph Between

Academia and Industry. From Figure 3 and Table 5, F2GCN
uses significantly fewer parameters than the best industrial
solution on most datasets (13 out of 15). On average,
F2GCN consumes 45.1% of the 1st solution in terms of
parameter size, which is quite resource-efficient. Note that
feature engineering and ensemble do not contain additional
parameters and basically, F2GCN searches one GNN model
to compete with the ensemble of 4 types of GNN models in
the 1st solution. As for time devotion, the winning solutions
come from a team’s months of work, which consists of 5
or more members. F2GCN only runs for a few GPU hours
per dataset, demonstrating its time efficiency compared to
industrial solutions.

5. CONCLUSION

We organized the first Automated Graph Learning (AutoGraph)
Challenge at KDD Cup 2020. We presented in this article its
settings, dataset, and solutions, which are all open sourced.
Furthermore, we ran additional post-challenge experiments to
compare the baseline [Graph Convolution Network (GCN)],
the winning solution (feature engineering-based ensemble of
various Graph Neural Networks), and a recent and efficient
Neural Architecture Search (NAS) for the GNN method called
F2GCN. This article provides results that could bridge the
gap between academic research and industrial practices, by
correcting the bias favoring certain approaches. This gap is

FIGURE 3 | Comparison of the number of parameters of baseline, 1st

solution, and F2GCN (log scale).

currently at 3 aspects:Gap #1modeling scope. (academia focuses
more on model-centric approaches, emphasizing NAS; industry
emphasizes data centric approaches and feature engineering);
Gap #2 effectiveness. (academic solutions are perceived by the
industry to be less effective than their own counterpart); Gap #3

efficiency. (academic solutions are perceived to be parsimonious
or slower than industrial solutions). Our results indicate that
the “academic” NAS-based approach that we applied attains
performances closely matching those of the winning industrial
solution while being both faster and more parsimonious in
the number of parameters, therefore, closing Gap #2 and #3.
Moreover, we hope that these results will help reduce Gap #1,
by encouraging industrial practitioners to apply NAS methods
(and particularly F2GCN), eventually combining the best of both
approaches. We believe the results we obtained are significant
since they involve a benchmark on 15 datasets.
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