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Reaching the performance of fully supervised learning with unlabeled data and only

labeling one sample per class might be ideal for deep learning applications. We

demonstrate for the first time the potential for building one-shot semi-supervised (BOSS)

learning on CIFAR-10 and SVHN up to attain test accuracies that are comparable to fully

supervised learning. Our method combines class prototype refining, class balancing,

and self-training. A good prototype choice is essential and we propose a technique for

obtaining iconic examples. In addition, we demonstrate that class balancing methods

substantially improve accuracy results in semi-supervised learning to levels that allow

self-training to reach the level of fully supervised learning performance. Our experiments

demonstrate the value with computing and analyzing test accuracies for every class,

rather than only a total test accuracy. We show that our BOSS methodology can obtain

total test accuracies with CIFAR-10 images and only one labeled sample per class up

to 95% (compared to 94.5% for fully supervised). Similarly, the SVHN images obtains

test accuracies of 97.8%, compared to 98.27% for fully supervised. Rigorous empirical

evaluations provide evidence that labeling large datasets is not necessary for training

deep neural networks. Our code is available at https://github.com/lnsmith54/BOSS to

facilitate replication.
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1. INTRODUCTION

In recent years, deep learning has achieved state-of-the-art performance for computer vision tasks
such as image classification. However, a major barrier to the wide-spread adoption of deep neural
networks for new applications is that training state-of-the-art deep networks typically requires
thousands tomillions of labeled samples to perform at high levels of accuracy and to generalize well.

Unfortunately, manual labeling is labor-intensive and might not be practical if labeling the data
requires specialized expertise, such as in medical, defense, and scientific applications. In typical
real-world scenarios for deep learning, one often has access to large amounts of unlabeled data but
lacks the time or expertise to label the required massive numbers needed for training, validation,
and testing. An ideal solution might be to achieve performance levels that are equivalent to fully
supervised trained networks with only one manually labeled image per class.

In this paper, we investigate the potential for building one-shot semi-supervised (BOSS)
learning up to achieve comparable performance as fully supervised training. To date, one-shot
semi-supervised learning has been little studied and viewed as difficult. We build on the recent
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observation that one-shot semi-supervised learning is plagued by
class imbalance problems (Smith and Conovaloff, 2020). In our
context, class imbalance refers to a trained network with near
100% accuracy on a subset of classes and poor performance on
other classes. We strongly advocate in classification tasks that
practitioners evaluate and analyze test accuracies for every class,
rather than only the average accuracy (Smith and Conovaloff,
2020; Fu et al., 2022). However, we are the first to apply data
imbalance methods to unlabeled data.

Specifically, we demonstrate that good prototypes are crucial
for successful semi-supervised learning and propose a prototype
refinement method for the poorly performing classes. Also, we
make use of the state-of-the-art in semi-supervised learning
methods (i.e., FixMatch, Sohn et al., 2020) in our experiments. To
combat class imbalance, we tested several variations of methods
found in the literature for data imbalance problems (Johnson
and Khoshgoftaar, 2019), which refers to the situation where the
number of training samples per class varies substantially. We are
the first to demonstrate that these methods significantly boost the
performance of one-shot semi-supervised learning. Combining
these methods with self-training (Rosenberg et al., 2005) makes
it possible for CIFAR-10 and SVHN to attain comparable
performance as fully supervised trained deep networks with 50
K and 73 K labeled training images, respectively.

Our contributions are:

1. We rigorously demonstrate for the first time the potential
for one-shot semi-supervised learning to reach test accuracies
with CIFAR-10 and SVHN that are comparable to fully
supervised learning.

2. We propose the concept of class balancing on unlabeled
data and investigate their value for one-shot semi-supervised
learning. We introduce a novel measure of minority and
majority classes and propose four class balancingmethods that
improve the performance of semi-supervised learning.

3. We investigate the causes of poor performance and hyper-
parameter sensitivity. We hypothesize two causes and
demonstrate solutions that improve performance.

2. RELATED WORK

2.1. Semi-Supervised Learning
Semi-supervised learning is a hybrid between supervised and
unsupervised learning, which combines the benefits of both and
is better suited to real-world scenarios where unlabeled data is
abundant. As with supervised learning, semi-supervised learning
defines a task (i.e., classification) from labeled data but typically
it requires much fewer labeled samples. In addition, semi-
supervised learning leverages feature learning from unlabeled
data to avoid overfitting the limited labeled samples. Semi-
supervised learning is a large and mature field and there are
several surveys and books on semi-supervised learning methods
(Zhu, 2005; Chapelle et al., 2009; Zhu and Goldberg, 2009;
Van Engelen and Hoos, 2020) for the interested reader. In this
Section we mention only the most relevant of recent methods.

Recently there have been a series of papers on semi-supervised
learning from Google Research, including MixMatch (Berthelot

et al., 2019b), ReMixMatch (Berthelot et al., 2019a), and
FixMatch (Sohn et al., 2020). MixMatch combines consistency
regularization with data augmentation (Sajjadi et al., 2016),
entropy minimization (i.e., sharpening) (Grandvalet and Bengio,
2005), and mixup (Zhang et al., 2017). ReMixMatch improved
on MixMatch by incorporating distribution alignment and
augmentation anchors. Augmentation anchors are similar to
pseudo-labeling. FixMatch is the most recent and demonstrated
state-of-the-art semi-supervised learning performance. In
addition, the FixMatch paper has a discussion on one-shot
semi-supervised learning with CIFAR-10.

The FixMatch algorithm (Sohn et al., 2020) is primarily
a combination of consistency regularization (Sajjadi et al.,
2016; Zhai et al., 2019) and pseudo-labeling (Lee, 2013).
Consistency regularization utilizes unlabeled data by relying
on the assumption that the model should output the same
predictions when fed perturbed versions as on the original
image. Consistency regularization has recently become a popular
technique in unsupervised, self-supervised, and semi-supervised
learning (Zhai et al., 2019; Van Engelen and Hoos, 2020). Several
researchers have observed that strong data augmentation should
not be used when inferring pseudo-labels for the unlabeled data
but should be employed for consistency regularization (Xie et al.,
2019; Sohn et al., 2020). Pseudo-labeling is based on the idea that
one can use the model to obtain artificial labels for unlabeled
data by retaining pseudo-labels for samples whose probability are
above a predefined threshold.

A recent survey of semi-supervised learning (Van Engelen and
Hoos, 2020) provides a taxonomy of classification algorithms.
One of the methods in semi-supervised learning is self-training
iterations (Rosenberg et al., 2005; Triguero et al., 2015) where
a classifier is iteratively trained on labeled data plus high
confidence pseudo labeled data from previous iterations. In our
experiments we found that self-training provided a final boost to
make the performance comparable to supervised training with
the full labeled training dataset.

Unlike this paper, recent papers on semi-supervised learning,
such as SimPLE Hu et al. (2021) and CoMatch Li et al.
(2021), do not show results for one-shot semi-supervised
learning. The SimPLE method uses at least 1,000 labels for
CIFAR-10 and SVHN. On the other hand, CoMatch provides
experiments on CIFAR-10 with as little as 20 labels but their
reported performance is significantly lower than the performance
obtained with the full labeled training dataset. There is one
recent paper Lucas et al. (2021) that reports results for one-
shot semi-supervised learning for CIFAR-10 and CIFAR-100.
They too compare their results to FixMatch. Unlike our
work, the performance they report is much lower than the
fully-supervised performance.

2.2. Class Imbalance
Smith and Conovaloff (Smith and Conovaloff, 2020)
demonstrated that in one-shot semi-supervised learning
there are large variation in class performances, with some classes
achieving near 100% test accuracies while other classes near
0% accuracies. That is, strong classes starve the weak classes,
which is analogous to the class imbalance problem (Johnson and
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Khoshgoftaar, 2019). This observation suggests an opportunity
to improve the overall performance by actively improving the
performance of the weak classes.

We borrowed techniques from the literature on training with
imbalanced data (Sun et al., 2007; Wang and Yao, 2012; Johnson
and Khoshgoftaar, 2019) (i.e., some classes having many more
training samples than other classes) to experiment with several
methods for improving the performance of the weak classes
with unlabeled data. However, with unlabeled data, labels to
define the ground truth as to minority and majority classes do
not exist. In this paper, we propose using the pseudo-labels as
a surrogate to the ground truth for example class counting.
Our experiments demonstrate that combining the counting of
the pseudo-labels and methods for handling data imbalance
substantially improves performance.

Methods for handling class imbalance can be grouped into two
categories: data-level and algorithm-level methods. Data-level
techniques (Wang and Yao, 2012) reduce the level of imbalance
by undersampling the majority classes and oversampling the
minority classes. Algorithm-level techniques (Sun et al., 2007)
are commonly implemented with smaller loss factor weights
for the training samples belonging to the majority classes and
larger weights for the training samples belonging to the minority
classes. In our experiments we tested variations of both types of
methods and a hybrid of the two.

2.3. Meta-Learning
Our scenario superficially bears similarity to few-shot meta
learning (Koch et al., 2015; Vinyals et al., 2016; Finn et al., 2017;
Snell et al., 2017), which is a highly active area of research. The
majority of the work in this area relies on a large labeled dataset
with similar data statistics but this can be an onerous requirement
for new applications. While there are some recent efforts in
unsupervised pre-training for few-shot meta learning (Hsu et al.,
2018; Antoniou and Storkey, 2019), our experiments with these
methods demonstrated their inability to adequately perform
in one-shot learning to bootstrap our process. Specifically,
unsupervised one-shot learning with only five classes obtained
a test accuracy of about 50% on high confidence samples and
the accuracy dropped sharply when increasing the number
of classes.

3. BOSS METHODOLOGY

3.1. FixMatch
Since we build on FixMatch (Sohn et al., 2020), we briefly describe
the algorithm and adopt the formalism used in the original
paper. For an N-class classification problem, let us define χ =

{(xb, yb) : b ∈ (1, ...,B)} as a batch of B labeled examples, where xb
are the training examples and yb are their labels. We also define
U = {ub : b ∈ (1, ...,µ)} as a batch ofµ unlabeled examples where
µ = ruB and ru is a hyperparameter that determines the ratio of
U to χ . Let pm(y|x) be the predicted class distribution produced
by the model for input xb. We denote the cross-entropy between
two probability distributions p and q as H(p, q).

The loss function for FixMatch consists of two terms: a
supervised loss Ls applied to labeled data and an unsupervised

loss Lu for the unlabeled data. Ls is the cross-entropy loss on
weakly augmented labeled examples:

Ls =
1

B

B∑

b=1

H(yb, pm(y|α(xb))) (1)

where α(xb) represents weak data augmentation on labeled
sample xb.

For the unsupervised loss, the algorithm computes the label
based on weakly augmented versions of the image as qb =

pm[y|α(ub)]. It is essential that the label is computed on weakly
augmented versions of the unlabeled training samples and not on
strongly augmented versions. The pseudo-label is computed as
q̂b = argmax(qb) and the unlabeled loss is given as:

Lu =
1

µ

µ∑

b=1

1(max(qb) ≥ τ )H(q̂b, pm(y|A(ub))) (2)

whereA(ub) represents applying strong augmentation to sample
ub and τ is a scalar confidence threshold that is used to include
only high confidence terms. The total loss is given by L =

Ls + λuLu where λu is a scalar hyper-parameter. Additional
details on the FixMatch algorithm are available in the original
paper (Sohn et al., 2020).

3.2. Prototype Refining
Previous work by Sohn et al. on one-shot semi-supervised
learning relied on the dataset labels to randomly choose an
example for each class. The authors demonstrated that the
choice of these samples significantly affected the performance
of their algorithm. Specifically, they ordered the CIFAR-10
training data by how representative they were of their class
by utilizing fully supervised trained models and found that
using more prototypical examples achieved a median accuracy
of 78% while the use of poorly representative samples failed to
converge at all. The authors acknowledged that their method
for finding prototypes was not practical. In contrast, we now
present a practical approach for choosing an iconic prototype
for each class.

In real-world scenarios, one’s data is initially all unlabeled but
it is not overly burdensome for an expert to manually sift through
some of their dataset to find one iconic example of each class. In
choosing iconic images of each class, the labeler’s goal is to pick
images that represent the class objects well, while minimizing the
amount of background distractors in the image. While the labeler
is choosing the most iconic examples to be class prototypes for
one-shot training of the network, it is beneficial to designate the
less representative examples as part of a validation or test dataset.
In our own experiments with labeled datasets CIFAR-10 and
SVHN, we did not rely on the training labels but reviewed a small
fraction of the training data to manually choose class prototypes.

In addition, we also propose a simple iterative technique for
improving the choice of prototypes because good prototypes
are important to good performance. After choosing prototypes,
the next step is to make a training run and examine the class
accuracies. For any class with poor accuracy relative to the other
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classes, it is likely that a better prototype can be chosen. We
recommend returning to the unlabeled or test datasets to find
replacement prototypes for only the poorly performing classes. In
our experiments we found doing this even once to be beneficial.

One might argue that prototype refining is as much work
as labeling several examples per class and using many training
samples will make it easier to train the model. From only a
practical perspective, labeling 5 or 10 examples per class is not
substantially more effort relative to labeling only one iconic
example per class and prototype refining. While in practice
one may want to start with more than one example for ease
of training, there are scientific, educational, and algorithmic
benefits to studying one-shot semi-supervised learning, which
we discuss in our Appendix. Also, non-representative examples
can be included in a labeled test or validation dataset for use in
evaluating the quality of the training.

3.3. Class Balancing
We believe a class imbalance problem is an important factor in
training neural networks, not only in one-shot semi-supervised
learning but also a factor for small to mid-sized datasets. It
is typical that a network with random weights usually outputs
a single class label for every sample (i.e., randomly initialized
networks do not generate random predictions). Hence, all
networks start their training with elements of the class imbalance
problem but the presence of large, balanced training data allows
the network to overcome this problem. Since class imbalance
is always present when training deep networks, class balancing
methods might always be valuable, particularly when training on
one-shot, few-shot, or small labeled datasets, and we leave further
investigations of this for future work.

Unlike the data imbalance domain, the ground truth
imbalance proportions are unknown with unlabeled datasets.
Our innovation here is to use the model generated pseudo-
labels as a surrogate for class counting and estimating class
imbalance ratios (i.e., determining majority and minority
classes). Specifically, as the algorithm computes the pseudo-labels
for all of the unlabeled training samples, it counts the number
that fall within each class, which we designate as C = {cn : n ∈

(1, ...,N)} where N is the number of classes. We assume a similar
number of unlabeled samples in each class so the number of
pseudo-labels in each class should also be similar.

Our first class balancing method is based on oversampling
minority classes. Our algorithm reduces the pseudo-labeling
thresholds for minority classes to include more examples of the
minority classes in the training. Formally, in pseudo-labeling the
following unsupervised loss function is used for the unlabeled
data in place of Equation (2):

Lu =
1

µ

µ∑

b=1

1(max(qb) ≥ τn)H(q̂b, qb) (3)

where qb = pm[y|A(ub)], q̂b = argmax(qb), and τn is the class
dependent threshold for inclusion in the unlabeled loss Lu. We
define the class dependent thresholds as:

τn = τ − 1(1−
cn

max(C)
) (4)

where cn is the number of pseudo-labeled in class n,max(C) is
the maximum count of all the classes, and 1 is a scalar hyper-
parameter (τ > 1 > 0) guiding how much to lower the
threshold for minority classes. Hence, the most frequent class
will use a threshold of τ while minority classes will use lower
thresholds, down to τ − 1.

The next two class balancing methods are variations on
loss function class weightings. In the FixMatch algorithm, all
unlabeled samples above the threshold are included in Equation
(3) with the same weight. Instead, our second class balancing
algorithm becomes:

Lu =
1

Zµ

µ∑

b=1

1(max(qb ≥ τn))H(q̂b, qb)/cn (5)

where the loss terms are divided by cn and Z is a normalizing
factor that makes Lu the same magnitude as without this
weighting scheme (this allows the unlabeled loss weighting λu to
remain the same).

Our third class balancing algorithm is identical to the previous
method except it uses an alternate class count ĉu in Equation (5).
Here we define ĉu using only the high confidence pseudo-labeled
samples (i.e., samples that are above the threshold). The intuition
of this third method is that each of the classes should contribute
equally to the loss Lu (i.e., each sample’s loss is divided by the
number of samples of that class included in Lu). In practice, this
method’s weights might be an order of magnitude larger than the
previous method’s weights, which might contribute to training
instability, so we compare both methods in Section 4.2.

Our fourth class balancing algorithm is a hybrid of the data
and algorithmic methods. Specifically, it is a combination of our
class balancing methods 1 and 3. Our experiments with this
hybrid method demonstrates the benefits of combining the class
balancing methods.

3.4. Self-Training Iterations
Labeled and unlabeled data play different roles in semi-
supervised learning. Here we propose self-training iterations
where the pseudo-labels of the highest confidence unlabeled
training samples are combined with labeled samples in a
new iteration. Increasing the number of labeled samples per
class improves performance, and substantially reduces training
instability and performance variability. Although some of these
pseudo-labels might be wrong, we rely on the observation that
the training of deep networks are robust to small amounts of
labeling noise. Hence, we aimed to achieve a 90% accuracy
from the first iteration of semi-supervised learning with the class
balancing methods.

Self-training in BOSS adds to the testing stage a computation
of the model predictions on all of the unlabeled training data.
These are sorted from the highest prediction probabilities down
and the dataset is saved. After the original training run, the
labeled data can be combined with a number of the highest
prediction samples from each class and a subsequent self-training
iteration run can use the larger labeled dataset for retraining a
new network. We experimented with labeling 5, 10, 20, and 40
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TABLE 1 | Class accuracies.

Set Airplane Auto Bird Cat Deer Dog Frog Horse Ship Truck Mean

1 29 98 71 89 97 16 98 97 97 97 79

2 28 99 70 43 97 89 98 97 98 0 72

3 96 98 63 20 97 96 98 87 98 97 86

4 29 98 65 10 96 32 98 97 97 96 72

5 28 97 70 46 96 48 53 76 96 97 72

6 80 98 71 52 97 92 98 87 98 97 82

7 28 99 75 54 95 86 95 86 96 94 83

One-shot semi-supervised average (of 2 runs) class accuracies for CIFAR-10 test data

with the FixMatch model, that was trained on sets of manually chosen prototypes for

each class. Prototype set 6 was modified from set 2 and prototype set 7 was modified

from set 4 (i.e., prototype refining).

of the top predictions per class and the results are reported in
Section 4.3.

4. EXPERIMENTS

In this section, we demonstrate that the BOSS algorithms can
achieve comparable performance with fully-supervised training
of CIFAR-101 (Krizhevsky and Hinton, 2009) and SVHN2

(Netzer et al., 2011). We compare our results to FixMatch3

(Sohn et al., 2020) and demonstrate the value of our approach.
Our experiments use a Wide ResNet-28-2 (Zagoruyko and
Komodakis, 2016) that matches the FixMatch reported results
and we used the same cosine learning rate schedule described
by Sohn et al. (2020). We repeated our experiments with a
ShakeNet model (Gastaldi, 2017) and obtained similar result that
lead to the same insights and conclusions. Our hyper-parameters
were in a small range and the specifics are provided in the
Appendix. For data and data augmentation, we used the default
augmentation in FixMatch but additional experiments (not
shown) did show that using RandAugment (Cubuk et al., 2019)
for strong data augmentation provides a slight improvement.
Our runs with fully supervised learning of the Wide ResNet-28-
2 model produced a test accuracy of 94.9 ± 0.3% for CIFAR-
10 (Krizhevsky and Hinton, 2009) and test accuracy of 98.26 ±

0.04% for SVHN (Netzer et al., 2011), which we use for our
basis of comparison. Our code is available at https://github.com/
lnsmith54/BOSS to facilitate replication and for use with future
real-world applications.

4.1. Choosing Prototypes and Prototype
Refining
For our experiments with CIFAR-10, we manually reviewed the
first few hundred images and choose five sets of prototypes
that we will refer to as class prototype sets 1–5. However, the
practioner need only create one set of class prototypes and can
perform prototype refining, as we describe below.

1Available at https://www.cs.toronto.edu/~kriz/cifar.html.
2Available at http://ufldl.stanford.edu/housenumbers/.
3With appreciation, we acknowledge the use of the code kindly provided by the

authors at https://github.com/google-research/fixmatch.

Table 1 presents the averaged (over two runs) test accuracies
for each class, computed from FixMatch on the CIFAR-10 test
dataset for each of the prototype sets 1–5. This table illustrates
that a good choice of prototypes (i.e., set = 3) can lead to good
performance in most of the classes, which enables a good overall
performance. Table 1 also shows that for other sets the class
accuracies can be quite high for some classes while low for other
classes. Hence, the poor performance of some classes implies that
the choice of prototypes for these classes in those sets can be
improved. In prototype refining, one simply reviews the class
accuracies to find which prototypes should be replaced.

We demonstrate prototype refining with two examples. The
airplane and truck class accuracies in set 2 are poor so we replaced
these two prototypes and name this set 6. In set 4, the cat and dog
classes are performing poorly so we replaced these two prototypes
and name this set 7. Table 1 shows the class accuracies for sets
6 and 7 and these results are better than the original sets; that
is, prototype refining of these two sets raised the overall test
accuracies from 72 up to 82–83%.

4.2. Class Balancing
In this section, we report the results from FixMatch and
demonstrate substantial improvements with the class balancing
methods in BOSS. Table 2 presents our main results for CIFAR-
10, which illustrates the benefits from prototype refining, class
balancing, and one self-training iteration. The first five rows in
the table list the results for the five sets of class prototypes (i.e., 1
prototype per class) for CIFAR-10. Rows for sets 6 and 7 provide
the results for prototype refining of the original sets 2 and 4,
respectively. The FixMatch column shows results (i.e., average
and standard deviation over four runs) for the original FixMatch
code on the prototype sets.

The next four columns present the BOSS results with class
balancing methods. As described in Section 3.3, class balance
method 1 represents oversampling of minority classes, balance
methods 2 and 3 are two forms of class-based loss weightings, and
balance = 4 is a hybrid that combines balance methods 1 and 3.
The use of class balancing significantly improves on the original
FixMatch results, with increases of up to 20 absolute percentage
points. Generally, the hybrid class balance method 4 is best,
except when instabilities hurt the performance. The performance
is generally in the 90% range with good performance across all
the classes, which enables the self-training iteration to bump the
accuracies to be comparable to the test accuracy from supervised
training on the full labeled training dataset.

Table 2 indicates that good class prototypes (i.e., sets 3, 6, and
7) result in test accuracies near 90% and low variance between
runs. However, when some of the class prototypes are inferior,
some of the training runs exhibit instabilities that cause lower
averaged accuracies and higher variance.We provide a discussion
in Section 4.5 on the cause of these instabilities and on how to
improve these results.

4.3. Self-Training Iterations
The final four columns of Table 2 list the results of performing
one self-training iteration. The self-training was initialized with
the original single labeled sample per class, plus the most
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TABLE 2 | Main results.

BOSS balance method Self-training

Set FixMatch 1 2 3 4 +5 +10 +20 +40

1 79± 1 91.4± 2 90± 5 84± 6 88± 2 94.8 95.2 95.2 95.2

±0.1 ±0.1 ±0.1 ±0.1

2 74± 5 91.8± 1 90± 3 88± 2 80± 14 93.6 95.1 95.1 95.1

±0.2 ±0.1 ±0.3 ±0.2

3 86± 1 92.8± 0.2 91± 2 91± 3 92.8± 0.1 94.6 94.8 94.9 95.2

±0.5 ±0.5 ±0.1 ±0.1

4 74± 8 77.7± 0.3 81± 6 81± 8 90± 7 94.9 94.9 94.9 95.1

±0.1 ±0.4 ±0.5 ±0.3

5 69± 7 86± 7 89± 6 83± 10 90± 3 89.6 95.2 95.2 95.2

±0.3 ±0.1 ±0.2 ±0.1

6 82± 0.6 91.5± 1 92± 0.7 91.8± 1 92± 1 94.6 95.1 94.7 94.9

±0.1 ±0.2 ±0.1 ±0.1

7 78± 0.1 91.7± 0.3 92.3± 0.8 91.1± 2.5 93± 0.3 94.9 94.7 94.9 95.1

±0.1 ±0.2 ±0.1 ±0.1

BOSS methods are compared using five sets of class prototypes (i.e., 1 prototype per class) for CIFAR-10, plus two sets from prototype refining. The FixMatch column shows test

accuracies (average and standard deviation of 4 runs) for the original FixMatch code on the prototype sets. The next four columns give the accuracy results for the class balance

methods (see text for a description of class balance methods). Results for the PyTorch reimplementation of FixMatch and modified with the BOSS methods are shown in brackets [.].

The self-training iteration was performed with the top pseudo-labels from the run shown in bold and the results are in the next four columns.

confident pseudo-labeled examples from the BOSS training run
that is highlighted in bold. For example, the “+5” columns
means that five pseudo-labeled examples per class were combined
with the original labeled prototypes to make a set with a total
of 60 labeled examples. These self-training results demonstrate
that one-shot semi-supervised learning can reach comparable
performance to the results from fully supervised training (i.e.,
94.9%), often with adding as few as five samples per class.
However, we expect that in practice, self-training by adding more
samples per class will prove more reliable.

4.4. SVHN
SVHN is obtained from house numbers in Google Street View
images and is used for recognizing digits (i.e., 0–9) in natural
scene images. Visual review of the images show that the training
samples are of poor quality (i.e., blurry) and often contain
distractors (i.e., multiple digits in an image). Because of the
quality issue, we needed to review several hundred unlabeled
training samples in order to find four class prototype sets
that are reported in Table 3. Even though the SVHN training
images are of poorer quality than the CIFAR-10 training images,
one-shot semi-supervised learning with FixMatch on sets of
prototypes produced higher test accuracies than with CIFAR-
10. Table 3 presents equivalent results for the SVHN dataset
as those results that were reported in Table 2 for CIFAR-10.
Since the results for FixMatch are all above 89%, we did not
perform prototype refining on any of these sets. However, here
too the class balancingmethods increase the test accuracies above
the FixMatch results. With these four class prototype sets, class
balance method 1 produces the best results. The test accuracies
from balance method 1 are ∼1% lower than the fully supervised
results of 98.26 ± 0.04%. The improvements from self-training

were small and the best results fell about 0.5% below the results
of fully supervised training. We believe the differences between
CIFAR-10 and SVHN are related to the natures of the datasets.

4.5. Investigation of Training Instabilities
In our experiments we observed high sensitivity of one-shot
semi-supervised learning performance to the choices for the
hyper-parameters and the class prototype sets, which motivated
us to investigate this matter in greater depth. That is, we observed
that good choices for the prototypes and prototype refining
significantly reduced the instabilities and the variability of the
results (i.e., few instabilities were encountered for CIFAR-10
prototype sets 3, 6, and 7 so the final accuracies were higher and
the standard deviations of the results were lower). In sets where
the performance was inferior, there was always at least one class
that performed poorly. In addition, we found a high sensitivity to
the hyper-parameter values, which made a significant difference
in the results.

We investigated the cases of poor performance and discovered
that there were two different situations. Figure 1 provides
examples of test accuracies during the training for both
situations. The blue curve is the test accuracy where in one
training run the network learns a final test accuracy of 77%. We
hypothesize that in this situation the network can get stuck in a
poor local minimum that is due to poor prototype choices and
can be improved with prototype refining or by hyper-parameter
fine tuning. The red curve in Figure 1 is an example of the other
case and here the training is dominated by instabilities (i.e., where
the model suddenly diverges during training) and the final test
accuracy is 65%. Interestingly, we found that it is important
when tuning the hyper-parameters to identify which scenario
is occurring.
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TABLE 3 | SVHN.

BOSS balance method Self-training

Set FixMatch 1 2 3 4 +5 +10 +20 +40

1 95.9± 3 97.4± 0.2 96.4± 0.9 95.7± 1.6 96.8± 0.1 97.9 97.9 97.9 97.8

2 91.5± 3 97.4± 0.1 97.1± 0.1 97.1± 0.1 95.6± 0.1 94.1 97.9 97.6 97.7

3 93.9± 0.1 97.3± 0.3 97.2± 0.2 92± 7 91.3± 0.3 97.8 97.9 97.8 97.9

4 89.2± 12 96.5± 0.6 90± 10 89± 11 83± 16 97.6 96.7 97.0 98.0

BOSS methods are compared using four sets of class prototypes (i.e., 1 prototype per class) for SVHN. The FixMatch column shows results for the original FixMatch code on the

prototype sets. The next four columns give the accuracy results for the class balance methods. Results are an average of test accuracies for four runs. The self-training iteration was

performed on the results from the class balancing shown in bold.

FIGURE 1 | An example of training to a poor local minimum (blue) and training

with instabilities (red). Both end with poor test accuracies but for different

reasons.

Our experiments with training instabilities (i.e., the red curve)
implied that they can be caused by too much class balancing.
We hypothesize that when the model struggles to classify some
of the classes, the class balancing methods can force the pseudo-
labeling to mislabel samples in order to have the appearance of
class balance. In these cases, it is better to reduce the amount of
class balancing by using a smaller value for 1 for class balance
methods 1 and 4, and using a smaller value for λu for class balance
methods 2 and 3. In addition, we observed that decreasing weight
decay (WD) and the learning rate (LR) improves performance
when there are instabilities.

On the other hand, if the inferior performance is due to poor
local minimum (i.e., the blue curve), one can either improve the
class prototypes (i.e., prototype refining) or increase the amount
of class balancing. This is the opposite of what should do for
instabilities; that is, one can use a larger value for 1 for class
balance methods 1 and 4, use a larger value for λu for class
balance methods 2 and 3, or increase weight decay (WD) and
the learning rate (LR). We also observed that it helps to increase
τ if there are instabilities and to decrease τ in the poor local
minimum situation.

Table 4 demonstrates how to improve the results presented
in Table 2 (for consistency we used the same hyper-parameter
values for all of the class balance runs shown in Table 2).

TABLE 4 | Illustration of the sensitivity to the hyper-parameters WD, LR, 1, λu,

and τ . See the text for guidance on how to tune these hyper-parameters for

situations with inferior performance due to instabilities or local minimums.

Set Balance Description WD LR 1 λu τ Accuracy (%)

1 3 Instabilities 8× 10−4 0.06 0 1 0.9 84± 6

1 3 Decrease λu 8× 10−4 0.06 0 0.5 0.9 87± 1

2 4 Instabilities 8× 10−4 0.06 0.25 1 0.95 80± 14

2 4 Decrease 1, WD, LR 6× 10−4 0.04 0.1 1 0.95 94.5± 0.1

4 1 Local min 8× 10−4 0.06 0.25 1 0.9 77.5± 0.1

4 1 Increase 1, τ 8× 10−4 0.06 0.3 1 0.95 93.2± 0.2

4 2 Local min 8× 10−4 0.06 0 1 0.9 81± 6

4 2 Increase λu 8× 10−4 0.06 0 2 0.9 92± 2

4 3 Local min 8× 10−4 0.06 0 1 0.9 81± 8

4 3 Increase λu 8× 10−4 0.06 0 2 0.9 88± 3

5 1 Instabilities 8× 10−4 0.06 0.25 1 0.95 86± 7

5 1 Decrease 1 8× 10−4 0.06 0.1 1 0.95 90.7± 0.1

5 2 Instabilities 8× 10−4 0.06 0 1 0.9 89± 6

5 2 Decrease λu 8× 10−4 0.06 0 0.75 0.9 91.7± 1

5 3 Instabilities 8× 10−4 0.06 0 1 0.9 83± 10

5 3 Decrease WD, LR 6× 10−4 0.04 0 1 0.9 93.5± 2

Table 4 contains results of hyper-parameter fine tuning where
we reported earlier test accuracies below 85%. We list the class
prototype set (Set), the BOSS class balancing method (Balance),
weight decay (WD), initial learning rate (LR), the change in the
confidence threshold for minority classes (1), the unlabeled loss
multiplicative factor (λu), the confidence threshold (τ ), and the
final test accuracy. Furthermore, we provide a short description
that indicates if the training curve displays instabilities (i.e., the
red curve in Figure 1) or a poor local minimum (i.e., the blue
curve). Or the description points out the hyper-parameters that
were tuned to improve the performance.

The examples in Table 4 show improved results for both
the problem of instability and for poor local minimums.
The examples include modifying 1, weight decay, learning
rate, and τ . In most cases the final accuracies are improved
substantially with small changes in the hyper-parameter values.
This demonstrates the sensitivity of one-shot semi-supervised
learning to hyper-parameter values.
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While this sensitivity can be challenging in practice, we note
that this sensitivity can also lead to new opportunities. For
example, often researchers propose new network architectures,
loss functions, and optimization functions that are tested in the
fully supervised regime where small performance gains are used
to claim a new state-of-the-art. If these algorithms were instead
tested in one-shot semi-supervised learning, more substantial
differences in performance would better differentiate methods.
Along these lines, we also advocate the use of one-shot semi-
supervised learning with AutoML and neural architecture search
(NAS) (Elsken et al., 2018) to find optimal hyper-parameters
and architectures.

5. CONCLUSIONS

The BOSS methodology relies on simple concepts: choosing
iconic training samples with minimal background distractors,
employing class balancing techniques, and self-training with the
highest confidence pseudo-labeled samples. Our experiments in
Section 4 demonstrate the potential of training a network with
only one sample per class and we have confirmed the importance
of class balancing methods. While our methods have limitations
(as discussed in the Appendix), this paper breaks new ground in
one-shot semi-supervised learning and attains high performance.
BOSS brings one-shot and few-shot semi-supervised learning
closer to reality.

We proposed the novel concept of class balancing on
unlabeled data. We introduced a novel way to measure class
imbalance with unlabeled data and proposed four class balancing
methods that improve the performance of semi-supervised
learning. In addition, we investigated hyper-parameter sensitivity
and the causes for weak performance (i.e., training instabilities),
where we proposed two opposite sets of solutions.

Our work provides researchers with the following
observations and insights:

1. There is evidence that labeling a large number of samples
might not be necessary for training deep neural networks to
high levels of performance.

2. All networks have a class imbalance problem to some degree.
Examining class accuracies relative to each other provides
insights into the network’s training.

3. Each training sample can affect the training. One-shot semi-
supervised learning provides a mechanism to study the atomic
impact of a single sample. This opens up the opportunity to
investigate the factors in a sample that help or hurt training
performance.

Training neural networks for image classification with only
one labeled example per class remain a barely studied field.
Future work includes applying the BOSS methodology to
more complex image classification datasets, such as ImageNet
and STL-10, which has not been investigated as far as
we know. While we do not expect to reach the same
test accuracies as with the fully supervised training, we do
anticipate substantial gains can be possible. Our work lays
the foundation for one-shot learning and opens the door to
future research.
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