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Recent years have seen impressive advances in artificial intelligence (AI) and this has

stoked renewed concern about the impact of technological progress on the labor market,

including on worker displacement. This paper looks at the possible links between AI and

employment in a cross-country context. It adapts the AI occupational impact measure

developed by Felten, Raj and Seamans—an indicator measuring the degree to which

occupations rely on abilities in which AI has made the most progress—and extends

it to 23 OECD countries. Overall, there appears to be no clear relationship between

AI exposure and employment growth. However, in occupations where computer use

is high, greater exposure to AI is linked to higher employment growth. The paper also

finds suggestive evidence of a negative relationship between AI exposure and growth in

average hours worked among occupations where computer use is low. One possible

explanation is that partial automation by AI increases productivity directly as well as

by shifting the task composition of occupations toward higher value-added tasks. This

increase in labor productivity and output counteracts the direct displacement effect of

automation through AI for workers with good digital skills, who may find it easier to

use AI effectively and shift to non-automatable, higher-value added tasks within their

occupations. The opposite could be true for workers with poor digital skills, who may not

be able to interact efficiently with AI and thus reap all potential benefits of the technology1.
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INTRODUCTION

Recent years have seen impressive advances in Artificial
Intelligence (AI), particularly in the areas of image and
speech recognition, natural language processing, translation,
reading comprehension, computer programming, and
predictive analytics.

This rapid progress has been accompanied by concern
about the possible effects of AI deployment on the labor
market, including on worker displacement. There are reasons
to believe that its impact on employment may be different
from previous waves of technological progress. Autor et al.
(2003) postulated that jobs consist of routine (and thus in
principle programmable) and non-routine tasks. Previous waves
of technological progress were primarily associated with the
automation of routine tasks. Computers, for example, are capable
of performing routine cognitive tasks including record-keeping,
calculation, and searching for information. Similarly, industrial
robots are programmable manipulators of physical objects and
therefore associated with the automation of routine manual tasks
such as welding, painting or packaging (Raj and Seamans, 2019)2.
These technologies therefore mainly substitute for workers in
low- and middle-skill occupations.

Tasks typically associated with high-skilled occupations, such
as non-routine manual tasks (requiring dexterity) and non-
routine cognitive tasks (requiring abstract reasoning, creativity,
and social intelligence) were previously thought to be outside the
scope of automation (Autor et al., 2003; Acemoglu and Restrepo,
2020).

However, recent advances in AI mean that non-routine
cognitive tasks can also increasingly be automated (Lane and
Saint-Martin, 2021). In most of its current applications,
AI refers to computer software that relies on highly
sophisticated algorithmic techniques to find patterns in
data and make predictions about the future. Analysis of
patent texts suggests AI is capable of formulating medical
prognosis and suggesting treatment, detecting cancer and
identifying fraud (Webb, 2020). Thus, in contrast to previous
waves of automation, AI might disproportionally affect
high-skilled workers.

Even if AI automates non-routine, cognitive tasks, this
does not necessarily mean that AI will displace workers.
In general, technological progress improves labor efficiency
by (partially) taking over/speeding up tasks performed by
workers. This leads to an increase in output per effective
labor input and a reduction in production costs. The
employment effects of this process are ex-ante ambiguous:
employment may fall as tasks are automated (substitution
effect). On the other hand, lower production costs may increase

2AImay however be used in robotics (“smart robots”), which blurs the line between

the two technologies (Raj and Seamans, 2019). For example, AI has improved the

vision of robots, enabling them to identify and sort unorganised objects such as

harvested fruit. AI can also be used to transfer knowledge between robots, such as

the layout of hospital rooms between cleaning robots (Nolan, 2021).

output if there is sufficient demand for the good/service
(productivity effect)3.

To harness this productivity effect, workers need to both learn
to work effectively with the new technology and to adapt to a
changing task composition that puts more emphasis on tasks that
AI cannot yet perform. Such adaptation is costly and the cost will
depend on worker characteristics.

The areas where AI is currently making the most progress
are associated with non-routine, cognitive tasks often performed
by medium- to high-skilled, white collar workers. However,
these workers also rely more than other workers on abilities
AI does not currently possess, such as inductive reasoning or
social intelligence. Moreover, highly educated workers often find
it easier to adapt to new technologies because they are more likely
to already work with digital technologies and participate more
in training, which puts them in a better position than lower-
skilled workers to reap the potential benefits of AI. That being
said, more educated workers also tend to have more task-specific
human capital4, which might make adaption more costly for
them (Fossen and Sorgner, 2019).

As AI is a relatively new technology, there is little empirical
evidence on its effect on the labor market to date. The
literature that does exist is mostly limited to the US and
finds little evidence for AI-driven worker displacement (Lane
and Saint-Martin, 2021). Felten et al. (2019) look at the
effect of exposure to AI5 on employment and wages in the
US at the occupational level. They do not find any link
between AI exposure and (aggregate) employment, but they
do find a positive effect of AI exposure on wage growth,
suggesting that the productivity effect of AI may outweigh the
substitution effect. This effect on wage growth is concentrated
in occupations that require software skills and in high-
wage occupations.

3This can only be the case if an occupation is only partially automated, but

depending on the price elasticity of demand for a given product or service, the

productivity effect can be strong. For example, during the nineteenth century, 98%

of the tasks required to weave fabric were automated, decreasing the price of fabric.

Because of highly price elastic demand for fabric, the demand for fabric increased

as did the number of weavers (Bessen, 2016).
4Education directly increases task-specific human capital as well as the rate of

learning-by-doing on the job, at least some of which is task-specific (Gibbons

and Waldman, 2004, 2006). This can be seen by looking at the likelihood of

lateral moves within the same firm: lateral moves have a direct productivity cost

to the firm as workers cannot utilise their entire task-specific human capital

stock in another area (e.g., when moving from marketing to logistics). However,

accumulating at least some task-specific human capital in a lateral position makes

sense if a worker is scheduled to be promoted to a position that oversees both

areas. If a worker’s task-specific human capital is sufficiently high, however, the

immediate productivity loss associated with a lateral move is higher than any

expected productivity gain from the lateral move following a promotion. For

example, in academic settings, Ph.D., economists are not typically moved to theHR

department prior to becoming the dean of a department. Using a large employer-

employee linked dataset on executives at US corporations, Jin andWaldman (2019)

show that workers with 17 years of education were twice as likely to be laterally

moved before promotion than workers with 19 years of education.
5An occupation is “exposed” to AI if it has a high intensity in skills that AI can

perform, see section What Do These Indicators Measure? for details.
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Again for the US, Fossen and Sorgner (2019) look at
the effect of exposure to AI6 on job stability and wage
growth at the individual level. They find that exposure
to AI leads to higher employment stability and higher
wages, and that this effect is stronger for higher educated
and more experienced workers, again indicating that the
productivity effect dominates and that it is stronger for high-
skilled workers.

Finally, Acemoglu et al. (2020) look at hiring in US firms
with task structures compatible with AI capabilities7. They
find that firms’ exposure to AI is linked to changes in the
structure of skills that firms demand. They find no evidence
of employment effects at the occupational level, but they do
find that firms that are exposed to AI restrict their hiring
in non-AI positions compared to other firms. They conclude
that the employment effect of AI might still be too small
to be detected in aggregate data (given also how recent a
phenomenon AI is), but that it might emerge in the future as AI
adoption spreads.

This paper adds to the literature by looking at the links
between AI and employment growth in a cross-country context.
It adapts the AI occupational impact measure proposed by
Felten et al. (2018, 2019)—an indicator measuring the degree
to which occupations rely on abilities in which AI has made
the most progress in recent years—and extends it to 23 OECD
countries by linking it to the Survey of Adult Skills, PIAAC.
This indicator, which allows for variations in AI exposure across
occupations, as well as within occupations and across countries, is
matched to Labor Force Surveys to analyse the relationship with
employment growth.

The paper finds that, over the period 2012–2019, there is
no clear relationship between AI exposure and employment
growth across all occupations. Moreover, in occupations where
computer use is high, AI appears to be positively associated with
employment growth. There is also some evidence of a negative
relationship between AI exposure and growth in average hours
worked among occupations where computer use is low. While
further research is needed to identify the exact mechanisms
driving these results, one possible explanation is that partial
automation by AI increases productivity directly as well as
by shifting the task composition of occupations toward higher
value-added tasks. This increase in labor productivity and output
counteracts the direct displacement effect of automation through
AI for workers with good digital skills, who may find it easier
to use AI effectively and shift to non-automatable, higher-
value tasks within their occupations. The opposite could be
true for workers with poor digital skills, who may be unable to
interact efficiently with AI and thus reap all potential benefits of
the technology.

6Fossen and Sorgner (2019) use the occupational impact measure developed by

Felten et al. (2018, 2019) and the Suitability for Machine Learning indicator

developed by Brynjolfsson and Mitchell (2017) and Brynjolfsson et al. (2018)

discussed in Section What Do These Indicators Measure?
7Acemoglu et al. (2020) use data from Brynjolfsson and Mitchell, 2017;

Brynjolfsson et al., 2018, Felten et al. (2018, 2019), and (Webb, 2020) to identify

tasks compatible with AI capabilities; and data from online job postings to identify

firms that use AI, see Section Indicators of Occupational Exposure to AI for details.

The paper starts out by presenting indicators of AI
deployment that have been proposed in the literature
and discussing their relative merits (Section Indicators of
Occupational Exposure to AI). It then goes on to present the
indicator developed in this paper and builds some intuition on
the channels through which occupations are potentially affected
by AI (Section Data). Section Results presents the main results.

INDICATORS OF OCCUPATIONAL
EXPOSURE TO AI

To analyse the links between AI and employment, it is necessary
to determine where in the economy AI is currently deployed.
In the absence of comprehensive data on the adoption of AI by
firms, several proxies for (potential) AI deployment have been
proposed in the literature. They can be grouped into two broad
categories. The first group of indicators uses information on
labor demand to infer AI activity across occupations, sectors and
locations. In practice, these indicators use online job postings that
provide information on skills requirements and they therefore
will only capture AI deployment if it requires workers to have
AI skills. The second group of indicators uses information on
AI capabilities—that is, information on what AI can currently
do—and links it to occupations. These indicators measure
potential exposure to AI and not actual AI adoption. This section
presents some of these indicators and discusses their advantages
and drawbacks.

Indicators Based on AI-Related Job
Posting Frequencies
The first set of indicators use data on AI-related skill
requirements in job postings as a proxy for AI deployment in
firms. The main data source for these indicators is Burning
Glass Technologies (BGT), which collects detailed information—
including job title, sector, required skills etc. —on online job
postings (see Box 1 for details). Because of the rich and up-
to-date information BGT data offers, these indicators allow
for a timely tracking of the demand for AI skills across the
labor market.

Squicciarini and Nachtigall (2021) identify AI-related
job postings by using keywords extracted from scientific
publications, augmented by text mining techniques and
expert validation [see Baruffaldi et al. (2020) for details].
These keywords belong to four broad groups: (i) generic AI
keywords, e.g., “artificial intelligence,” “machine learning;” (ii)
AI approaches or methods: e.g., “decision trees,” “deep learning;”
(iii) AI applications: e.g., “computer vision,” “image recognition;”
(iv) AI software and libraries: e.g., Python or TensorFlow. Since
some of these keywords may be used in job postings for non
AI-related jobs (e.g., “Python” or “Bayesian”), the authors only
tag a job as AI-related if the posting contains at least two AI
keywords from at least two distinct concepts. This indicator
is available on an annual basis for Canada, Singapore, the
United Kingdom and the United States, for 2012–20188.

8Sectors are available according to the North American Industry classification

system (NAICS) for the US and Canada and according to the UK Standard
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Acemoglu et al. (2020) take a simpler approach by defining
vacancies as AI-related if they contain any keyword belonging
to a simple list of skills related to AI9. As this indicator will
tag any job posting that contains one of the keywords, it is
less precise than the indicator proposed by Squicciarini and
Nachtigall (2021), but also easier to reproduce.

Dawson et al. (2021) develop the skills-space or skills-similarity
indicator. This approach defines two skills as similar if they often
occur together in BGT job postings and are both simultaneously
important for the job posting. A skill is assumed to be less
“important” for a particular job posting if it is common across
job postings. For example, “communication” and “team work”
occur in about a quarter of all job adds, and would therefore be
less important than “machine learning” in a job posting requiring
both “communication” and “team work10.” The idea behind this
approach is that, if two skills are often simultaneously required
for jobs, (i) they are complementary and (ii) mastery of one skill
means it is easier to acquire the other. In that way, similar skills
may act as “bridges” for workers wanting to change occupations.
It also means that workers who possess skills that are similar to
AI skills may find it easier to work with AI, even if they are not
capable of developing the technology themselves. For example,
the skill “copy writing” is similar to “journalism,” meaning that
a copy writer might transition to journalism at a lower cost
than, say, a social worker, and that a copy writer might find
it comparatively easier to use databases and other digital tools
created for journalists.

Skill similarity allows the identification and tracking of
emerging skills: using a short list of “seed skills11,” the indicator
can track similar skills as they appear in job ads over time,
keeping the indicator up to date. For example, TensorFlow is a
deep learning framework introduced in 2016. Many job postings
now list it as a requirement without additionally specifying “deep
learning” (Dawson et al., 2021).

The skill similarity approach is preferable to the simple job
posting frequency indicators mentioned above (Acemoglu et al.,
2020; Squicciarini and Nachtigall, 2021) as it does not only pick
up specific AI job postings, but also job postings with skills that
are similar (but not identical) to AI skills, and may thus enable
workers to work with AI technologies. Another advantage of this
indicator is its dynamic nature: as technologies develop and skill
requirements evolve, skill similarity can identify new skills that
appear in job postings together with familiar skills, and keep
the relative skill indicators up-to-date. This indicator is available

Industrial Classification (SIC) and Singapore Industrial Classification (SSIC) for

the UK and Singapore. Occupational codes are available according to the O∗NET

classification for Canada, SOC for the UK, and the US and SSOC for Singapore.

These codes can be converted to ISCO at the one-digit level.
9This paper uses the same list of skills to look at AI job-postings, see Footnote 44

for the complete list of skills.
10To measure importance of skills in job ads, the authors use the Revealed

Comparative Advantage (RCA) measure, loaned from trade economics, that

weighs the importance of a skill in a job posting up if the number of skills for this

specific posting is low, and weighs it down if the skill is ubiquitous in all job adds.

That is, the skill “team work” will be generally less important given its ubiquity in

all job ads, but its importance in an individual job posting would increase if only

few other skills were required for that job.
11“Artificial Intelligence,” “Machine Learning,” “Data Science,” “Data Mining,” and

“Big Data”.

at the annual level from 2012 to 2019 for Australia and New
Zealand12.

Task-Based Indicators
Task-based indicators for AI adoption are based on measures
of AI capabilities linked to tasks workers perform, often at the
occupational level. They identify occupations as exposed to AI if
they perform tasks that AI is increasingly capable of performing.

The AI occupational exposure measure developed by Felten
et al. (2018, 2019) is based on progress scores in nine
AI applications13 (such as reading comprehension or image
recognition) from the AI progress measurement dataset provided
by the Electronic Frontier Foundation (EFF). The EFF monitors
progress in AI applications using a mixture of academic
literature, blog posts and websites focused on AI. Each
application may have several progress scores. One example of
a progress score would be a recognition error rate for image
recognition. The authors rescale these scores to arrive at a
composite score that measures progress in each application
between 2010 and 2015.

Felten et al. (2018, 2019) then link these AI applications
to abilities in the US Department of Labor’s O∗NET database.
Abilities are defined as “enduring attributes of the individual
that influence performance,” e.g., “peripheral vision” or “oral
comprehension.” They enable workers to perform tasks in their
jobs (such as driving a car or answering a call), but are distinct
from skills in that they cannot typically be acquired or learned.
Thus, linking O∗NET abilities to AI applications means linking
human to AI abilities.

The link between O∗NET abilities and AI applications (a
correlation matrix) is made via an Amazon Mechanical Turk
survey of 200 gig workers per AI application, who are asked
whether a given AI application—e.g., image recognition—can
be used for a certain ability—e.g., peripheral vision14. The
correlation matrix between applications and abilities is then
calculated as the share of respondents who thought that a
given AI application could be used for a given ability. These
abilities are subsequently linked to occupations using the O∗NET
database. This indicator is available for the US for 2010–
201515.

Similarly, the Suitability for Machine Learning indicator
developed by Brynjolfsson andMitchell (2017), Brynjolfsson et al.
(2018) assigns a suitability for machine learning score to each
of the 2,069 narrowly defined work activities from the O∗NET

12The indicator is calculated at the division level (19 industries) according to the

Australian and New Zealand Standard Industrial Classification Level (ANZSIC).
13Abstract strategy games, real-time video games, image recognition, visual

question answering, image generation, reading comprehension, language

modelling, translation, and speech recognition. Abstract strategy games, for

example are defined as “the ability to play abstract games involving sometimes

complex strategy and reasoning ability, such as chess, go, or checkers, at a high

level.” While the EFF tracks progress on 16 applications, AI has not made any

progress on 7 of these over the relevant time period (Felten et al., 2021).
14The background of the gig workers is not known and so they may not necessarily

be AI experts. This could be a potential weakness of this indicator. In contrast

(Tolan et al., 2021) rely on expert assessments for the link between AI applications

and worker abilities (Tolan et al., 2021).
15At the six digit SOC 2010 occupational level, this can be aggregated across sectors

and geographical regions, see Felten et al. (2021).
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BOX 1 | Burning Glass Technologies (BGT) online job postings data

Burning Glass Technologies (BGT) collects data on online job postings by

web-scraping 40 000 online job boards and company websites. It claims to

cover the near-universe of online job postings. Data are currently available

for Australia, Canada, New Zealand, Singapore, the United Kingdom,

and the United States for the time period 2012–2020 (2014–2020 for

Germany and 2018–2020 for other European Union countries). BGT extracts

information such as location, sector, occupation, required skills, education,

and experience levels from the text of job postings (deleting duplicates) and

organizes it into up to 70 variables that can be linked to labor force surveys,

providing detailed, and timely information on labor demand.

Despite its strengths, BGT data has a number of limitations:

• It misses vacancies that are not posted online. Carnevale et al. (2014)

compare vacancies from survey data according to the Job Openings and

Labor Turnover Survey (JOLTS) from the US Bureau of Labor Statistics,

a representative survey of 16,000 US businesses, with BGT data for

2013. They find that roughly 70% of vacancies were posted online, with

vacancies requiring a college degree significantly more likely to be posted

online compared to jobs with lower education requirements.

• There is not necessarily a direct, one-to-one correspondence between

an online job ad and an actual vacancy: firms might post one job ad for

several vacancies, or post job ads without firm plans to hire, e.g., because

they want to learn about available talent for future hiring needs.

• BGT data might over-represent growing firms that cannot draw on internal

labor markets to the same extent as the average firm.

• Higher turnover in some occupations and industries can produce a

skewed image of actual labor demand since vacancies reflect a mixture

of replacement demand as well as expansion.

In addition, since BGT data draws on published job advertisements, it

is a proxy of current vacancies, and not of hiring or actual employment.

As a proxy for vacancies, BGT data performs reasonably well, although

some occupations and sectors are over-represented. Hershbein and Kahn

(2018) show for the US that, compared to vacancy data from the U.S.

Bureau of Labor Statistics’ Job Openings and Labor Turnover Survey

(JOLTS), BGT over-represents health care and social assistance, finance and

insurance, and education, while under-representing accommodation, food

services and construction (where informal hiring is more prevalent) as well as

public administration/government. These differences are stable across time,

however, such that changes in labor demand in BGT track well with JOLTS

data. Regarding hiring, they also compare BGT data with new jobs according

to the Current Population Survey (CPS). BGT data strongly over-represents

computer and mathematical occupations (by a factor of over four, which is a

concern when looking at growth in demand for AI skills as compared to other

skills), as well as occupations in management, healthcare, and business and

financial operations. It under-represents all remaining occupations, including

transportation, food preparation and serving, production, or construction.

Cammeraat and Squicciarini (2020) argue that, because of differences in

turnover across occupations, countries and time, as well as differences in

the collection of national vacancy statistics, the representativeness of BGT

data as an indicator for labor and skills demand should be measured against

employment growth. They compare growth rates in employment with growth

rates in BGT job postings on the occupational level in the six countries for

which a BGT timeline exists. They find that, across countries, the deviation

between BGT and employment growth rates by occupation is lower than 10

percentage points for 65% of the employed population. They observe the

biggest deviations for agricultural, forestry and fishery workers, as well as

community and personal service workers, again occupations where informal

hiring may be more prevalent.

database that are shared across occupations (e.g., “assisting and
caring for others,” “coaching others,” “coordinating the work of

others”). For these scores, they use aMachine Learning suitability
rubric consisting of 23 distinct statements describing a work
activity. For example, for the statement “Task is describable by
rules,” the highest score would be “Task can be fully described
by a detailed set of rules (e.g., following a recipe),” whereas the
lowest score would be “The task has no clear, well-known set
of rules on what is and is not effective (e.g., writing a book).”
They use the human intelligence task crowdsourcing platform
CrowdFlower to score each direct work activity by seven to ten
respondents. The direct work activities are then aggregated to
tasks (e.g., “assisting and caring for others,” “coaching others,”
“coordinating the work of others” aggregate to “interacting with
others”), and the tasks to occupations. This indicator is available
for the US for the year 2016/2017.

Tolan et al. (2021) introduce a layer of cognitive abilities
to connect AI applications (that they call benchmarks) to
tasks. The authors define 14 cognitive abilities (e.g., visual
processing, planning and sequential decision-making and acting,
communication, etc.) from the psychometrics, comparative
psychology, cognitive science, and AI literature16. They link
these abilities to 328 different AI benchmarks (or applications)
stemming from the authors’ own previous analysis and
annotation of AI papers as well as from open resources such as
Papers with Code17. These sources in turn draw on data from
multiple verified sources, including academic literature, review
articles etc. on machine learning and AI. They use the research
intensity in a specific benchmark (number of publications, news
stories, blog entries etc.) obtained from AI topics18. Tasks are
measured at the worker level using the European Working
Conditions Survey (EWCS), PIAAC and the O∗NET database.
Task intensity is derived as a measure of how much time an
individual worker spends on a task and how often the task
is performed.

The mapping between cognitive abilities and AI benchmarks,
as well as between cognitive abilities and tasks, relies on a
correspondence matrix that assigns a value of 1 if the ability
is absolutely required to solve a benchmark or complete a
task, and 0 if it is not necessary at all. This correspondence
matrix was populated by a group of multidisciplinary researchers
for the mapping between tasks and cognitive abilities, and
by a group of AI-specialized researchers for the mapping
between AI benchmarks and cognitive abilities. This indicator
is available from 2008 to 2018, at the ISCO-3 level, and

16The abilities are chosen from Hernández-Orallo (2017) to be at an intermediate

level of detail, excluding very general abilities that would influence all others, such

as general intelligence, and too specific abilities and skills, such as being able to

drive a car or music skills. They also exclude any personality traits that do not

apply tomachines. The abilities are:Memory processing, Sensorimotor interaction,

Visual processing, Auditory processing, Attention and search, Planning, sequential

decision-making and acting, Comprehension and expression, Communication,

Emotion and self-control, Navigation, Conceptualisation, learning and abstraction,

Quantitative and logical reasoning, Mind modelling and social interaction, and

Metacognition and confidence assessment.
17Free and open repository of machine learning code and results, which includes

data from several repositories (including EFF, NLPD progress etc.).
18An archive kept by the by the Association for the Advancement of Artificial

Intelligence (AAI).
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constructed to be country-invariant (as it combines data covering
different countries).

Webb (2020) constructs his exposure of occupations to any
technology indicator by directly comparing the text of patents
from Google patents public data to the texts of job descriptions
from the O∗NET database to quantify the overlap between patent
descriptions and job task descriptions. By limiting the patents
to AI patents (using a list of key-words), this indicator can
be narrowed to only apply to AI. Each particular task is then
assigned a score according to the prevalence of such patents that
mention this task; tasks are then aggregated to occupations.

What Do These Indicators Measure?
To gauge the link between AI and employment, the chosen
indicator for this study should proxy actual AI deployment
in the economy as closely as possible. Furthermore, it should
proxy AI deployment at the occupation level because switching
occupations is more costly for workers than switching firms
or sectors, making the occupation the relevant level for the
automation risk of individual workers.

Task-based approaches measure potential automatability of
tasks (and occupations), so they are measures of AI exposure,
not deployment. Because task-based measures look at potential
automatability, they cannot capture uneven adoption of AI
across occupations, sectors or countries. Thus, in a cross-
country analysis, the only source of variation in a task-based
indicator are differences in the occupational task composition
across countries, as well as cross-country differences in the
occupational distribution.

Indicators based on job posting data measure demand for AI
skills (albeit with some noise, see Box 1), as opposed to AI use.
Thus, they rely on the assumption that AI use in a firm, sector
or occupation will lead to employer demand for AI skills in that
particular firm, sector, or occupation. This is not necessarily the
case, however:

• Some firms will decide to train workers in AI rather than
recruit workers with AI skills; their propensity to do so may
vary across occupations.

• Many AI applications will not require AI skills to work
with them.

• Even where AI skills are needed, many firms, especially smaller
ones, are likely to outsource AI development and support
with its adoption to specialized AI development firms. In this
case, vacancies associated with AI adoption would emerge in
a different firm or sector to where the technology was actually
being deployed.

• The assumption that AI deployment requires hiring of staff
with AI skills is even more problematic when the indicator
is applied at the occupation level. Firms that adopt AI may
seek workers with AI skills in completely different occupations
than the workers whose tasks are being automated by AI.
For instance, an insurance company wanting to substitute or
enhance some of the tasks of insurance clerks with AI would
not necessarily hire insurance clerks with AI skills, but AI
professionals to develop or deploy the technology. Insurance
clerks may only have to interact with this technology, which

might not require AI development skills (but may well-
require other specialized skills). Thus, even with broad-based
deployment of AI in the financial industry, this indicator may
not show an increasing number of job postings for insurance
clerks with AI skills. This effect could also be heterogeneous
across countries and time. For example, Qian et al. (2020)
show that law firms in the UK tend to hire AI professionals
without legal knowledge, while law firms in Singapore and the
US do advertise jobs with hybrid legal-AI skillsets.

Thus, indicators based on labor demand data are a good proxy
for AI deployment at the firm and sector level as long as there is
no significant outsourcing of AI development and maintenance,
and the production process is such that using the technology
requires specialized AI skills. If these assumptions do not hold,
these indicators will be incomplete. Whether or not this is the
case is an empirical question that requires further research. To
date the only empirical reference on this question is Acemoglu
et al. (2020) who show for the US that the share of job postings
that require AI skills increases faster in firms that are heavily
exposed to AI (according to task-based indicators). For example,
a one standard deviation increase in the measure of AI exposure
according to Felten et al. (2018, 2019) leads to a 15% increase in
the number of published AI vacancies.

To shed further light on the relationship between the two
types of indicators, Figure 1 plots the 2012–2019 percentage
point change in the share of BGT job postings that require
AI skills19 across 36 sectors against a sector-level task-based
AI exposure score, similar to the occupational AI exposure
score developed in this paper (see Section Construction of
the AI Occupational Exposure Measure)20. This analysis only
covers the United Kingdom and the United States21 because
of data availability. For both countries, a positive relationship
is apparent, suggesting that, overall, (i) the two measures are
consistent and (ii) AI deployment does require some AI talent at
the sector level. Specifically, a one standard deviation increase in
AI exposure (approximately the difference in exposure between
finance and public administration) is associated with a 0.33
higher percentage point change in the share of job postings that
require AI skills in the United-Kingdom; a similar relationship
emerges in the United-States22.

While it is reassuring that, at the sector level, the twomeasures
appear consistent, it is also clear that job postings that require
AI skills fail to identify certain sectors that are, from a task

19AI-related technical skills are identified based on the list provided in Acemoglu

et al. (2020), and detailed in Footnote 44.
20As with occupations, the industry-level scores are derived using the average

frequency with which workers in each industry perform a set of 33 tasks, separately

for each country.
21The United Kingdom and the United States are the only countries in the sample

analysed (see Section Construction of the AI Occupational Exposure Measure)

with 2012 Burning Glass Technologies data available, thereby allowing for the

examination of trends over the past decade.
22The standard deviation of exposure to AI is 0.083 in the United-Kingdom and

0.075 in the United-States. These values are multiplied by the slopes of the linear

relationships displayed in Figure 1: 3.90 and 4.95, respectively. The average share

of job postings that require AI skills was 0.14% in the United-Kingdom and 0.26%

in the United-States in 2012, and this has increased to 0.67 and 0.94%, respectively,

in 2019.
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FIGURE 1 | Sectors with higher exposure to AI saw a higher increase in their share of job postings that require AI skills. Percentage point* change in the share of job

postings that require AI skills (2012–2019) vs. average exposure to AI (2012), by sector. The share of job postings that require AI skills in a sector is the number of job

postings requiring such skills in that sector divided by the total number of job postings in that same sector. Not all sectors have marker labels due to space

constraints. *Percentage point changes are preferred over percentage changes because the share of job postings that require AI skills is equal to zero in some sectors

in 2012. Source: Author’ calculations using data from Burning Glass Technologies, PIAAC and Felten et al. (2019). (A) United Kingdom and (B) United States.

perspective, highly exposed to AI, such as education, the energy
sector, the oil industry, public administration and real estate
activities. This suggests that AI development and support may
be outsourced and/or that the use of AI does not require AI skills
in these sectors.

In addition, and as stated above, there is a priori no reason
that demand-based indicators would pick up AI deployment
at the occupational level, as firms that adopt AI may seek
workers with AI skills in completely different occupations than
the workers whose tasks are being automated by AI. This is also
borne out in the analysis in this paper (see Section Exposure to
AI and Demand for AI-Related Technical Skills: A Weak but
Positive Relationship Among OccupationsWhere Computer Use
is High). Thus, labor demand-based indicators are unlikely to be

good proxies for AI deployment at the occupational level and, in
the analysis described in this paper, preference will be given to
task-based measures even though they, too, are only an imperfect
proxy for AI adoption.

Which Employment Effects Can These
Indicators Capture?
This paper analyses the relationship between AI adoption and
employment at the occupational level, since it is automation
risk at the occupational level that is most relevant for individual
workers. The analysis will therefore require a measure of AI
adoption at the occupational level and this section assesses which
type of indicator might be best suited to that purpose.
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It is useful to think of AI-driven automation as having two
possible, but opposed, employment effects. On the one hand, AI
may depress employment via automation/substitution. On the
other, it may increase it by raising worker productivity.

Focusing on the substitution effect first, task-based indicators
will pick up such effects since they measure what tasks could
potentially be automated by AI. By contrast, labor-demand
based indicators identify occupational AI exposure only if AI
skills are mentioned in online job postings for a particular
occupation. Thus, they will only pick up substitution effects
(that is, a subsequent decline in employment for a particular
occupation) if the production process is such that workers
whose tasks are being automated need AI skills to interact with
the technology.

Regarding the productivity effect, there are several ways in
which AI might increase employment. The most straightforward
way is that AI increases productivity in a given task, and thus
lowers production costs, which can lead to increased employment
if demand for a product or service is sufficiently price elastic. This
was the case, for example, for weavers in the industrial revolution
[see Footnote 4, Bessen (2016)].

In addition, technological progress may allow workers to
focus on higher value-added tasks within their occupation
that the technology cannot (yet) perform. For example, AI
is increasingly deployed in the financial services industry to
forecast stock performance. Grennan and Michaely (2017) show
that stock analysts have shifted their attention away from
stocks for which an abundance of data is available (which
lends itself to analysis by AI) toward stocks for which data is
scarce. To predict the performance of “low-AI” stocks, analysts
gather “soft” information directly from companies’ management,
suppliers and clients, thus concentrating on tasks requiring a
capacity for complex human interaction, of which AI is not
(yet) capable.

Task-based indicators will pick up these productivity effects
(as they identify exposed occupations directly via their task
structure), while labor-demand based indicators will only do so
if workers whose tasks are being automated need to interact
with the technology, and interacting with the technology requires
specialized AI skills.

AI can also be used to augment other technologies, that
subsequently automate certain tasks. For example, in robotics,
AI supports the efficient automation of physical tasks by
improving the vision of robots, or by enabling robots to “learn”
from the experience of other robots, e.g., by facilitating the
exchange of information on the layout of rooms between cleaning
robots (Nolan, 2021). While these improvements to robotics are
connected to AI applications (in this example: image recognition
and sensory perception of room layouts), the tasks that are being
automated (cleaning of rooms) mostly consist of the physical
manipulation of objects and thus pertain to the field of robotics.
Thus, AI improves the effectiveness of robots to perform tasks
associated with cleaners, without performing physical cleaning
tasks. As task-based indicators only identify tasks that AI itself
can perform (and not tasks that it merely facilitates), they
would not capture this effect. In robotics, this would mostly
affect physical tasks often performed by low and medium-skilled

TABLE 1 | Which potential employment effects of AI can task-based and

labor-demand based indicators capture?

Task-Based

indicators

Labor demand-based indicators

Substitution effect (–) Yes Only if the production process is such that

workers in the partially automated

occupation require AI skills to interact with

the technology

Productivity effect (+) Yes Only if the production process is such that

workers in the partially automated

occupation require AI skills to interact with

the technology

Augmentation of other

technologies (e.g.,

robotics) (–)

No Only if the production process is such that

workers in the partially automated

occupation require AI skills to interact with

the technology

Job creation through

new products and

services enabled by AI

(+)

No Only if these new jobs require AI skills

The table only refers to employment effects identified at the occupational level.+/– denote

the sign of the employment effect.

workers. Indicators based on online vacancies would also be
unlikely to capture AI augmenting other technologies at the
occupation level—unless cleaners require AI skills to work with
cleaning robots.

Finally, AI could enable the launch of completely new
products or services, that lead to job creation, e.g., in marketing
or sales of AI-based products and services (Acemoglu et al.,
2020). Both task- and labor-demand-based indicators cannot
generally measure this effect (unless marketing/selling of AI
products requires AI-skills).

To conclude, both types of indicators are likely to understate
actual AI deployment at the occupational level (see Table 1).
Labor-demand based indicators in particular will miss a
significant part of AI deployment if workers whose tasks are
being automated do not need to interact with AI or if the use
of AI does not require any AI skills. Task-based indicators, on the
other hand, are not capable of picking up differences in actual
AI deployment across time and space (this is because they only
measure exposure, not actual adoption). Finally, neither indicator
will capture AI augmenting other automating technologies, such
as robotics, which is likely to disproportionally affect low-skilled,
blue collar occupations.

On the whole, for assessing the links between AI and
employment at the occupational level, indicators based on labor
demand data are likely to be incomplete. Task-based indicators
are therefore more appropriate for the analysis carried out in this
paper. Keeping their limitations in mind, however, is crucial.

DATA

This paper extends the occupational exposure measure, proposed
by Felten et al. (2018, 2019) to 23 OECD countries23 to look

23The 23 countries are Austria, Belgium, the Czech Republic, Denmark, Estonia,

Finland, France, Germany, Greece, Hungary, Ireland, Italy, Lithuania, Mexico,
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at the links between AI and labor market outcomes for 36
occupations24,25 in recent years (2012–2019). The measure of
occupational exposure to AI proxies the degree to which tasks
in those occupations can be automated by AI. Thus, the analysis
compares occupations with a high degree of automatability by AI
to those with a low degree.

This section presents the data used for the analysis. It begins
by describing the construction of the measure of occupational
exposure to AI developed and used in this paper, and builds some
intuition as to why some occupations are exposed to a higher
degree of potential automation by AI than others. It then shows
some descriptive statistics for AI exposure and labor market
outcomes: employment, working hours, and job postings that
require AI skills. Finally, it describes different measures of the
task composition of occupations, whichwill help shed light on the
relationship between AI exposure and labor market outcomes.

Occupational Exposure to AI
Several indicators for (potential) AI deployment have been
proposed in the literature (see Section Indicators of Occupational
Exposure to AI), most of them geared to the US. Since this
paper looks at the links between AI and employment across
several countries, country coverage is a key criterion for the
choice of indicator. This excludes indicators based on AI-
related job-posting frequencies, as pre-2018 BGT data is only
available for English-speaking countries)26. In addition to data
availability issues, indicators based on labor demand data are
also likely to be less complete than task-based indicators (see
Section What Do These Indicators Measure?). Among the task-
based measures, the suitability for machine learning indicator
(Brynjolfsson and Mitchell, 2017; Brynjolfsson et al., 2018) was
not publicly accessible at the time of publication. Webb’s (2020)
indicator captures the stock of patents until 2020, and is therefore
too recent to look at the links between AI and the labor market
during the observation period (2012–2019), particularly given
that major advancements in AI occurred between 2015 and 2020,
and the slow pace of diffusion of technology in the economy. The
paper therefore uses the occupational exposure measure (Felten
et al., 2018, 2019), which has the advantage of capturing AI
developments until 2015, leaving some time for the technology to
be deployed in the economy. It is also based on actual scientific

the Netherlands, Norway, Poland, Slovenia, the Slovak Republic, Spain, Sweden,

United Kingdom, and the United States.
24This paper aims to explore the links between employment and AI deployment in

the economy, rather than the direct employment increase due to AI development.

Two occupations are particularly likely to be involved in AI development: IT

technology professionals and IT technicians. These two occupations both have

high levels of exposure to AI and some of the highest employment growth

over this paper’s observation period, which may be partly related to increased

activity in AI development. These occupations may bias the analysis and they are

therefore excluded from the sample. Nevertheless, the results are not sensitive to

the inclusion of IT technology professionals and IT technicians in the analysis.
25A few occupation/country cells are missing due to data unavailability for

the construction of the indicator of occupational exposure to AI: Skilled

forestry, fishery, hunting workers in Belgium and Germany; Assemblers in

Greece; Agricultural, forestry, fishery labourers in Austria and France, and Food

preparation assistants in the United Kingdom.
26This paper uses BGT data for additional results for the countries for which they

are available.

progress in AI, as opposed to research activity as the indicator
proposed by Tolan et al. (2021).

While the preferred measure for this analysis is the AI
occupational exposure measure proposed by Felten et al. (2018,
2019), the paper also presents additional results using Agrawal’s,
Gans and Goldfarb (2019) job-posting indicator (an indicator
based on job postings), as well as robustness checks using task-
based indicators by Webb (2020) and Tolan et al. (2021)27. This
section describes the construction of the main indicator, and
some descriptive statistics.

Construction of the AI Occupational Exposure

Measure
The AI occupational exposure measure links progress in nine
AI applications to 52 abilities in the US Department of
Labor’s O∗NET database (see Section What Do These Indicators
Measure? for more details). This paper extends it to 23 OECD
countries by mapping the O∗NET abilities to tasks from the
OECD’s Survey of Adult Skills (PIAAC), and then back to
occupations (see Figure 2 for an illustration of the link).
Specifically, instead of using the O∗NET US-specific measures
of an ability’s “prevalence” and “importance” in an occupation,
country-specific measures have been developed based on data
from PIAAC, which reports the frequency with which a number
of tasks are performed on the job by each surveyed individual.
This information was used to measure the average frequency
with which workers in each occupation (classified using two-digit
ISCO-08) perform 33 tasks, and this was done separately for each
country. Each O∗NET ability was then linked to each of these 33
tasks, based on the authors’ binary assessments of whether the
ability is needed to perform the task or not28.

This allows for task-content variations in AI exposure across
occupations, as well as within occupations and across countries
that may arise because of institutional or socio-economic
differences across countries. Thus, the indicator proposed in this
paper differs from that of Felten et al. (2019) only in that it relies
on PIAAC data to take into account occupational task-content
heterogeneity across countries. That is, the indicator adopted in
this paper is defined at the occupation-country cell level rather
than at the occupation level [as in Felten et al. (2019)]. It is scaled
such that the minimum is zero and the maximum is one over
the full sample of occupation-country cells. It indicates relative

27While the three task-based indicators point to the same relationships between

exposure to AI and employment, the results are less clearcut for the relationship

between exposure to AI and average working hours.
28The 33 tasks were then grouped into 12 broad categories to address differences

in data availability between types of task. For example, “read letters,” “read bills,”

and “write letters” were grouped into one category (“literacy–business”), so that

this type of task does not weight more in the final score than tasks types associated

with a single PIAAC task (e.g., “dexterity” or “management”). For each ability and

each occupation, 12 measures were constructed to reflect the frequency with which

workers use the ability in the occupation to perform tasks under the 12 broad task

categories. This was done by taking, within each category of tasks, the sum of the

frequencies of the tasks assigned to the ability divided by the total number of tasks

in the category. Finally, the frequency with which workers use the ability at the

two-digit ISCO-08 level and by country was obtained by taking the sum of these

12 measures. The methodology, including the definition of the broad categories of

tasks, is adapted from Fernández-Macías and Bisello (2020) and Tolan et al. (2021).

Frontiers in Artificial Intelligence | www.frontiersin.org 9 May 2022 | Volume 5 | Article 832736

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Georgieff and Hyee Artificial Intelligence and Employment

FIGURE 2 | Construction of the measure of occupational exposure to AI. Adaptation from Felten et al. (2018) to 23 OECD countries. The authors link O*NET abilities

and PIAAC tasks manually by asking whether a given ability is indispensable for performing a given task. The link between O*NET abilities and AI applications (a

correlation matrix) is taken from Felten et al. (2019). The matrix was built by an Amazon Mechanical Turk survey of 200 gig workers per AI application, who were asked

whether a given AI application can be used for a certain ability. The correlation matrix between applications and abilities is then calculated as the share of respondents

who thought that a given AI application could be used for a given ability. This chart is for illustrative purposes and is not an exhaustive representation of the links

between the tasks, abilities and AI applications displayed.

exposure to AI, and no other meaningful interpretation can be
given to its actual values.

In this paper, the link between O∗NET abilities and PIAAC
tasks is performed manually by asking whether a given ability
is indispensable for performing a given task, e.g., is oral
comprehension absolutely necessary to teach people? A given
O∗NET ability can therefore be linked to several PIAAC tasks,
and conversely, a given PIAAC task can be linked to several
O∗NET abilities. This link was made by the authors of the paper
and, in case of diverging answers, agreement was reached through
an iterative discussion and consensus method, similar to the
Delphi method described in Tolan et al. (2021). Of the 52 O∗NET
abilities, 35 are related to at least one task in PIAAC. Thus, the
indicator loses 17 abilities compared to Felten’s et al. (2018, 2019)
measure. All the measures that are lost in this way are physical,
psychomotor or sensory, as there are no tasks requiring these
abilities in PIAAC29. As a result, the occupational intensity of
physical, psychomotor, or sensory abilities is poorly estimated
using PIAAC data. Therefore, whenever possible, robustness
checks use O∗NET scores of “prevalence” and “importance”
of abilities within occupations for the United States (as in
Felten et al., 2018) instead of PIAAC-based measures. These
robustness tests necessarily assume that the importance and

29The 17 lost abilities are: control prevision, multilimb coordination, response

orientation, reaction time, speed of limb movement, explosive strength, extent

flexibility, dynamic flexibility, gross body coordination, gross body equilibrium, far

vision, night vision, peripheral vision, glare sensitivity, hearing sensitivity, auditory

attention, and sound localization.

prevalence of abilities are the same in other countries as in
the United States. Another approach would have been to assign
the EFF applications directly to the PIAAC tasks. However, we
preferred to preserve the robustly established mapping of Felten
et al. (2018).

The level of exposure to AI in a particular occupation reflects:
(i) the progress made by AI in specific applications and (ii) the
extent to which those applications are related to abilities required
in that occupation. Like all task-based measures, it is at its core
a measure of potential automation of occupations by AI, as it
indicates which occupations relymost on abilities in which AI has
made progress in recent years. It should capture potential positive
productivity effects of AI, as well as negative substitution effects
caused by (partial) automation of tasks by AI. However, it cannot
capture any effects of AI progress on occupations when these
effects do not rely on worker abilities that are directly related
to the capabilities of AI, such as might be the case when AI
augments other technologies, which consequently make progress
in the abilities that a person needs in his/her job (see also Section
What Do These Indicators Measure?). Section Occupational
Exposure to AI shows AI exposure across occupations and builds
some intuition on why the indicator identifies some occupations
as more exposed to AI than others.

AI Progress and Abilities
Over the period 2010–2015, AI has made the most progress
in applications that affect abilities required to perform non-
routine cognitive tasks, in particular: information ordering,
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memorisation, perceptual speed, speed of closure, and flexibility
of closure (Figure 3)30. By contrast, AI has made the least
progress in applications that affect physical and psychomotor
abilities31. This is consistent with emerging evidence that AI is
capable of performing cognitive, non-routine tasks (Lane and
Saint-Martin, 2021).

Occupational Exposure to AI
The kind of abilities AI has made the most progress in
are disproportionately used in highly-educated, white-collar
occupations. As a result, white-collar occupations requiring high
levels of formal education are among the occupations with the
highest exposure to AI: Science and Engineering Professionals,
but also Business and Administration Professionals, Managers;
Chiefs Executives; and Legal, Social, and Cultural Professionals
(Figure 4). By contrast, occupations with the lowest exposure
include occupations with an emphasis on physical tasks: Cleaners
and Helpers; Agricultural Forestry, Fishery Laborers; Food
Preparation Assistants and Laborers32.

The occupational intensity of some abilities is poorly
estimated due to PIAAC data limitations. In particular, the 33
PIAAC tasks used in the analysis include only two non-cognitive
tasks, and some of the O∗NET abilities are not related to any
of these tasks. Therefore, as a robustness exercise, Figure A A.1

displays the level of exposure to AI obtained when using O∗NET
scores of “prevalence” and “importance” of abilities within
occupations for the United States (as in Felten et al., 2018)
instead of the PIAAC-based measures. That is, the robustness
test assumes that the importance and prevalence of abilities
is the same in other countries as in the United States. The
robustness test shows the same patterns in terms of AI exposure
by occupation, suggesting that it is fine to use the measure linked
to PIAAC abilities.

Cleaners and Helpers, the least exposed occupation according
to this measure, have a low score of occupational exposure to AI
because they rely less than other workers on cognitive abilities
(including those in which AI has made the most progress),
whereas they rely more on physical and psychomotor abilities
(in which AI has made little progress). Figure 5A illustrates this
by plotting the extent to which Cleaners and Helpers use any of
the 35 abilities (relative to the average use of that ability across
all occupations) against AI progress in that ability. Compared
to the average worker, Cleaners and Helpers rely heavily on
physical abilities such as dynamic / static/trunk strength and

30Perceptual speed is the ability to quickly and accurately compare similarities

and differences among sets of letters, numbers, objects, pictures, or patterns.

Speed of closure is the ability to quickly make sense of, combine, and organize

information into meaningful patterns. Flexibility of closure is the ability to identify

or detect a known pattern (a figure, object, word, or sound) that is hidden in other

distracting material.
31Only one psychomotor ability has an intermediate score: rate control, which is

the ability to time one’s movements or the movement of a piece of equipment in

anticipation of changes in the speed and/or direction of a moving object or scene.
32To get results at the ISCO-08 2-digit level, scores were mapped from the SOC

2010 6-digits classification to the ISCO-08 4-digit classification, and aggregated

at the 2-digit level by using average scores weighted by the number of full-time

equivalent employees in each occupation in the United States, as provided byWebb

(2020) and based on American Community Survey 2010 data.

dexterity, areas in which AI has made the least progress in
recent years. They rely less than other occupations on abilities
with the fastest AI progress, such as information ordering and
memorisation. Business Professionals, in contrast, are heavily
exposed to AI because they rely more than other workers on
cognitive abilities, and less on physical and psychomotor abilities
(Figure 5B).

As a robustness check, Figure A A.2 replicates this analysis
using O∗NET scores of “prevalence” and “importance” of abilities
within occupations instead of PIAAC-based measures, and it
shows the same patterns.

As abilities are the only link between occupations and progress
in AI, the occupational exposure measure cannot detect any
effects of AI that do not work directly through AI capabilities,
for example if AI is employed to make other technologies
more efficient. Consider the example of drivers, an occupation
often discussed as at-risk of being substituted by AI. Drivers
receive a below-average score in the AI occupational exposure
measure (see Figure 4). This is because the driving component
of autonomous vehicle technologies relies on the physical
manipulation of objects, which is in the realm of robotics, not on
AI. AI does touch upon some abilities needed to drive a car—such
as the ability to plan a route or perceive and distinguish objects
at a distance—but the majority of tasks performed when driving
a car are physical. AI might well be essential for driverless cars,
but mainly by enabling robotic technology, which possesses the
physical abilities necessary to drive a vehicle. Thus, this indicator
can be seen as isolating the “pure” effects of AI (Felten et al.,
2019).

Cross-Country Differences in Occupational Exposure

to AI
On average, an occupation’s exposure to AI varies little across
countries—differences across occupations tend to be greater.
The average score of AI exposure across occupations ranges
from 0.52 (Lithuania) to 0.72 (Finland, Figure 6) among the
23 countries analyzed33. By contrast, the average score across
countries for the 36 occupations ranges from 0.26 (cleaners and
helpers) to 0.87 (business professionals). Even the most exposed
cleaners and helpers (in Finland) are only about half as exposed
to AI as the least exposed business professionals (in Lithuania)
(Figure A A.3). That being said, occupations tend to be slightly
more exposed to AI in Northern European countries than in
Eastern European ones (Figure 6).

A different way of showing that AI exposure varies more
across occupations than across countries for a given occupation
is by contrasting the distribution of exposure to AI across
occupations in the most exposed country in the sample (Finland)
with that in the least exposed country (Lithuania, Figure 7). The
distributions are very similar. In both countries, highly educated

33Averages are unweighted averages across occupations, so that cross-

country differences only reflect differences in the ability requirements of

occupations between countries, not differences in the occupational composition

across countries.
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FIGURE 3 | AI has made the most progress in abilities that are required to perform non-routine, cognitive tasks. Progress made by AI in relation to each ability,

2010–2015. The link between O*NET abilities and AI applications (a correlation matrix) is taken from Felten et al. (2019). The matrix was built by an Amazon

Mechanical Turk survey of 200 gig workers per AI application, who were asked whether a given AI application—e.g., image recognition—can be used for a certain

ability—e.g., near vision. The correlation matrix between applications and abilities is then calculated as the share of respondents who thought that a given AI

application could be used for a given ability. To obtain the score of progress made by AI in relation to a given ability, the shares corresponding to that ability are first

multiplied by the Electronic Frontier Foundation (EFF) progress scores in the AI applications; these products are then summed over all nine AI applications. Authors’

calculations using data from Felten et al. (2019).

white-collar occupations have the highest exposure to AI and
non-office-based, physical occupations have the lowest exposure.

Differences in exposure to AI between Finland and Lithuania

are greater for occupations in the lower half of the distribution

of exposure to AI (Figure 7). For example, Food Preparation

Assistants in Finland are more than twice as exposed to AI

than food preparation assistants in Lithuania, while the score for

Business and Administration Professionals is only 12% higher in
Finland than in Lithuania.

This is because, while occupations across the entire spectrum
of exposure to AI rely more on physical than on cognitive abilities

in Lithuania than in Finland, this reliance is more pronounced

at the low end of the exposure spectrum. Figure 8 illustrates

this for the least (Cleaners and Helpers) and the most exposed
occupations (Business and Administration Professionals). The
top panel displays: (i) the difference in the intensity of use

of each ability by Cleaners and Helpers between Finland and
Lithuania; and (ii) the progress made by AI in relation to that
ability. The bottom panel shows the same for Business and
Administration Professionals.

For both occupations, workers in Lithuania tend to rely more
on physical and psychomotor abilities (which are little exposed
to AI), and less on cognitive abilities, including cognitive abilities

in which AI has made the most progress. The differences in the
intensity of use of cognitive, physical, and psychomotor abilities
between Finland and Lithuania are however greater for Cleaners
and Helpers than they are for Business and Administration
Professionals (Figure 8). As an example of how cleaners may be
more exposed to AI in Finland than in Lithuania, AI navigation
tools may help cleaning robots map out their route. They
could therefore substitute for cleaners in supervising cleaning
robots, especially in countries where cleaning robots are more
prevalent (e.g., probably in Finland34). More generally, it is
likely that cleaners in Finland use more sophisticated equipment
and protocols, resulting in a greater reliance on more exposed
cognitive abilities. That being said, even in Finland, the least
exposed occupation remains Cleaners and Helpers (Figure 7).

Workers in Lithuania may rely more on physical abilities than
in Finland because, in 2012, when these ability requirements
were measured, technology adoption was more advanced in
Finland than in Lithuania. That is, in 2012, technology may
have already automated some physical tasks (e.g., cleaning)
and created more cognitive tasks (e.g., reading instructions,

34Although specific data on cleaning robots are not available, data from the

International Federation of Robotics show that, in 2012, industrial robots were

more prevalent in Finland than in Lithuania in all areas for which data are available.
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FIGURE 4 | Highly educated white-collar occupations are among the occupations with the highest exposure to AI. Average exposure to AI across countries by

occupation, 2012. The averages presented are unweighted. Cross-country averages are taken over the 23 countries included in the analysis. Authors’ calculations

using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten et al. (2019).

filling out documentation, supervising cleaning robots) in
Finland than in Lithuania, and this might have had a
bigger effect on occupations that rely more on physical tasks
(like cleaning).

Occupational Exposure to AI and Education
Section Occupational Exposure to AI showed that white-collar
occupations requiring high levels of formal education are the
most exposed to AI, while low-educated physical occupations are
the least exposed35. Figure 9 confirms this pattern. It shows a
clear positive relationship between the share of highly educated
workers within an occupation in 2012 and the AI exposure
score in that occupation in that year (red line). By contrast,
low-educated workers were less likely to work in occupations
with high exposure to AI (blue line). The relationship is
almost flat for middle-educated workers. In 2012, 82% of
highly educated workers were in the most exposed half of
occupations, compared to 37% of middle-educated and only 16%
of low-educated36.

35Again, as in the rest of the paper, exposure to AI specifically refers to

potential automation of tasks, as this is primarily what task-based measures of

exposure capture.
36On average across countries, there is no clear relationship between AI exposure

and gender and age, see Figures A A.4, A A.5 in the Annex.

Labor Market Outcomes
The analysis links occupational exposure to AI to a number of
labor market outcomes: employment37, average hours worked38,
the share of part-time workers, and the share of job postings that
require AI-related technical skills. This section presents some
descriptive statistics on labor market outcomes for the period
2012 and 2019. Two thousand twelve is chosen as the first year
for the period of analysis because it ensures consistency with
the measure of occupational exposure to AI, for two reasons.
First, the measure of exposure to AI is based on the task
composition of occupations in 2012 formost countries39. Second,

37Employment includes all people engaged in productive activities, whether

as employees or self-employed. Employment data is taken from the Mexican

National Survey of Occupation and Employment (ENOE), the European Union

Labour Force Survey (EU-LFS), and the US Current Population Survey (US-CPS).

The occupation classification was mapped to ISCO-08 where necessary. More

specifically, the ENOE SINCO occupation code was directly mapped to the ISCO-

08 classification. The US-CPS occupation census code variable was first mapped to

the SOC 2010 classification. Next, it was mapped to the ISCO-08 classification.
38Hours worked refer to the average of individuals’ usual weekly hours, which

include the number of hours worked during a normal week without any extra-

ordinary events (such as leave, public holidays, strikes, sickness, or extra-ordinary

overtime).
392012 is available in PIAAC for most countries except Hungary (2017), Lithuania

(2014), and Mexico (2017).
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FIGURE 5 | Cross-occupation differences in AI exposure are caused by differences in the intensity of use of abilities. Intensity of use of an ability relative to the average

across occupations, and progress made by AI in relation to that ability, 2012. Ability intensity represents the cross-country average frequency of the use of an ability

among Cleaner and helpers (top) or Business professionals (bottom) minus the cross-country average frequency of the use of that ability, averaged across the 36

occupations in the sample. Authors’ calculations using data from the Programme for the International Assessment of Adult Competencies (PIAAC) and Felten et al.

(2019). (A) Cleaners and helpers and (B) Business and administration professionals.
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FIGURE 6 | Cross-country differences in exposure to AI for a given occupation are small compared to cross-occupation differences. Average exposure to AI across

occupations by country, 2012. The averages presented are unweighted averages across the 36 occupations in the sample. Authors’ calculations using data from the

Programme for the International Assessment of Adult Competencies (PIAAC) and Felten et al. (2019).

FIGURE 7 | The distribution of AI exposure across occupations is similar in Finland and Lithuania. Exposure to AI, 2012. Authors’ calculations using data from the

Programme for the International Assessment of Adult Competencies (PIAAC) and Felten et al. (2019).

Frontiers in Artificial Intelligence | www.frontiersin.org 15 May 2022 | Volume 5 | Article 832736

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Georgieff and Hyee Artificial Intelligence and Employment

FIGURE 8 | Cross-country differences in occupational AI exposure are caused by differences in the intensity of use of abilities. Intensity of use of an ability in Finland

relative to Lithuania and progress made by AI in relation to that ability, 2012. Ability intensity represents the difference in the frequency of the use of an ability among

Cleaner and helpers (top) or Business professionals (bottom) between Finland and Lithuania. Authors’ calculations using data from the Programme for the International

Assessment of Adult Competencies (PIAAC) and Felten et al. (2019). (A) Cleaners and helpers and (B) Business and administration professionals.
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FIGURE 9 | Highly educated workers are disproportionately exposed to AI. Average share of workers with low, medium or high education within occupations vs.

average exposure to AI, across countries (2012). For each education group, occupation shares represent the share of workers of that group in a particular occupation.

Each dot reports the unweighted average across the 23 countries analyzed of the share of workers with a particular education in an occupation. Authors’ calculations

using data from the European Union Labor Force Survey (EU-LFS), the Mexican National Survey of Occupation and Employment (ENOE), the US Current Population

Survey (US-CPS) PIAAC, and Felten et al. (2019).

progress in AI applications is measured over the period 2010–
2015. As a result, AI, as proxied by the occupational AI exposure
indicator, could affect the labor market starting from 2010 and
fully from 2015 onwards. Starting in 2012 provides a long enough
observation period, while closely tracking the measure of recent
developments in AI.

Employment and Working Hours
Overall, in most occupations and on average across the 23
countries, employment grew between 2012 and 2019, a period
that coincides with the economic recovery from the global
financial crisis. Employment grew by 10.8% on average across
all occupations and countries in the sample (Figure 10). Average
employment growth was negative for only four occupations:
Other Clerical Support Workers (−9.2%), Skilled Agricultural
Workers (−8.2%), Handicraft and Printing Workers (−7.9%),
and Metal and Machinery Workers (-1.7%).

By contrast, average usual weekly hours declined by 0.40%
(equivalent to 9min per week40 average over the same period
(Figure 11)41. On average across countries, working hours
declined in most occupations. Occupations with the largest

40Estimated at the average over the sample (37.7 average usual weekly hours).
41Mexico is excluded from the analysis of working time due to lack of data.

drops in working hours include (but are not limited to)
occupations that most often use part-time employment, such as
Sales Workers (−2.0%); Legal, Social, Cultural Related Associate
Professionals (−1.8%); and Agricultural, Forestry, Fishery
Laborers (−1.8%).

Job Postings That Require AI Skills
Beyond its effects on job quantity, AI may transform occupations
by changing their task composition, as certain tasks are
automated and workers are increasingly expected to focus on
other tasks. This may result in a higher demand for AI-related
technical skills as workers interact with these new technologies.
However, it is not necessarily the case that working with AI
requires technical AI skills. For example, a translator using an AI
translation tool does not necessarily need any AI technical skills.

This section looks at the share of job postings that require AI-
related technical skills (AI skills) by occupation using job postings
data from Burning Glass Technologies42 for the United Kingdom

42See Box 1 for more details on Burning Glass Technologies data. The Burning

Glass Occupation job classification (derived from SOC 2010) was directly mapped

to the ISCO-08 classification.
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FIGURE 10 | Employment has grown in most occupations between 2012 and 2019. Average percentage change in employment level across countries by

occupation, 2012–2019. Occupations are classified using two-digit ISCO-08. The averages presented are unweighted averages across the 23 countries analyzed.

Source: ENOE, EU-LFS, and US-CPS.

and the United States43. AI-related technical skills are identified
based on the list provided in Acemoglu et al. (2020)44.

In the United States, the share of job postings requiring
AI skills has increased in almost all occupations between 2012
and 2019 (Figure 12). Science and Engineering Professionals
experienced the largest increase, but growth was also substantial
for Managers, Chief Executives, Business and Administration
Professionals, and Legal, Social, Cultural Professionals. That
being said, the share of job postings that require AI skills remains
very low overall, with an average across occupations of 0.24% in
2019 (against 0.10% in 2012). These orders of magnitude are in
line with Acemoglu et al. (2020) and Squicciarini and Nachtigall
(2021).

43United Kingdom and the United States are the only countries in the sample

with 2012 Burning Glass Technologies data available, thereby allowing for the

examination of trends over the past decade.
44Job postings that require AI-related technical skills are defined as those that

include at least one keyword from the following list: Machine Learning, Computer

Vision, Machine Vision, Deep Learning, Virtual Agents, Image Recognition,

Natural Language Processing, Speech Recognition, Pattern Recognition, Object

Recognition, Neural Networks, AI ChatBot, Supervised Learning, Text Mining,

Support Vector Machines, Unsupervised Learning, Image Processing, Mahout,

Recommender Systems, Support Vector Machines (SVM), Random Forests,

Latent Semantic Analysis, Sentiment Analysis/Opinion Mining, Latent Dirichlet

Allocation, Predictive Models, Kernel Methods, Keras, Gradient boosting,

OpenCV, Xgboost, Libsvm, Word2Vec, Chatbot, Machine Translation, and

Sentiment Classification.

RESULTS

This section looks at the link between an occupation’s exposure to
AI in 2012 and changes in employment, working hours, and the
demand for AI-related technical skills between 2012 and 2019.
Exposure to AI appears to be associated with greater employment
growth in occupations where computer use is high, and larger
reductions in hours worked in occupations where computer
use is low. So, even though AI may substitute for workers
in certain tasks, it also appears to create job opportunities in
occupations that require digital skills. In addition, there is some
evidence that greater exposure to AI is associated with greater
increase in demand for AI-related technical skills (such as natural
language processing, machine translation, or image recognition)
in occupations where computer use is high. However, as the share
of jobs requiring AI skills remains very small, this increase in jobs
requiring AI skills cannot account for the additional employment
growth observed in computer-intensive occupations that are
exposed to AI.

Empirical Strategy
The analysis links changes in employment levels within
occupations and across countries to AI exposure45. The

45The analysis is performed at the 2-digit level of the International Standard

Classification of Occupations 2008 (ISCO-08).
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FIGURE 11 | Average usual working hours have decreased in most occupations between 2012 and 2019. Average percentage change in average usual weekly hours

across countries by occupation, 2012–2019. Occupations are classified using two-digit ISCO-08. The averages presented are unweighted averages across the 22

countries analyzed (Mexico is excluded from the analysis of working time due to data availability). Usual weekly working hours by country-occupation cell are

calculated by taking the average across individuals within that cell. Source: ENOE, EU-LFS, and US-CPS.

regression equation is the following:

Yij = αj + β AIij + γ Xij + uij (1)

where Yij is the percentage change in the number of workers
(both dependent employees and self-employed) in occupation
i in country j over the period 2012–201946; AIij is the index
of exposure to AI for occupation i in country j as measured
in 2012; Xij is a vector of controls including exposure to
other technological advances (software and industrial robots),
offshorability, exposure to international trade, and 1-digit
occupational ISCO dummies; αj are country fixed effects; and
uij is the error term. The coefficient of interest β captures the
link between exposure to AI and changes in employment. The
inclusion of country fixed effects means that the analysis only
exploits within-country variation in AI exposure to estimate
the parameter of interest. The specifications that include 1-
digit occupational dummies only exploit variation within broad
occupational groups, thereby controlling for any factors that are
constant across these groups.

To control for the effect of non-AI technologies, the analysis
includes measures of exposure to software and industrial robots
developed by Webb (2020) based on the overlap between the

46In a second step, Yij will stand for the percentage change in average weekly

working hours and the percentage change in the share of part-time workers.

text of job descriptions provided in the O∗NET database and
the text of patents in the fields corresponding to each of these
technologies47. Offshoring is proxied by an index of offshorability
developed by Firpo et al. (2011) and made available by Autor
and Dorn (2013), which measures the potential offshoring of
job tasks using the average between the two variables “Face-to-
Face Contact” and “On-Site Job” that Firpo et al. (2011) derive
from the O∗NET database48. This measure captures the extent to
which an occupation requires direct interpersonal interaction or
proximity to a specific work location49.

47To select software patents, Webb uses an algorithm developed by Bessen and

Hunt (2007) which requires one of the keywords “software,” “computer,” or

“programme” to be present, but none of the keywords “chip,” “semiconductor,”

“bus,” “circuity,” or “circuitry.” To select patents in the field of industrial robots,

Webb develops an algorithm that results in the following search criteria: the title

and abstract should include “robot” or “manipulate,” and the patent should not

fall within the categories: “medical or veterinary science; hygiene” or “physical or

chemical processes or apparatus in general”.
48They reverse the sign to measure offshorability instead of non-offshorability.
49Firpo et al. (2011) define “face-to-face contact” as the average value between

the O∗NET variables “face-to-face discussions,” “establishing and maintaining

interpersonal relationships,” “assisting and caring for others,” “performing for or

working directly with the public”, and “coaching and developing others.” They

define “on-site job” as the average between the O∗NET variables “inspecting

equipment, structures, or material,” “handling and moving objects,” “operating

vehicles, mechanized devices, or equipment,” and the mean of “repairing
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FIGURE 12 | Nearly all occupations have increasingly demanded AI skills between 2012 and 2019 in the United States. Percentage point* change in the share of job

postings that require AI skills, 2012–2019, USA. The share of job postings that require AI skills in an occupation is the number of job postings requiring such skills in

that occupation divided by the total number of job postings in that same occupation. *Percentage point changes are preferred over percentage changes because the

share of job postings that require AI skills is equal to zero in some occupations in 2012. Source: Burning Glass Technologies.

The three above indices are occupation-level task-
based measures derived from the O∗NET database for the
United States; this analysis uses those measures for all 23
countries, assuming that the cross-occupation distribution
of these indicators is similar across countries50. Exposure to
international trade is proxied by the share of employment within
occupations that is in tradable sectors51. These shares are derived
from the European Union Labor Force Survey (EU-LFS), the
Mexican National Survey of Occupation and Employment
(ENOE), the US Current Population Survey (US-CPS).

Exposure to AI and Employment: A Positive
Relationship in Occupations Where
Computer Use Is High
As discussed in Section Introduction, the effect of exposure
to AI on employment is theoretically ambiguous. On the one

and maintaining mechanical equipment” and “repairing and maintaining

electronic equipment”.
50All three indices are available by occupation based on U.S. Census occupation

codes. They were first mapped to the SOC 2010 6-digits classification and then to

the ISCO-08 4-digit classification. They were finally aggregated at the 2-digit level

using average scores weighted by the number of full-time equivalent employees in

each occupation in the United-States, as provided by Webb (2020) and based on

American Community Survey 2010 data.
51The tradable sectors considered are agriculture, industry, and financial and

insurance activities.

hand, employment may fall as tasks are automated (substitution
effect). On the other hand, productivity gains may increase
labor demand (productivity effect) (Acemoglu and Restrepo,
2019a,b; Bessen, 2019; Lane and Saint-Martin, 2021)52. The
labor market impact of AI on a given occupation is likely
to depend on the task composition of that occupation—
the prevalence of high-value added tasks that AI cannot
automate (e.g., tasks that require creativity or social intelligence)
or the extent to which the occupation already uses other
digital technologies [since AI applications are often similar
to software in their use, workers with digital skills may
find it easier to use AI effectively (Felten et al., 2019)].
Therefore, the following analysis will not only look at the
entire sample of occupation-country cells, but will also split
the sample according to what people do in these occupations
and countries.

In particular, the level of computer use within an occupation
is proxied by the share of workers reporting the use of a

52Partial worker substitution in an occupation may increase worker productivity

and employment in the same occupation, but also in other occupations and sectors

(Autor and Salomons, 2018). These AI-induced productivity effects are relevant to

the present cross-occupation analysis to the extent that they predominantly affect

the same occupation where AI substitutes for workers. For example, although AI

translation algorithms may substitute for part of the work of translators, they may

increase the demand for translators by significantly reducing translation costs.
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computer at work in that occupation, calculated for each of the
23 countries in the sample. It is based on individuals’ answers
to the question “Do you use a computer in your job?,” taken
from the Survey of Adult Skills (PIAAC). Occupation-country
cells are then classified into three categories of computer use (low,
medium, and high), where the terciles are calculated based on the
full sample of occupation-country cells53. Another classification
used is the country-invariant classification developed by Goos
et al. (2014), which classifies occupations based on their average
wage relying on European Community Household Panel (ECHP)
data. For example, occupations with an average wage in the
middle of the occupation-wage distribution would be classified
in the middle with respect to this classification54. Finally, the
prevalence of creative and social tasks is derived from PIAAC
data. PIAAC data include the frequency with which a number
of tasks are performed at the individual level. Respondents’ self-
assessment are based on a 5-point scale ranging from “Never”
to “Every day.” This information is used to measure the average
frequency with which workers in each occupation perform
creative or social tasks, and this is done separately for each
country55.

While employment grew faster in occupations more exposed
to AI, this relationship is not robust. There is stronger
evidence that AI exposure is positively related to employment
growth in occupations where computer use is high. Table 2
displays the results of regression equation (1) without controls.
When looking at the entire sample, the coefficient on AI
exposure is both positive and statistically significant (Column
1), but the coefficient is no longer statistically significant as
soon as any of the controls described in Section Empirical
Strategy are included (with the exception of offshorability)56.
When the sample is split by level of computer use (low,
medium, high), the coefficient on AI exposure remains
positive and statistically significant only for the subsample
where computer use is high (Columns 2–4). It remains so
after successive inclusion of controls for international trade
(i.e., shares of workers in tradable sectors), offshorability,
exposure to other technological advances (software and industrial
robots) and 1-digit occupational dummies (Table 3)57. In

53Data are from 2012, with the exception of Hungary (2017), Lithuania (2014), and

Mexico (2017).
54Low-skill occupations include the ISCO-08 1-digit occupation groups: Services

and SalesWorkers; and Elementary Occupations. Middle-skill occupations include

the groups: Clerical Support Workers; Skilled Agricultural, Forestry, and Fishery

Workers; Craft and Related Trades Workers; and Plant and Machine Operators

and Assemblers. High-skill occupations include: Managers; Professionals, and

Technicians; and Associate Professionals.
55In line with Nedelkoska and Quintini (2018), creative tasks include: problem

solving—simple problems, and problem solving—complex problems; and social

tasks include: teaching, advising, planning for others, communicating, negotiating,

influencing, and selling. For each measure, occupation-country cells are then

classified into three categories depending on the average frequency with which

these tasks are performed (low, medium, and high). These three categories are

calculated by applying terciles across the full sample of occupation-country cells.

Data are from 2012, with the exception of Hungary (2017), Lithuania (2014), and

Mexico (2017).
56These results are not displayed but are available on request.
57Tables 2, 3 correspond to unweighted regressions, but the results hold when each

observation is weighted by the inverse of the number of country observations in the

TABLE 2 | Exposure to AI is positively associated with employment growth in

occupations where computer use is high.

(1)

All

occupations

(2)

Low

computer use

(3)

Medium

computer use

(4)

High

computer use

Exposure to AI 13.3** −3.7 8.3 85.7**

(6.4) (13.2) (18.4) (36.5)

Country FEs Yes Yes Yes Yes

Observations 822 274 274 274

R-squared 0.058 0.127 0.172 0.098

Dependent variable: 2012–2019% change in employment level.

Robust standard errors in parentheses. ***p< 0.01, **p< 0.05, *p< 0.1. Each observation

is a country-occupation cell. Each column shows the results of regression equation (1)

applied to one of the subsamples obtained by splitting the overall sample by level of

computer use. Occupation-country cells are classified into low, medium or high computer

use by tercile of computer use applied across the full sample of occupation-country cells.

Source: Authors’ calculations using data from ENOE, EU-LFS, US-CPS, PIAAC, and

Felten et al. (2019).

occupations where computer use is high, a one standard
deviation increase in AI exposure is associated with 5.7
percentage points higher employment growth (Table 2, Column
4)58.

By contrast, the average wage level of the occupation or the
prevalence of creative or social tasks matter little in the link
between exposure to AI and employment growth. Table A A.1

in Appendix shows the results obtained when replicating the
analysis on the subsamples obtained by splitting the overall
sample by average wage level, prevalence of creative tasks, or
prevalence of social tasks. All coefficients on exposure to AI
remain positive, but are weakly statistically significant and of
lower magnitude than those obtained on the subsample of
occupations where computer use is high (Table 3).

As a robustness check, Table A A.2 in the Appendix replicates
the analysis in Table 2 using the score of exposure to AI obtained
when using O∗NET scores of “prevalence” and “importance” of
abilities within occupations instead of PIAAC-based measures.
The results remain unchanged. Table A A.3 replicates the
analysis using the alternative indicators of exposure to AI
constructed by Webb (2020) and Tolan et al. (2021), described
in Section What Do These Indicators Measure?59 While
the Webb (2020) indicator confirms the positive relationship
between employment growth and exposure to AI in occupations
where computer use is high, the coefficient obtained with the

subsample considered, so that each country has the same weight. These results are

not displayed but are available on request.
58The standard deviation of exposure to AI is 0.067 among high computer use

occupations. Multiplying this by the coefficient in Column 4 gives 0.067∗85.73

= 5.74.
59The Webb (2020) indicator is available by occupation based on U.S. Census

occupation codes. It was first mapped to the SOC 2010 6-digits classification

and then to the ISCO-08 4-digit classification. It was finally aggregated at the 2-

digit level by using average scores weighted by the number of full-time equivalent

employees in each occupation in the United States, as provided by Webb (2020)

and based on American Community Survey 2010 data. The Tolan et al. (2021)

indicator is available at the ISCO-08 3-digit level and was aggregated at the 2-digit

level by taking average scores.
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FIGURE 13 | Exposure to AI is associated with higher employment growth in occupations where computer use is high. Percentage change in employment level

(2012–2019) and exposure to AI (2012). Occupations are classified using two-digit ISCO-08. Not all occupations have marker labels due to space constraints. Skilled

forestry, fishery, hunting workers excluded from (A) for readability reasons. Occupation-country cells are classified into low, medium or high computer use by tercile of

computer use applied across the full sample of occupation-country cells. Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC, and Felten et al.

(2019). (A) United Kingdom and (B) United States.

Tolan et al. (2021) indicator is positive but not statistically
significant. This could be due to the fact that the Tolan
et al. (2021) indicator reflects different aspects of AI advances,

as it focuses more on cognitive abilities and is based on
research intensity rather than on measures of progress in
AI applications.
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TABLE 3 | The relationship between exposure to AI and employment growth is

robust to the inclusion of a number of controls.

(1) (2) (3) (4) (5)

High computer use occupations

Exposure to AI 85.7** 94.4*** 137.7*** 135.4*** 144.6**

(36.5) (34.7) (36.5) (40.6) (62.6)

Share of tradable

sectors

−0.143 −0.0120 −0.00931 0.157

(0.151) (0.145) (0.166) (0.256)

Offshorability −7.4** −7.4*** −9.7**

(2.9) (2.8) (4.6)

Exposure to

softwares

0.0103 0.00429

(0.190) (0.253)

Exposure to

robots

−0.0241 0.258

(0.280) (0.341)

1-digit occupation

FEs

No No No No Yes

Country FEs Yes Yes Yes Yes Yes

Observations 274 274 274 274 274

R-squared 0.098 0.101 0.127 0.127 0.173

Dependent variable: 2012–2019% change in employment level. Robust standard errors in

parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Each observation is a country-occupation

cell. The sample is restricted to occupations with high computer use. Occupation-country

cells are classified into low, medium or high computer use by tercile of computer use

applied across the full sample of occupation-country cells. Offshorability is an occupation-

level measure fromAutor and Dorn (2013) based on data from the United States. Exposure

to software and exposure to robots are occupation-level measures developed by Webb

(2020) based on data from the United States. The share of tradable sector represents the

2012 share of workers in the country-occupation cell working in agriculture, industry, and

financial and insurance activities. Source: Authors’ calculations using data from ENOE,

EU-LFS, US-CPS, PIAAC, Autor and Dorn (2013), Felten et al. (2019), and Webb (2020).

The examples of the United Kingdom and the United States
illustrate these findings clearly60. Figure 13 shows the percentage
change in employment from 2012 to 2019 for each occupation
against that occupation’s exposure to AI in 2012, both in
the United Kingdom (Figure 13A) and the United States
(Figure 13B). Occupations are classified according to their level
of computer use. The relationship between exposure to AI and
employment growth within computer use groups is generally
positive, but the correlation is stronger in occupations where
computer use is high. For occupations with high computer
use, the most exposed occupations tend to have experienced
higher employment growth between 2012 and 2019: Business
Professionals; Legal, Social and Cultural Professionals; Managers;
and Science & Engineering Professionals. AI applications
relevant to these occupations include: identifying investment
opportunities, optimizing production in manufacturing plants,
identifying problems on assembly lines, analyzing and filtering
recorded job interviews, and translation. In contrast, high
computer-use occupations with low or negative employment
growth were occupations with relatively low exposure to AI, such
as clerical workers and teaching professionals.

While further research is needed to test the causal nature
of these patterns and to identify the exact mechanism behind

60Although statistically significant on aggregate, the relationships between

employment growth and exposure to AI suggested by Table 2 are not visible for

some countries.

them, it is possible that a high level of digital skills (as proxied
by computer use) indicates a greater ability of workers to
adapt to and use new technologies at work and, hence, to reap
the benefits that these technologies bring. If AI allows these
workers to interact with AI and to substantially increase their
productivity and/or the quality of their output, this may, under
certain conditions, lead to an increase in demand for their
labor61.

Exposure to AI and Working Time: A
Negative Relationship Among Occupations
Where Computer Use Is Low
This subsection extends the analysis by shifting the focus
from the number of working individuals (extensive margin
of employment) to how much these individuals work
(intensive margin).

In general, the higher the level of exposure to AI in an
occupation, the greater the drop in average hours worked
over the period 2012–2019; and this relationship is particularly
marked in occupations where computer use is low. Column
(1) of Table 4 presents the results of regression equation (1)
using the percentage change in average usual weekly working
hours as the variable of interest. The statistically significant
and negative coefficient on exposure to AI highlights a negative
relationship across the entire sample. Splitting the sample by
computer use category shows that this relationship is stronger
among occupations with lower computer use (Column 2–
4). The size of the coefficients in Column 2 indicates that,
within countries and across occupations with low computer
use, a one standard deviation increase in exposure to AI
is associated with a 0.60 percentage point greater drop in
usual weekly working hours62 (equivalent to 13min per
week)63. Columns 1–4 of Table 5 show that the result is
robust to the successive inclusion of controls for international
trade, offshorability, and exposure to other technologies.
However, the coefficient on exposure to AI loses statistical
significance when controlling for 1 digit occupational dummies
(Table 5, Column 5), which could stem from attenuation bias,
as measurement errors may be significant relative to the
variation in actual exposure within the 1 digit occupation
groups64.

The relationship between exposure to AI and the drop in
average hours worked was driven by part-time employment65.

61For productivity-enhancing technologies to have a positive effect on product and

labour demand, product demand needs to be price elastic (Bessen, 2019).
62The standard deviation of exposure to AI is 0.125 among low computer use

occupations. Multiplying this by the coefficient in Column 2 gives 0.125∗(−4.823)

=−0.60.
63Estimated at the average working hours among low computer use occupations

(37.2 h).
64Tables 4, 5 correspond to unweighted regressions, but most of the results hold

when each observation is weighted by the inverse of the number of country

observations in the subsample considered, so that each country has the same

weight. These results are not displayed but are available on request.
65Part-time workers are defined as workers usually working 30 hours or less per

week in their main job.
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TABLE 4 | Exposure to AI is negatively associated with the growth in average working hours in occupations where computer use is low.

(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: 2012–2019% change in

working hours

Dependent variable: 2012–2019% change in

part-time employment

All

occupations

Low

computer

use

Medium

computer

use

High

computer

use

All

occupations

Low

computer

use

Medium

computer

use

High

computer

use

Exposure to AI −2.7*** −4.8** −4.1 −3.2 14.9 56.6** −37.6 2.4

(0.9) (2.3) (3.1) (3.1) (10.0) (24.7) (94.1) (53.7)

Country FEs Yes Yes Yes Yes Yes Yes Yes Yes

Observations 781 252 261 268 781 252 261 268

R-squared 0.143 0.133 0.209 0.304 0.143 0.206 0.193 0.211

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Each observation is a country-occupation cell. Each column shows the results of regression equation (1)

applied to one of the subsamples obtained by splitting the overall sample by level of computer use. Occupation-country cells are classified into low, medium or high computer use by

tercile of computer use applied across the full sample of occupation-country cells. In columns 1–4, the dependent variable is the percentage change in average usual weekly working

hours. In columns 5–8, the dependent variable is the percentage change in the share of part-time workers. Mexico is excluded from the analysis of working time due to data availability.

Source: Authors’ calculations using data from EU-LFS, US-CPS, PIAAC, and Felten et al. (2019).

TABLE 5 | The relationship between exposure to AI and growth in average working hours is robust to the inclusion of a number of controls.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dependent variable: 2012–2019% change in

working hours

Dependent variable: 2012–2019% change in

part-time employment

Low computer use occupations Low computer use occupations

Exposure to AI −4.8** −4.9** −9.2*** −9.2** −7.2 56.6** 56.6** 49.4** 53.0 23.5

(2.3) (2.3) (3.2) (4.0) (4.6) (24.7) (24.7) (24.5) (35.3) (41.7)

Share of tradable sectors −0.0148 −0.0194* −0.0267** −0.0222 0.0135 0.00582 −0.00142 −0.0721

(0.0111) (0.0116) (0.0133) (0.0176) (0.113) (0.124) (0.139) (0.167)

Offshorability −1.4** −0.970 −0.887 −2.4 −1.6 −2.9

(0.7) (0.8) (0.9) (8.4) (11.9) (12.8)

Exposure to softwares 0.0289 0.0350 0.0358 −0.0567

(0.0263) (0.0300) (0.314) (0.376)

Exposure to robots −0.0270 −0.0364 0.0151 0.00943

(0.0385) (0.0619) (0.447) (0.744)

1-digit occupation FEs No No No No Yes No No No No Yes

Country FEs Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 252 252 252 252 252 252 252 252 252 252

R-squared 0.133 0.141 0.157 0.161 0.166 0.206 0.206 0.207 0.207 0.214

Robust standard errors in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1. Each observation is a country-occupation cell. The sample is restricted to occupations with low computer use.

Occupation-country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of occupation-country cells. In columns 1–4, the

dependent variable is the percentage change in average usual weekly working hours. In columns 5–8, the dependent variable is the percentage change in the share of part-time workers.

Offshorability is an occupation-level measure from Autor and Dorn (2013) based on data from the United States. Exposure to software and exposure to robots are occupation-level

measures developed by Webb (2020) based on data from the United States. The share of tradable sector represents the 2012 share of workers in the country-occupation cell working

in: agriculture, industry, and financial and insurance activities. Mexico is excluded from the analysis of working time due to data availability. Source: Authors’ calculations using data from

EU-LFS, US-CPS, PIAAC, Autor and Dorn (2013), Felten et al. (2019), and Webb (2020).
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Columns 5–8 of Table 4 replicate the analysis in Columns 1–
4 using the change in the occupation-level share of part-time
workers as the variable of interest. The results are consistent with
those in columns 2–4: the coefficient on exposure to AI is positive
and statistically significant only for the subsample of occupations
where computer use is low (Columns 6–8). The coefficient
remains statistically significant and positive when controlling
for international trade and offshorability, but loses statistical
significance when controlling for exposure to other technological
advances and 1-digit occupational dummies (Table 5, columns
6–10)66. The results hold when replacing the share of part-
time workers with the share of involuntary part-time workers67

(Table A A.7), suggesting that the additional decline in working
hours among low computer use occupations that are exposed to
AI is not a voluntary choice by workers.

The examples of Germany and Spain provide a good
illustration of these results68. Figure 14 shows the percentage
change in average usual weekly working hours from 2012 to
2019 for each occupation against that occupation’s exposure to
AI, both in Germany (Figure 14A) and in Spain (Figure 14B).
As before, occupations are classified according to their degree
of computer use (low, medium, high). In both countries,
there is a clear negative relationship between exposure to
AI and the change in working hours among occupations
where computer use is low. In particular, within the low
computer use category, most occupations with negative growth
in working hours are relatively exposed to AI. These occupations
include: Drivers and Mobile Plant Operators, Personal Service
Workers, and Skilled Agricultural Workers. AI applications
relevant to these occupations include route optimisation for
drivers, personalized chatbots and demand forecasting in the
tourism industry69, or the use of computer vision in the
agricultural sector to identify plants that need special attention.
By contrast, low computer use occupations with the strongest
growth in working hours are generally less exposed to AI.
This is for example the case for Laborers (which includes

66As an additional robustness exercise, Table A A.4 in the Appendix replicates the

analysis using the score of exposure to AI obtained when using O∗NET scores of

“prevalence” and “importance” of abilities within occupations instead of PIAAC-

based measures. The results remain qualitatively unchanged, but the coefficients

on exposure to AI are no longer statistically significant on the subsample of

occupations where computer use is low, when using working hours as the variable

of interest. Tables A A.5, A.6 replicate the analysis using the alternative indicators

of exposure to AI constructed byWebb (2020) and Tolan et al. (2021). When using

the Webb (2020) indicator, the results hold on the entire sample but are not robust

on the subsample of occupations where computer use is low. Using the Tolan et al.

(2021) indicator, the results by subgroups hold qualitatively but the coefficients are

not statistically significant.
67Involuntary part-time workers are defined as part-time workers (i.e., workers

working 30 h or less per week) who report either that they could not find a full-time

job or that they would like to work more hours.
68Although statistically significant on aggregate, the relationships between the

percentage change in average usual weekly working hours and exposure to AI

suggested by Table 4 are not visible for some countries.
69For example, personalised chatbots can partially substitute for travel attendants.

Demand forecasting algorithms may facilitate the operation of hotels, including

the work of housekeeping supervisors. Travel Attendants and Housekeeping

Supervisors both fall into the Personal Service Workers category.

laborers in transport and storage, manufacturing, or mining
and construction).

Again, while further research is required, a lack of digital skills
may mean that workers are not able to interact efficiently with
AI and thus cannot reap all potential benefits of the technology.
The substitution effect of AI in those occupations therefore
appears to outweigh the productivity effect, resulting in reduced
working hours, possibly as a result of more involuntary part-
time employment. However, these results remain suggestive,
as they are not robust to the inclusion of the full set of
controls and the use of alternative indicators of exposure
to AI.

Exposure to AI and Demand for AI-Related
Technical Skills: A Weak but Positive
Relationship Among Occupations Where
Computer Use Is High
Beyond its effects on employment, AI may also transform
occupations as workers are increasingly expected to interact with
the technology. This may result in a higher demand for AI-
related technical skills in affected occupations, although it is
not necessarily the case that working with AI requires technical
AI skills.

Indeed, exposure to AI is positively associated with the growth
in the demand for AI technical skills, especially in occupations
where computer use is high. Figure 15 shows the correlation
between the growth in the share of job postings that require AI
skills from 2012 to 2019 within occupations and occupation-
level exposure to AI for the United Kingdom (Figure 15A) and
the United States (Figure 15B), the only countries in the sample
with BGT time series available. Occupations are again classified
according to their computer use. There is a positive correlation
between the growth in the share of job postings requiring
AI skills and the AI exposure measure, particularly among
occupations where computer use is high. The most exposed
of these occupations (Science and Engineering Professionals;
Managers; Chief Executives; Business and Administration
Professionals; Legal, Social, Cultural professionals) are also
experiencing the largest increases in job postings requiring
AI skills.

However, the increase in jobs requiring AI skills cannot
account for the additional employment growth observed in
computer-intensive occupations that are exposed to AI (despite
the similarities between the patterns displayed in Figures 13,
15). As highlighted by the different scales in those two charts,
the order of magnitude of the correlation between exposure to
AI and the percentage change in employment (Figure 13) is
more than ten times that of the correlation between exposure
to AI and the percentage point change in the share of job
postings requiring AI skills (Figure 15)70. This is because job

70The results of the regression equation (1) on the subsample (of only 26

observations) of high computer use occupations in the United Kingdom and the

United States give a coefficient on exposure to AI equal to 151.4 when using

percentage employment growth as the variable of interest, which is about forty

times greater than the 4.1 obtained when using percentage point change in the

share of job postings that require AI skills as the variable of interest.
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FIGURE 14 | In occupations where computer use is low, exposure to AI is negatively associated with the growth in average working hours. Percentage change in

average usual working hour (2012–2019) and exposure to AI (2012). Occupations are classified using two-digit ISCO-08. Not all occupations have marker labels due

to space constraints. Occupation-country cells are classified into low, medium or high computer use by tercile of computer use applied across the full sample of

occupation-country cells. Source: Author’ calculations using data from EU-LFS, PIAAC, and Felten et al. (2019). (A) Germany and (B) Spain.

postings requiring AI skills remain a very small share of overall
job postings. In 2019, on average across the 36 occupations
analyzed, job postings that require AI skills accounted for
only 0.14% of overall postings in the United Kingdom and

0.24% in the United States. By contrast, across the same 36
occupations, employment grew by 8.82% on average in the
United States and 11.15% in the United Kingdom between 2012
and 2019.
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FIGURE 15 | High computer use occupations with higher exposure to AI saw a higher increase in their share of job postings that require AI skills. Percentage point

change in the share of job postings that require AI skills (2012–2019) and exposure to AI (2012). The share of job postings that require AI skills in an occupation is

taken as a share of the total number of job postings in that occupation. Occupation-country cells are classified into low, medium or high computer use by tercile of

computer use applied across the full sample of occupation-country cells. Source: Author’ calculations using data from Burning Glass Technologies, PIAAC, and Felten

et al. (2019). (A) United Kingdom and (B) United States.
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CONCLUSION

Recent years have seen impressive advances in artificial
intelligence (AI) and this has stoked renewed concern about the
impact of technological progress on the labor market, including
on worker displacement.

This paper looks at the possible links between AI and
employment in a cross-country context. It adapts the AI
occupational impact measure developed by Felten et al. (2018,
2019)—an indicator measuring the degree to which occupations
rely on abilities in which AI has made the most progress—and
extends it to 23 OECD countries. The indicator, which allows for
variations in AI exposure across occupations, as well as within
occupations and across countries, is then matched to Labor Force
Surveys, to analyse the relationship with employment.

Over the period 2012–2019, employment grew in nearly all
occupations analyzed. Overall, there appears to be no clear
relationship between AI exposure and employment growth.
However, in occupations where computer use is high, greater
exposure to AI is linked to higher employment growth. The
paper also finds suggestive evidence of a negative relationship
between AI exposure and growth in average hours worked among
occupations where computer use is low.

While further research is needed to identify the exact
mechanisms driving these results, one possible explanation is
that partial automation by AI increases productivity directly
as well as by shifting the task composition of occupations
toward higher value-added tasks. This increase in labor
productivity and output counteracts the direct displacement
effect of automation through AI for workers with good
digital skills, who may find it easier to use AI effectively
and shift to non-automatable, higher-value added tasks within
their occupations. The opposite could be true for workers
with poor digital skills, who may not be able to interact

efficiently with AI and thus reap all potential benefits of
the technology.
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