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We present a custom implementation of a 2D Convolutional Neural Network (CNN) as

a viable application for real-time data selection in high-resolution and high-rate particle

imaging detectors, making use of hardware acceleration in high-end Field Programmable

Gate Arrays (FPGAs). To meet FPGA resource constraints, a two-layer CNN is optimized

for accuracy and latency with KerasTuner, and network quantization is further used to

minimize the computing resource utilization of the network. We use “High Level Synthesis

for Machine Learning” (hls4ml) tools to test CNN deployment on a Xilinx UltraScale+

FPGA, which is an FPGA technology proposed for use in the front-end readout system of

the future Deep Underground Neutrino Experiment (DUNE) particle detector. We evaluate

network accuracy and estimate latency and hardware resource usage, and comment on

the feasibility of applying CNNs for real-time data selection within the currently planned

DUNE data acquisition system. This represents the first-ever exploration of employing

2D CNNs on FPGAs for DUNE.

Keywords: data selection, particle imaging, liquid argon time projection chamber, hardware acceleration of deep

learning, real-time machine leaning, fast machine vision, data acquisition system, trigger system

1. INTRODUCTION

Modern-day particle physics experiments produce vast amounts of data that must be processed
to down-select interesting (and usually rare) signals for further physics study and scientific
discovery. This process of data selection is applied across several stages of the data processing
pipeline. In recent years, such pipelines have increasingly made use of deep learning (DL) (Radovic
et al., 2018; Karagiorgi et al., 2021). Additionally, as data rates grow, there is increased need
to accurately and efficiently execute data selection in real time, i.e., at a rate commensurate
with data generation throughput and with low latency, by employing “triggers”. These are real-
time data-driven decisions, which translate physical measures—quantities calculated based on the
incoming data itself and/or other external signals—into instructions on which data to keep or
permanently discard.

Driven in part by the need to increase accuracy in selecting high-dimensional and highly-
detailed data from modern-day particle detectors, machine learning (ML) algorithms based on
both supervised and unsupervised learning have been proposed and shown to be capable of
effectively triggering on incoming physics data, proving to be a promising solution for the
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upcoming data challenges of future experiments. Implementing
ML algorithms into dedicated hardware for triggering, such as
GPUs, or FPGAs, can potentially guarantee fast execution of the
algorithm while taking advantage of the algorithm’s accuracy in
selecting data of interest withmaximal signal efficiency and signal
purity. Additionally, software toolkit development projects such
as hls4ml (Fahim et al., 2021) are providing suitable and user-
friendly frameworks for easily employing ML algorithms into
hardware for application-specific usage (see, e.g., Aarrestad et al.,
2021; Loncar et al., 2021).

Further motivated by a widely used particle imaging
detector technology—liquid argon time projection chambers
(LArTPCs)—we explore the applicability of algorithms
commonly used in image analysis for LArTPC triggering
purposes, following Jwa et al. (2019). LArTPCs work by
continuously imaging a large and homogeneous 3D detector
volume, wherein electrically charged particles are visible through
the trails of ionization they leave along their trajectories. This
type of technology is employed in searches of rare events such as
interactions of dark matter particles or supernova core-collapse
neutrinos with the detector medium. More so than for other
particle detector technologies, LArTPC data are well-suited for
image analysis given that neutrino or other rare event signals
are translationally invariant within a generally sparse 2D or
3D image of the detector volume. In past work (Jwa et al.,
2019), we have shown that 2D convolutional neural networks
(CNNs) tested on simulated raw data from a LArTPC can yield
sufficient accuracy and can be implemented onto parallelized
data processing pipelines using GPUs to perform data selection
in a straightforward way, while meeting the physics performance
and latency requirements of future LArTPC experiments.

The need to improve the long-term operation reliability
and power utilization of such data processing pipelines
motivates the exploration of alternate implementations of CNN-
based data selection, specifically implementations on Field
Programmable Gate Arrays (FPGAs). FPGAs are low-power
digital microelectronics devices commonly used for signal
processing and data acquisition applications. They are commonly
used in front-end readout electronics systems for particle physics
experiments; their on-device nature (often capable of receiving
the full-rate of detector-generated data prior to any data filtering
or reduction) and their reliability for long-term operation make
them attractive for data processing algorithm implementation,
especially if only minor pre-processing is necessary in the data
pipeline. In general, algorithm implementation into a front-
end device is advantageous as it makes large data movement
unnecessary, reduces power consumption and trigger latency,
and increases reliability. More recently, there has been a
growing interest in using FPGAs as accelerators for deep neural
networks (Trimberger, 2015).

A number of ML algorithms have already been explored for
particle triggering and suitability for FPGA applications; see,
e.g., Heintz et al., 2020; Iiyama et al., 2020; Summers et al.,
2020; Aad et al., 2021; Deiana et al., 2021; Diotalevi et al.,
2021; Elabd et al., 2021; Govorkova et al., 2021; Mikuni et al.,
2021. Explored algorithm implementations range from Artificial
Neural Networks, to Boosted Decision Trees, Graph Neural

Networks, to Autoencoders, etc. In this article, we investigate,
for the first time, the implementation of a relatively small
2D CNN onto an FPGA, targeted for use in the front-end
readout electronics of the future Deep Underground Neutrino
Experiment (DUNE) (Abi et al., 2020a,b,c,d), motivated by
previous exploration and findings in Jwa et al. (2019). While
the use of CNNs for image classification applications has been
established for well over a decade (Ciresan et al., 2011), their
specific use in fast-inference applications in particle physics
has been restricted to non-LArTPC applications (Duarte et al.,
2018, 2019). On the other hand, in the case of LArTPCs, CNNs
have been used successfully for offline data analysis and physics
measurements (see, e.g., Acciarri et al., 2012, 2017a; Adams et al.,
2019; Abi et al., 2020e; Abratenko et al., 2021a,b). Keeping in
mind the 2D nature and high resolution of LArTPC raw data,
we explore and evaluate techniques to reduce the computational
resource usage of CNN inference on FPGAs. We focus on
the DUNE case, and show that we can meet the technical
specifications of the DUNE readout system, while still satisfying
the physics accuracy requirements of the experiment. We add
that other DL algorithms have also been studied for offline data
analysis of LArTPC data (Koh et al., 2020; Drielsma et al., 2021),
and would also be worth exploring for FPGA implementation for
LArTPC trigger applications.

In Section 2, we describe the DUNE Far Detector (FD)
LArTPC in more detail, including its operating principle, and
the technical specifications and requirements of its readout and
data selection (trigger) system. In Section 3 we explore different
CNN architectures, and explore their accuracy in selecting data
containing rare signal events, paying attention to the overall
size of the network, in anticipation of minimal computational
resource availability in the DUNE FD readout system. Section 3.1
describes how simulated raw data from the DUNE FD are
prepared as input to the CNN; Section 3.2 describes some
CNN architectures and the classification accuracy performance
on simulated input images; in Section 3.3, we further optimize
the network architecture and hyperparameters in an automated
way, using the KerasTuner package1 (O’Malley et al., 2019), and
compare classification accuracy of the automatically optimized
network to the non-optimized ones. Throughout all subsections,
we also present network accuracy results using “HLS-simulated”
versions of the CNNs, produced using the hls4ml package (Fahim
et al., 2021). One key feature of hls4ml is a reduction in
accuracy due to quantization of the network, which we avoid
by employing quantization-aware training, following (Coelho
et al., 2021; Hawks et al., 2021), as discussed in Section 3.4.
Finally, in Section 4, we provide estimates of FPGA resource
usage of the optimized networks (with and without quantization-
aware training), using an hls4ml synthesized design for a targeted
FPGA hardware implementation. We demonstrate that the use
of 2D CNNs for real-time data selection in the future DUNE is
viable, and advantageous, given the currently envisioned front-
end readout system design.

1KerasTuner. Available online at: https://keras.io/keras_tuner/ (accessed

December 20, 2021).
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2. APPLICATION CASE: REAL-TIME DATA
SELECTION FOR THE FUTURE DUNE
LARTPC

LArTPCs are a state-of-the-art charged-particle detector
technology with broad applications in the field of particle
physics, astro-particle physics, nuclear physics, and beyond.
This high-rate imaging detector technology has been adopted
by multiple particle physics experiments, including the current
MicroBooNE experiment (Acciarri et al., 2017b), two additional
detectors that are part of the upcoming Short-Baseline Neutrino
(SBN) program (Antonello et al., 2015), as well as the next-
generation DUNE experiment (Abi et al., 2020a,b,c,d), and it
is also proposed for future-generation astro-particle physics
experiments such as GRAMS (Aramaki et al., 2020). LArTPCs
work by imaging ionization electrons produced along the paths
of charged particles, as they travel through a large (multiple cubic
meters) volume of liquid argon. Charged particle ionization
trails drift uniformly toward sensor arrays with the use of

a uniform electric field applied throughout the liquid argon
volume, and are subsequently read out in digital format as

part of 2D projected views of the 3D argon volume. This is
illustrated in Figure 1. Densely packed sensor arrays sample the

drifted ionization charge at a high rate, typically using a 12-bit,

2 MHz Analog to Digital Converter (ADC) system recording the

amount of ionization charge per sensor per time-sample, thus

imaging charge deposition across 2D projections of the argon

volume with millimeter-scale resolution. Typically, digitized
image frames of O(10) megabytes each are streamed out of
these detectors in real time and at a rate of up to hundreds of
thousands of frames per second, amounting to raw data rates of
multiple gigabytes to several terabytes (TB) per second.

The future DUNE experiment represents a special case,
with the most stringent data processing requirements among
all currently running or planned LArTPC experiments. DUNE
consists of a near and a far detector complex, which will be
located at Fermi National Accelerator Laboratory (Fermilab)
in Illinois and at the Sanford Underground Research Facility

FIGURE 1 | Operating principle of a LArTPC. The ionization electrons are drifted toward sensor arrays, e.g., planes of ionization charge sensor wires. Each wire is

connected to an analog amplifier/shaper, followed by an ADC, and its resulting digital waveform is read out continually. Waveforms of adjacent wires appended

together form 2D images. Image credit: Acciarri et al. (2017b).
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(SURF) in South Dakota, respectively. The far detector (FD)
complex will be located 1 mile deep under ground, and will
comprise the largest LArTPC ever to be constructed, with an
anticipated raw data rate for its first of four LArTPC modules
of 1.175 TB/s. This first detector module will be operated
continually, and for at least 10 years, with subsequent modules
coming online before the end of the current decade. The DUNE
FDwill therefore be constructed with a readout and data selection
system that is required to receive and process an overall raw data
rate of 4×1.175 TB/s, achieve a factor of 104 data reduction, and
maintain > 99% efficiency to particle interactions of interest that
are predicted to be as rare as once per century (Abi et al., 2020d).

The scientific goals of DUNE include, but are not limited
to, observing neutrinos from rare (once per century) galactic
supernova bursts (SNBs) (Abi et al., 2020b, 2021b), searching
for rare baryon number violation processes such as argon-bound
proton decay and argon-bound neutron-antineutron oscillation,
and studying interactions of neutrinos that are produced in
cosmic ray air showers in the Earth’s atmosphere (Abi et al.,
2020b, 2021a). From the data acquisition (DAQ) and data
selection (trigger) point of view, these rare physics searches
and in particular the requirement to be > 99% efficient to a
galactic SNBs with a less than once per month false positive SNB
detection rate, cast particularly stringent technical requirements.

More specifically, in order to select these “events”, which take
place randomly and unpredictably, the DUNE DAQ and trigger
system must scan all detector data continuously and with zero
dead time, and identify rare physics signatures of interest in a
“self-triggering” mode—without relying on any external signals
prompting data readout. Furthermore, a self-triggering scheme
reaching nearly perfect (100%) efficiency for rare physics events
is needed in order for DUNE to achieve its full physics program.
This further requires temporarily buffering large amounts of data
while this processing takes place. In the case of DUNE, buffering
constraints translate into a sub-second latency requirement for
the trigger decision. Additionally, the trigger decision needs
to achieve an overall 104 data rate reduction, and with high
signal selection efficiency, corresponding to an average of >60%
efficiency on individual supernova neutrino interactions, and
>90% efficiency to other rare interactions including atmospheric
neutrino interactions and baryon number violating events.

The first DUNE FD module will image charged particle
trajectories within 200 independent but contiguous liquid argon
volume regions (“cells”). Charged particle trajectories within
each cell will be read out by sensor wires arranged in three
planes: one charge-collection wire plane, plus two charge-
induction wire planes. Each plane’s readout corresponds to a
particular 2D projected view of the 3D cell volume, and the
combination of induction and collection plane information
allows for 3D stereoscopic imaging and reconstruction of any
given interaction within the 3D cell volume. In total, the first
FD module will consist of 384,000 wire sensors, each read
out independently; this outnumbers current LArTPC neutrino
experiments by more than a factor of 500 (e.g., MicroBooNE
makes use of 8,256 wire sensors). For this work, we focus
exclusively on charge-collection wire readout. Charge-collection
wires give rise to signals which are unipolar in nature (as

opposed to charge-induced signals, which are bipolar in nature,
and therefore susceptible to cancellation effects). As such,
charge-collection readout waveforms preserve sensitivity to
charge deposition even for extended charge distributions. Since
particle identification (and subsequent data selection decision
making) relies on quantifying the amount of charge deposition
per unit length of a charged particle track, charge-collection
waveform information is anticipated to provide better particle
identification performance.

The 200 cells of the first DUNE FD module will be read out in
parallel, by 75 “upstream DAQ” readout units. Each unit makes
use of a Front-End LInk eXchange (FELIX) PCIe 3.0 card (Borga
et al., 2019; Abi et al., 2020d) holding a Xilinx UltraScale+ FPGA
to read out digitized waveforms, and pre-process the data. In
the nominal DUNE readout unit design, the FPGA processes
continuous waveforms in order to perform noise filtering and
hit-finding; hit-finding summaries are then sent for additional
processing to a FELIX-host CPU system, in order to form trigger
candidates (particle interaction candidates); the latter inform a
subsequent module-wide trigger decision. An alternate potential
solution, and the scope of this work, is to apply more advanced
data processing and triggering algorithms within the available
FPGA resources on-board the FELIX card, such as CNNs, which
can intelligently classify a collection of waveforms representing
activity across the entire cell volume in real time. This would
eliminate the need of subsequent CPU host (or GPU) processing,
potentially increase trigger efficiency and purity (through the use
of more intelligent algorithms), and potentially further minimize
power consumption needs. It is worth noting that, since most
interactions of interest have a spatial extent which is smaller than
the cell volume, a per-cell parallelization of triggering algorithms
is appropriate, and it is therefore sufficient to focus trigger studies
to a per-cell level, ignoring cell volume boundary effects.

3. CNN DESIGN AND OPTIMIZATION FOR
REAL-TIME LARTPC DATA SELECTION

In recent years, DL algorithms such as CNNs have been shown
to achieve very high signal selection efficiencies when employed
in offline physics analyses of LArTPC data. MicroBooNE is
leading the development and application of DL techniques,
including CNNs, for LArTPC data reconstruction (Acciarri et al.,
2017a; Adams et al., 2019; Abratenko et al., 2021a,b), and CNN-
based analyses and DL-based reconstruction are actively being
developed for SBN and for DUNE (Acciarri et al., 2012; Abi et al.,
2020e).

In a previous study (Jwa et al., 2019), we have also shown
that sufficiently high efficiencies can be reached by processing
raw collection plane data from any given DUNE FD cell, prior
to removing any detector effects or applying data reconstruction.
As such, we proposed a CNN-based triggering scheme using
streaming raw 2D image frames, whereby the images are pre-
processed, downsized, and run through CNN inference to
select ones containing SNB neutrino interactions or other rare
interactions of interest on a frame-by-frame basis. The data
pre-processing and CNN-based selection method demonstrated
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that target signal selection efficiency while reaching the needed
104 background rejection could be achieved, given sufficient
parallelization in GPUs. As the DUNE FD DAQ and trigger
design is subject to stringent power limitations and limited
accessibility in the underground detector cavern, a particularly
attractive option is to fully implement this pre-processing and
CNN-based inference on FPGAs, in particular ones that will
be part of the DUNE upstream DAQ readout unit design. We
examine the viability of this option in this work.

Specifically, we explore the accuracy of relatively small CNNs
in classifying streaming DUNE FD LArTPC cell data, and
proceed to employ network optimization in an effort to reduce
its computational resource footprint while preserving network
accuracy. The following subsections describe the CNN input
image preparation (Section 3.1), CNN performance without
(Section 3.2) and with (Section 3.3) network optimization, and
with quantization-aware training (Section 3.4).

3.1. Input Image Pre-processing
Because of the parallelism in the DUNE FD DAQ and trigger
design, we only consider a single cell’s worth of data at a time, and
focus exclusively on raw collection plane waveforms. Following
(Jwa et al., 2019), collection plane waveforms for a single cell in
the DUNE FD are simulated in the LArSoft framework2 (Church,
2013), using the default configuration of the dunetpc software,
and using an enhanced electronics noise level configuration,
to be conservative. Besides electronics noise, the simulation
includes radiological impurity background interactions that are
intrinsic to the liquid argon volume. The radiological background
interactions (predominantly from 39Ar decay) are expected to
occur at a rate of 107 Hz per FD module, and they are
considered as likely backgrounds particularly to supernova
neutrino interactions. Signal waveforms from interactions of
interest, including low-energy supernova neutrino interactions
or other high-energy interactions (proton decay, neutron-
antineutron oscillation, atmospheric neutrino interactions,
cosmogenic background interactions), are overlaid on top
of intrinsic radiological background and electronics noise
waveforms.

Given the physical dimension of a cell along the ionization
charge drift direction, and the known ionization charge drift
velocity, 2.25 ms worth of continuous data from the entire
collection plane represents a 2D image exposure of the full cell
volume. As such, we define a 2D image in terms of 480 collection
plane wire channels spanning the length of the cell volume, times
the 2.25 ms drift direction sampled at 2 MHz (4,488 samples)
spanning the width of the cell volume. This corresponds to a
2.1 megapixel image, with 12-bit ADC resolution governing the
range of pixel values, dictating the amount of ionization charge
collected by each wire, and indicating the energy deposit within
the 3D volume across the given 2D projection.

For network training purposes, the 2.1 megapixel input
images are labeled as containing either electronics noise and
radiological background only (NB), or low-energy supernova
neutrino interactions (LE), or high-energy interactions (HE),

2LArSoft. Available online at: https://larsoft.org/ (accessed December 20, 2021).

each superimposed with electronics noise and radiological
background, according to the simulation truth. Figure 2 shows
example input 2D images before pre-processing steps. We
note the sparsity of these images, mostly containing uniformly
distributed low-energy activity from noise and radiological
backgrounds. While it is possible to train a CNN with 2.1
megapixel images, it is not memory-efficient, and it may
furthermore not be an efficient way to propel a CNN to
learn the different features between the three event classes
(NB, LE, and HE). Following (Jwa et al., 2019), we adopt
pre-processing steps that include de-noising (zero-suppression),
cropping around the region-of-interest (ROI), and resizing the
ROI through down- or up-sampling. The de-noising step uses
a configurable threshold for the pixel ADC value and zero-
suppresses pixel values below this threshold; a threshold of
520 ADC (absolute scale) was used in these studies, where
∼ 500 ADC represents the baseline. ROI cropping was
performed by finding a contiguous rectangular region containing
pixels with values over 560 ADC. The most extreme image
coordinates (smallest and largest channel number, as well as
smallest and largest time tick) with pixel values greater than the
lower threshold of 560 ADC were used to determine the ROI
boundaries. Once an ROI was found, the ROI region was resized
(through up-sampling or down-sampling) to occupy exactly 64×
64 pixels, as shown in Figure 3. Resulting image pixel values
were then re-normalized to a range between 0-1 prior to CNN
processing.

Resized ROIs were generated for each of the three categories
indicated in Table 1, with comparable statistics, and used for
network training and testing for all studies presented in the
subsequent sections. As we are investigating the viability of CNN
implementation on FPGAs, computational resource utilization
by the CNN is a key concern, and we therefore begin by
investigating performance for relatively small-sized CNNs. For
this task, we are working with a relatively small data set,
split into training (60%), validation (20%) and test set (20%).
Table 1 shows the statistics for only the training and testing data
sets.

The overall data processing and data selection scheme
proposed and examined in this study is summarized in Figure 4.

3.2. Performance of CNN-Based Data
Selection
Targeting FPGA implementations, we designed and tested
custom CNN architectures with only one or two convolutional
layers: CNN01, CNN02, and a downsized version of the latter,
CNN02-DS. These networks have far simpler architectures
than some of the more popular CNN architectures commonly
used in image classification tasks [e.g., VGG (Simonyan
and Zisserman, 2014) or ResNet (He et al., 2016) network
architectures], by design, as they are targeted for implementation
in computational-resource-constrained systems.

The network architecture for CNN01 is shown in Figure 5.
CNN01 has one convolutional layer, with convolutional width
kernel dimension (3,3,32), and one max-pooling layer. One
fully connected layer follows at the end. In contrast, CNN02
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FIGURE 2 | Examples of 2D images formed from one full drift (2.25 ms) of 480 collection plane wires in one DUNE FD cell. Top: Image containing electronics noise

and radiological background only (NB). Middle: Image containing one low-energy supernova neutrino interaction (LE) superimposed with electronics noise and

radiological background. Bottom: Image containing one high-energy interaction (HE), specifically from neutron-antineutron oscillation (nnbar), superimposed with

electronics noise and radiological background. The color z axis indicates the wire waveform ADC value (simulated with 12-bit resolution). These images are

pre-processed prior to CNN processing.

FIGURE 3 | Example ROIs formed after pre-processing. Left: Image containing electronics noise and radiological background only (NB). Middle: Image containing

one low-energy supernova neutrino interaction (LE) superimposed with electronics noise and radiological background. Right: Image containing one high-energy

interaction (HE), specifically from neutron-antineutron oscillation (nnbar), superimposed with electronics noise and radiological background. The color z axis indicates

ADC values after down- or up-sampling. These images are renormalized with pixel values ranging from 0 to 1 prior to inputting to a CNN for subsequent processing

(data selection).

has two convolutional layers, and one max-pooling layer after
each convolution. Also, here, one fully connected layer follows
at the end. Finally, CNN02-DS is a downsized version of
CNN02, where the convolution depth is significantly reduced.
All three custom network architectures are summarized in
Table 2.

Table 3 shows the classification performance of the three
networks, for a GPU or CPU implementation using Keras3.
The performance of these three networks is comparable. For

3Keras. Available online at: https://github.com/keras-team/keras/ (accessed

December 20, 2021).
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TABLE 1 | Number of ROIs, according to truth label, used for training and testing

of CNNs.

Label: NB Label: LE Label: HE

Training set size 12,023 12,050 10,137

Testing set size 4,027 3,970 3,417

Another statistically independent sample of images with similar statistics to the test sample

was used for validation purposes during training.

A total of 45,624 ROIs were used in the study.

all three networks, the false positive identification rates (which
affect data reduction capability) are comparable, and the (correct)
classification accuracy is over 99% for NB labeled ROIs, over 93%
for LE labeled ROIs, and over 90% for HE labeled ROIs. Despite
the difference in architecture (one vs. two convolution layers) and
number of trainable parameters, no clear impact on classification
performance is observed.

While accuracy results meet signal efficiency requirements4,
the high false positive rate (in particular for true NB ROIs to be
mis-classified as LE events at a rate of 0.5%) suggests a steady-
state data reduction factor for a frame-by-frame data selection
implementation that is a factor of 50 lower than the required
reduction factor of 104. This is because the overwhelming
majority (>99.9%) of the streaming ROIs in DUNE are expected
to be truly NB ROIs, and therefore a 0.5% mis-classification rate
would result in approximately one in 200 ROIs being (falsely)
selected, as opposed to the targeted one in 10,000. Additional
data reduction, however, can be provided by an ROI pre-selection
stage, as motivated in Jwa et al. (2019); specifically, approximately
only one in 50 2D true NB images are expected to be non-empty
after ROI finding (see Figure 4) and therefore 98% of the ROIs
can be discarded prior to CNN processing.5 This suggests that an
overall factor of 104 is achievable.

In this work, the ML models were trained and tested on
GPUs with single-precision floating-point arithmetic (standard
IEEE 754), and then post-training quantization (PTQ) was
performed with the aim of running ML inference on FPGA. It
is worth noting that FPGAs support integer, floating-point, and
fixed-point arithmetic. An FPGA implementation may require
orders of magnitude higher resources, besides higher latency
and power costs, when compared with a finely-tuned fixed-point
implementation of the same algorithm (Finnerty and Ratigner,
2017). Predictably, PTQ impacts ML classification performance,
although the profiling tools in hls4ml help the designer decide
the appropriate model precision6. The resulting accuracy values
for PTQ networks targeted for FPGA (with fixed-point precision)
are shown in Table 4, and contrasted to those with floating-point
precision in Table 5. We adopted quantization-aware training
(QAT) to address this accuracy drop, as discussed in Section 3.4.

4In this study, accuracy is defined identically to signal efficiency, i.e., as a true

positive classification rate given a set of true labels.
5Note that the CNN studies presented in this article are performed exclusively on

non-empty ROIs. For images containing LE and HE events, ROI-finding does not

cause any additional reduction in efficiency, and the ROI classification accuracy

represents the signal efficiency. For images containing only NB, only one in

approximately 50 images is kept after ROI-finding.
6Profiling. Available online at: https://fastmachinelearning.org/hls4ml/api/

profiling.html (accessed January 2, 2022).

3.3. Automatized CNN Hyperparameter
Optimization Using KerasTuner
In the initial network performance comparison presented in
Section 3.2, the classification performance does not appear to
be highly sensitive to the network architecture and number
of trainable parameters. In general, the choice of network
hyperparameters such as the dimensions of hidden layers, and
learning parameters, changes the number of trainable variables.
Thus, the quality of training can be modulated by tuning the
hyperparameters using the training and validation samples. This
can be cumbersome to optimize, but further optimization of
networks with respect to a large phase-space of hyperparameters
can be performed methodically and in an automated way
using open-source tools such as KerasTuner (see text footnote1)
(O’Malley et al., 2019).

We used KerasTuner for hyperparameter optimization for
the baseline network architecture CNN02-DS. The scanning
range and granularity of the hyperparameters explored is shown
in Table 6. A total of twenty combinations were randomly
sampled from the hyperparameter scanning region. As illustrated
in Table 7, the optimized network CNN02-DS-OP with the
(marginally) highest classification accuracy, found at 95.22%,
corresponds to a network with a first convolution depth of 8,
second convolution depth of 16, dense layer size of 12, and
learning rate of 2.9× 10−3.

3.4. Network Quantization in CNN-Based
Data Selection
The cost reduction and performance improvement of fixed-point
arithmetic with HLS is highly encouraged when designing ML
algorithms for FPGA deployment. Typically, when a trained
network within an ML framework (e.g., Keras) on CPU or GPU
is translated to HLS, the floating-point precision is reduced
to the fixed-point precision of a given configuration. As a
consequence, generally, network quantization resulting from
fixed-point precision effectively reduces the precision of the
calculations for weights, bias, and/or inputs, resulting in lower
inference accuracy performance than what would otherwise be
possible with floating-point precision. This is evident in Table 5.

In principle, one cannot achieve the flexibility and accuracy
of a floating-point precision with any fixed-point representation.
However, if accuracy can be maintained with an optimized
choice of fixed-point precision, one can benefit from the
inherent advantage of reduced computing resource utilization.
Maintaining of accuracy therefore can be achieved with
quantization-aware network training (Gong et al., 2014; Gupta
et al., 2015; Han et al., 2016; Coelho et al., 2021; Hawks et al.,
2021).

Quantization-aware training (QAT), achieved by committing
calculations in ML algorithms with already-reduced fixed-
point representation as part of network training, can prevent
reduction in inference accuracy. The QKeras package7 supports
quantization-aware training by quantizing any given network
using Qlayers. The quantized network derived from a given

7QKeras. Available online at: https://github.com/google/qkeras (accessed

December 20, 2021).
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FIGURE 4 | The data processing and data selection scheme under study for potential implementation in the upstream DAQ readout units of the future DUNE FD. The

streaming 2D input images contain, > 99.9% of the time, NB data. This overall scheme should select true HE and LE images with > 90% accuracy, and true NB

images with > 99.99% accuracy, in order to meet the DUNE FD physics requirements. Additionally, the pre-processing and CNN inference algorithms should meet the

computational resources of the DUNE FD upstream DAQ readout units, and the algorithm execution latency should meet the data throughput requirements of the

experiment.

network architecture can be constructed by replacing the layers in
the initial network to Qlayers. We refer to the quantized version
of CNN02-DS-OP obtained with QKeras as Q-CNN02-DS-OP.

The precision configuration of Q-CNN02-DS-OP is shown in
Figure 6. The precision configuration of the reference CNN02-
DS-OP is shown is shown in Figure 7.
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FIGURE 5 | Network architecture of CNN01.

The classification results obtained using the reference
CNN02-DS-OP network with and without PTQ are shown
in Table 8; the corresponding results obtained with the
quantization-aware trained (QAT)Q-CNN02-DS-OP are shown
in Table 9.

For the network trained without QAT, CNN02-DS-OP, the
overall classification accuracy for the entire testing sample
(superset of three truth labels) drops significantly with PTQ, from

95.4 to 72.4%. For the network trained with QAT,Q-CNN02-DS-

OP, however, the overall classification accuracy is maintained for
what would be an equivalent FPGA implementation (with PTQ),
at 95.2 and 95.2%. This demonstrates that a relatively small CNN,
applied on a frame-by-frame basis, and trained with quantization
that is consistent with FPGA fixed-point precision, can achieve
the accuracy (signal efficiency and target data reduction factor)
required for the DUNE FD.
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TABLE 2 | Summary of explored CNN architectures.

CNN01 CNN02 CNN02-DS

Number of convolution layers 1 2 2

Convolution kernel dimension (first conv.) 3×3×32 3×3×32 3×3×4

Convolution kernel dimension (second conv.) N/A 3×3×64 3×3×8

Number of max-pooling layers 1 2 2

Max-pooling dimension (first max-pool) 2×2 2×2 4×4

Max-pooling dimension (second max-pool) N/A 2×2 4×4

Number of trainable parameters 262,499 149,923 1,395

TABLE 3 | Classification accuracy comparison for CNN01, CNN02, and

CNN02-DS on GPU or CPU.

CNN01 NB % LE % HE %

True NB 99.4 0.55 0

True LE 3.8 94.2 1.9

True HE 3.4 6.1 90.5

CNN02 NB % LE % HE %

True NB 99.5 0.50 0

True LE 4.0 93.2 2.8

True HE 3.2 6.6 90.2

CNN02-DS NB % LE % HE %

True NB 99.5 0.52 0

True LE 3.7 94.4 1.9

True HE 3.0 6.5 90.5

TABLE 4 | Classification accuracy comparison for CNN01, CNN02, and

CNN02-DS, using post-training quantization (PTQ).

CNN01 NB % LE % HE %

True NB 98.1 1.8 0.02

True LE 6.6 89.1 4.3

True HE 19.4 37.7 42.9

CNN02 NB % LE % HE %

True NB 98.1 0.25 1.9

True LE 22.8 10.6 66.6

True HE 21.5 3.7 74.7

CNN02-DS NB % LE % HE %

True NB 99.5 0.47 0

True LE 4.9 93.1 1.9

True HE 21.2 40.1 38.7

4. ESTIMATION OF FPGA RESOURCE
USAGE

In this section, we estimate FPGA resource usage and examine
whether a Xilinx Virtex-7 UltraScale+ FPGA can accommodate a
pre-trained CNN that meets the accuracy as well as resource and
latency specifications of the DUNE FD DAQ and trigger system.

The estimated hardware usage for the quantized inference
block of each of the optimized CNNs (Q-CNN02-DS-OP and
CNN02-DS-OP) from Vivado HLS is shown in Table 10. The
hardware usage of the discussed inference shows that the target

TABLE 5 | Combined classification accuracy for true NB, LE, and HE ROIs for

floating-point vs. PTQ fixed-point implementations of the trained networks.

CNN01 % CNN02 % CNN02-DS %

Floating-point accuracy 94.9 94.5 95.0

Fixed-point accuracy (PTQ) 78.5 60.7 79.1

The combined classification accuracy is evaluated collectively on all of the testing set ROIs

in Table 1, combined.

TABLE 6 | Scanning range and granularity of the hyperparameters explored

during automated network optimization using KerasTuner.

Hyperparameter Range Default value

First convolution depth (conv1) [4, 8, 16] 4

Second convolution depth (conv2) [8, 16, 32] 8

Dense layer size (fc) [8, 12, 16, 20, 24] 12

Learning rate (lr), logarithmic sampling [2× 10−4, 2× 10−2] 2× 10−3

TABLE 7 | Classification accuracy for the five top-performing and default

(CNN02-DS) hyperparameter configurations.

conv1 conv2 fc lr Accuracy (%)

First-best 8 16 12 2.9 ×10−3 95.22

(CNN02-DS-OP)

Second-best 16 32 12 4.9 ×10−4 95.21

Third-best 4 16 20 6.0 ×10−4 95.21

Fourth-best 16 8 16 7.0 ×10−4 95.19

Fifth-best 16 8 12 1.9 ×10−3 95.19

Default 4 8 12 2 ×10−3 95.09

Note that the default accuracy obtained during hyperparameter optimization slightly differs

from that in Table 5, due to differences in (random) initialization of the network weights

before training, and randomness during the training.

FPGA, a high-end device, is well fit for implementing either the
Q-CNN02-DS-OP or the CNN02-DS-OP network. As expected,
the Q-CNN02-DS-OP network uses significantly lower FPGA
resources. It is worth noting that, in addition to using more
resources, CNN02-DS-OP (PTQ) has a lower accuracy than
Q-CNN02-DS-OP (QAT), at 72.4% vs. 95.2%, illustrating the
advantages of QAT.

Assuming a clock cycle of 5.00 ns, we find that the design is
expected to meet timing requirements, with an inference latency
of 4680 clock-cycles, corresponding to 23.4 µs. This is well below
the exposure time corresponding to a single input image of
2.25 ms; thus, assuming sufficient parallelization (i.e., at least
two input 2D images processed in parallel by each FELIX unit),
frame-by-frame real-time data selection based on collection
plane-only image analysis with CNNs is a viable solution for the
DUNE FD. Note that this does not consider additional resource
utilization or latency associated with image pre-processing (ROI
finding and down-sizing).

We note that, in the current stage, the ML-based FPGA design
has been synthesized, but it has not been implemented yet into
the hardware; this is the focus of continuing development efforts.
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FIGURE 6 | Precision configuration of layers in Q-CNN02-DS-OP. The precision configuration of the reference CNN02-DS-OP can be found in Figure 7. Note that

FPGA resource utilization is generally reduced with smaller ap_fixed values.
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FIGURE 7 | Precision configuration of layers in the reference CNN02-DS-OP.
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TABLE 8 | Optimized performance for CNN02-DS-OP, without

quantization-aware network training.

Floating-point NB % LE % HE %

True NB 99.5 0.50 0

True LE 3.5 95.1 1.4

True HE 2.9 6.1 91.0

Total accuracy 95.4

Fixed-point (PTQ) NB % LE % HE %

True NB 99.8 0.17 0

True LE 6.3 88.9 4.8

True HE 26.9 52.2 20.9

Total accuracy 72.4%

The difference in total accuracy for the floating-point case compared to that reported in

Table 7 is due to retraining.

TABLE 9 | Optimized performance for Q-CNN02-DS-OP, with

quantization-aware network training.

Floating-point (QAT) NB % LE % HE %

True NB 99.6 0.40 0

True LE 3.8 94.0 2.2

True HE 3.2 5.4 91.4

Total accuracy 95.2

Fixed-point (QAT) NB % LE % HE %

True NB 99.7 0.32 0

True LE 3.9 94.7 1.4

True HE 3.2 6.4 90.4

Total accuracy 95.2%

5. SUMMARY

In recent years, ML algorithms such as CNNs have shown
tremendous growth of their use in high energy physics, including
physics analysis with LArTPCs (Radovic et al., 2018; Karagiorgi
et al., 2021). In particular, CNNs have been shown to achieve
very high signal selection efficiencies especially when employed
in offline physics analyses of LArTPC data. MicroBooNE is
leading the development and application of ML techniques,
including CNNs, for event reconstruction and physics analysis as
an operating LArTPC (Acciarri et al., 2017a; Adams et al., 2019;
Abratenko et al., 2021a,b), and CNN-based analyses and ML-
based reconstruction are actively being developed for SBN and
for DUNE (Acciarri et al., 2012; Abi et al., 2020e).

Motivated by a previous study (Jwa et al., 2019), showing
that CNN-based data selection for LArTPC detectors can yield
excellent accuracy even when applied solely at raw collection
plane data, we have proposed a real-time, 2D CNN-based, frame-
by-frame data selection scheme that is found to be a viable
solution for the DUNE FD DAQ and trigger system. Leveraging
the extensive parallelization and FPGA resources available within
the DUNE FD upstream DAQ readout design, in this proposed
scheme, 2D image frames streamed at a total rate of 1.175 TB/s
are pre-processed and run through hardware-accelerated CNN

TABLE 10 | Estimated resource utilization from Vivado HLS for CNN inference on

a Xilinx UltraScale+ (XCKU115) FPGA.

Block DSP Flip Look-up

RAM units flops tables

Available 4,320 5,520 1326720 663360

CNN02-DS-OP

(PQT)

331 (7%) 4,309 (78%) 226982 (17%) 163460 (24%)

Q-CNN02-DS-

OP (QAT)

187 (4%) 2,106 (38%) 142128 (10%) 138715 (20%)

Block RAM refers to these types of memory elements, digital signal processors (DSPs)

are elements dedicated to fast operations in signal processing (such as floating-point

multiplication), Flip Flops and Look-up tables are standard.

inference to classify and select interactions of interest on a frame-
by-frame basis. The proposed pre-processing and CNN-based
selection method yield target signal selection efficiencies that
meet the DUNE FD physics requirements, while also providing
the needed 104 factor of overall data rate reduction.

The FPGA resource utilization for the CNN inference has
been optimized with automatized network optimization and
with quantization-aware training so as to avoid accuracy loss
due to a fixed-point precision implementation in FPGA. The
resulting optimized and quantized CNN (Q-CNN02-DS-OP) has
been shown to fit within available DUNE FD upstream DAQ
readout FPGA resources, and to be executable with sufficiently
low latency such that the need for significant buffering resources
in the DUNE FD upstream DAQ system can also be relaxed. We
note, however, that the pre-processing resource requirements and
latency have not been explicitly evaluated, and this will be the
subject of future work, as they need to be considered in tandem
with the proposed CNN algorithm and implementation.

The findings further motivate future LArTPC readout designs
that preserve the physical mapping of readout channels to a
contiguous interaction volume as much as possible, in order to
minimize pre-processing needs, and preserve spatial correlations
that exist within 2D projected views of the interaction volume.
Additionally, they motivate the consideration of other image
analysis algorithms in the designs of DAQ and trigger systems
of future LArTPCs.
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APPENDIX

A. TRAINING DETAILS

The Adam optimizer (Kingma and Ba, 2014) was used with
learning rate 0.0029, β1 = 0.9, β2 = 0.999, and ǫ=1e-
8. During training, CNN models were “kept” if the validation
accuracy was higher than already-kept highest-accuracy models.
The optimized (best) model was found when the validation

accuracy stopped improving. The accuracy values quoted in the
main text were obtained with the test sample, and they are
quoted to sufficiently high precision (as allowed by the statistics
used) to assess whether the networks meet DUNE’s accuracy
requirements.

The training curve showing the training and validation
accuracy for the Q-CNN02-DS-OP, as an example, is shown in
Figure A1. The loss curve for the same network is shown in
Figure A2.
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FIGURE A1 | The training and validation accuracy curves of Q-CNN02-DS-OP, in cyan and blue, respectively. The best model was found at epoch 88. The training

and validation accuracy curves obtained using bootstrapping are overlaid in orange and green, respectively, with the best model found at epoch 92. This comparison

further demonstrates that the uncertainty on the accuracy of the network is relatively low.

FIGURE A2 | Cross entropy loss of Q-CNN02-DS-OP for the training and validation samples, in cyan and blue, respectively. The best model was found at epoch 88.

The cross entropy loss curves obtained using bootstrapping are overlaid in orange and green, respectively, with the best model found at epoch 92. This comparison

further demonstrates that the uncertainty on the accuracy of the network is relatively low.
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