AUTHOR=Deveikyte Justina , Geman Helyette , Piccari Carlo , Provetti Alessandro TITLE=A sentiment analysis approach to the prediction of market volatility JOURNAL=Frontiers in Artificial Intelligence VOLUME=5 YEAR=2022 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.836809 DOI=10.3389/frai.2022.836809 ISSN=2624-8212 ABSTRACT=
Prediction and quantification of future volatility and returns play an important role in financial modeling, both in portfolio optimisation and risk management. Natural language processing today allows one to process news and social media comments to detect signals of investors' confidence. We have explored the relationship between sentiment extracted from financial news and tweets and FTSE100 movements. We investigated the strength of the correlation between sentiment measures on a given day and market volatility and returns observed the next day. We found that there is evidence of correlation between sentiment and stock market movements. Moreover, the sentiment captured from news headlines could be used as a signal to predict market returns; we also found that the same does not apply for volatility. However, for the sentiment found in Twitter comments we obtained, in a surprising finding, a correlation coefficient of –0.7 (