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In this work, we study the phenomenon of catastrophic forgetting in the graph

representation learning scenario. The primary objective of the analysis is to understand

whether classical continual learning techniques for flat and sequential data have

a tangible impact on performances when applied to graph data. To do so, we

experiment with a structure-agnostic model and a deep graph network in a robust and

controlled environment on three different datasets. The benchmark is complemented

by an investigation on the effect of structure-preserving regularization techniques on

catastrophic forgetting. We find that replay is the most effective strategy in so far, which

also benefits the most from the use of regularization. Our findings suggest interesting

future research at the intersection of the continual and graph representation learning

fields. Finally, we provide researchers with a flexible software framework to reproduce

our results and carry out further experiments.
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1. INTRODUCTION

Building a robust machine learning model that incrementally learns from different tasks without
forgetting requires methodologies that account for drifts in the input distribution. The Continual
Learning (CL) research field addresses the catastrophic forgetting problem (Grossberg, 1980;
French, 1999) by devising learning algorithms that improve a model’s ability to retain previously
gathered information while learning across multiple steps. Each step in a CL scenario constitutes a
new learning experience providing new data to the model, whose distribution may be different with
respect to the previously encountered ones. As of today, CL methods have been studied from the
perspective of flat data (data without a strong temporal or geometrical structure) (Kirkpatrick et al.,
2017; Shin et al., 2017; Maltoni and Lomonaco, 2018) and, to a lesser extent, sequential data (Ehret
et al., 2020; Sodhani et al., 2020; Cossu et al., 2021). In particular, the literature on CL revolves
around three main families of strategies aimed at tackling catastrophic forgetting (Parisi et al.,
2019): regularization strategies, architectural strategies and replay strategies. Though not entirely
comprehensive, this taxonomy includes most of the currently used CL strategies.

Regularization strategies add a penalization to the standard loss function to enforce the stability
of existing parameters. For example, the penalization may force parameters deemed important for
a specific task not to change much during training (Kirkpatrick et al., 2017), or it may impose
stability of the output activations during different tasks through distillation (Li and Hoiem, 2016).
Architectural strategies try to mitigate forgetting by enhancing the model’s plasticity. Typically,
they expand the network by adding more units (Marsland et al., 2002; Draelos et al., 2017), an
entirely new module (Rusu et al., 2016; Cossu et al., 2020), or by expanding and then compressing
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the resulting architecture (Hung et al., 2019; Srivastava et al.,
2019). Finally, replay strategies mix input patterns from the
current step with patterns from previously encountered steps
(Isele and Cosgun, 2018; Rolnick et al., 2019). Replay memory
management is crucial because it is not feasible to store all
the patterns from previous steps. Generative replay, instead,
overcomes this problem by training a generative model (with
fixed space occupancy) that provides on-demand previous
patterns (Shin et al., 2017; Wang et al., 2019; van de Ven et al.,
2020).

Graph Representation Learning (GRL) is the study of machine
learning models that can make predictions about input data
represented as a graph. GRL methods naturally find application
in social sciences (Nechaev et al., 2018), recommender systems
(Bobadilla et al., 2013), cheminformatics (Micheli et al., 2007),
security (Iadarola, 2018), and natural language processing
(Marcheggiani et al., 2018), where each graph has a potentially
different topology (Micheli et al., 2007).

There is a long and consolidated history of works that discuss
these problems in static scenarios, where data is completely
available from the beginning (Sperduti and Starita, 1997; Frasconi
et al., 1998; Micheli, 2009; Scarselli et al., 2009). Nowadays,
the models that can process a broad spectrum of graphs by
means of local and iterative processing of information are called
Deep Graph Networks1 (DGNs) (Bacciu et al., 2020). Generally
speaking, DGNs propagate nodes’ information across the graph
by stacking several graph convolutional layers on top of each
other. Each layer works by aggregating each node’s neighboring
information, and it ultimately produces node representations
that can be used to make predictions about nodes, links, or entire
graphs. For the sake of brevity, we refer the reader to recent
works that summarize the state of the art (Bronstein et al., 2017;
Battaglia et al., 2018; Bacciu et al., 2020; Wu et al., 2020).

At present, the literature lacks an analysis of catastrophic
forgetting in models that deal with graphs. The few existing
works focus on new approaches which are not compared to
existing CL strategies on challenging benchmarks (Wang et al.,
2020; Zhou and Cao, 2021). This work makes the first step in
this direction by carrying out continual learning experiments
on graph classification benchmarks in a robust and controlled
framework. In this context, we investigate whether specific GRL
regularization strategies can mitigate catastrophic forgetting by
enforcing structural information preservation.

Our contribution is two-fold. First of all, we study whether
CL techniques for flat data still work on the graph domain.
If that is not the case, the results will call for different and
novel approaches to be developed. Secondly, we provide a robust
and reproducible framework to carry out Continual Learning
experiments on graph-structured data. Indeed the GRL field has
suffered serious reproducibility issues that impacted chemical
and social benchmarks (Shchur et al., 2018; Errica et al., 2020).
By publicly releasing our code and adopting a clear experimental
evaluation, we prevent common malpractices such as the usage
of custom data splits for model selection and model assessment,

1This term disambiguates the more common “Graph Neural Networks” (GNN),

which refers to the work of Scarselli et al. (2009).

the absence of a model selection, and incorrect evaluations of the
estimated risk on the validation (rather than test) set.

2. METHOD

We now detail the CL strategies and deep graph networks used
to evaluate catastrophic forgetting in the domain of graph-
structured data. To the best of our knowledge, this is one of
the first studies to investigate this particular aspect. To keep
the discussion clear, we will focus on regularization and replay
strategies applied to simple architectures for graphs, deferring
more complex techniques to future studies.

2.1. Continual Learning Strategies
2.1.1. Elastic Weight Consolidation
Elastic Weight Consolidation (Kirkpatrick et al., 2017) is a
regularization technique which prevents changes in parameters
that are important for previous steps. Formally, EWC adds a
squared penalty termR to the classification loss at training time:

R(2,�) = λ

n−1
∑

i=1

�i‖2i −2n‖
2
2, (1)

where 2n is the vector of parameters of current step n, 2i is the
vector of parameters from previous step i and �i is the vector of
parameter importances for step i. The hyperparameter λ controls
the trade-off between classification accuracy on current step and
stability of parameters. The importance for step n is computed at
the end of training on step n, through a diagonal approximation
of the Fisher Information Matrix:

�n = E(x,y)∈D

[

(∇2n log p2n (y|x))
2
]

. (2)

The computation of importance values requires an additional
pass over the training data D and the estimation of the
log probabilities log p2 represented by the network outputs.
Following Schwarz et al. (2018), we keep a single importance
matrix for all steps, by summing the importance on the current
step with the previous values. In order to prevent the unbounded
growth of importance values we normalize between 0 and 1 when
computing importance on the current step.

2.1.2. Learning Without Forgetting
Learning without Forgetting (LwF) (Li and Hoiem, 2016) is
a regularization technique which preserves the knowledge of
previous steps by fostering stability at the activation level through
knowledge distillation (Hinton et al., 2015). The method adds a
regularization termR to the loss during step n as follows:

R(2n,2n−1; x, y) = α KL[p2n (y|x) || p2n−1 (y|x)], (3)

where α controls the regularization strength. The KL-divergence
term prevents current activations to diverge too much from the
ones of the model at previous step.
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2.1.3. Replay
Replay of previous patterns during training is a very effective
technique against forgetting of existing knowledge (Hayes et al.,
2018; Aljundi et al., 2019; Chaudhry et al., 2019b; Rolnick
et al., 2019). We leveraged a replay memory which stores a
fixed number of patterns for each class. During training on
each step, the replay memory is concatenated with the training
set. The resulting dataset is shuffled and used for training the
model. Therefore, replay patterns are spread uniformly over the
training set.

2.1.4. Naïve
The Naïve strategy trains the model continuously without
applying any CL technique. This strategy is heavily subjected to
catastrophic forgetting. Therefore, it can be used as a baseline to
compare the performance of more effective CL strategies, which
should perform significantly better in terms of forgetting.

2.2. Deep Graph Networks Models
We define a graph as a tuple g = (Vg , Eg ,Xg ,Ag) where Vg is the
set of nodes, Eg is the set of oriented edges connecting ordered
pairs of nodes, whereas Xg (respectivelyAg) denotes node (edge)
features. The neighborhood Nv of a node v is the set of all nodes
u for which an edge (u, v) directed toward v exists.

2.2.1. Structure-Agnostic Baseline
To assess whether continual learning strategies have an impact
when working with graphs, we must first devise a baseline
that ignores the structural information and relies only on node
features. The most common baseline we find in the literature
(Dwivedi et al., 2020; Errica et al., 2020) is a multi-layer
perceptron (MLP) that is invariant to the ordering of the
nodes. Formally, the baseline compute a node representation hv
as follows

hv = ψ(xv), xv ∈ Xg , (4)

ψ(xv) = WT
L (σ (. . . (σ (W

T
1 xv + b1) . . . )+ bL), (5)

where ψ(·) is an MLP of L layers, the symbolW denotes a weight
matrix and b is the bias. As the tasks under consideration in this
paper deal with graph classification, an additional readout phase
is necessary, in which we aggregate all node representations into
a single graph representation hg :

hg = 9g

(

{hv | v ∈ Vg}

)

, (6)

where 9g is a permutation invariant function; in this work we
will use themean function as the baseline’s readout.

2.2.2. Deep Graph Networks
While DGNs usually adopt the same readout scheme as the
one of Equation 6, the fundamental difference lies in its graph
convolutional layer. If we assume a deep network of L layers,
the node representation at layer ℓ < L, that is, hℓv is obtained
by aggregating the neighboring information of all nodes using
another permutation invariant function9n:

hℓ+1
v = φℓ+1

(

hℓv , 9n({ψ
ℓ+1(hℓu) | u ∈ Nv})

)

, (7)

where φ andψ are usually implemented as linear layers or MLPs.
In our experiments, we define 9n as the mean operator for

digit classification tasks and sum for the chemical ones.

2.2.3. Structure-Preserving Regularization Loss
We believe it is worth investigating whether a structure-
preserving regularization loss such as the one of Kipf andWelling
(2017) affects catastrophic forgetting when used alongside the
various CL strategies. The catch is that regularization will help
preserve the output of previously seen classes when similar
structural patterns appear in the new training samples. In general,
the interplay between GRL and CL regularization strategies
opens appealing research directions for the future. In case the
chosen regularization does not help, this may indicate that the
distribution of neighbor states of patterns belonging to a new
class is radically different from those seen before.

3. RESULTS

This section provides a thorough description of the experimental
details necessary to reproduce our experiments and of the results
we obtained. The code is made publicly available to reproduce
the results and carry out novel robust evaluations of different
continual learning strategies2.

In all our experiments, we performed model selection on the
validation set using a grid-search strategy for all the implemented
models. Regardless of the dataset or continual learning technique
used, we selected the number of layers in {2, 4} for the DGN and
4 for the baseline. In both cases, the dimension of the hidden
layer was chosen in {64, 128}. The number of epochs was set to
200 (patience = 20) for the Baseline and to 1,000 for DGN and
DGN+Reg (patience = 50). The learning rate was set to 0.001,
and the optimizer chosen was Adam. We used the “sum” version
of the EWC combined with normalized importance scores. Being
LWF very sensible to the hyper-parameters, we chose α ∈

{0.5, 1.0, 2.0} and the temperature in {0.5, 1.0, 2.0}.

3.1. Datasets
The evaluation is carried out on three different large graph
classification datasets. The former two, namely MNIST and
CIFAR10, are the standard digit classification benchmarks used
in the CL literature. However, here the digits are represented
as graphs of varying dimension and shape (Dwivedi et al.,
2020). The nodes are “superpixels” obtained through a specific
coarsening process, and the adjacency information is constructed
using the k-nearest neighbor algorithm. We defer the specifics of
this process to the original paper. The third dataset is OGBG-
PPA (Hu et al., 2020), a dataset of undirected protein association
neighborhoods taken from protein-protein interaction graphs.
Here, the task is to classify each input as one of 37 different
taxonomy groups. Here, node features are missing but edges
contain information. As such, we treat edges as nodes in the
structure-agnostic baseline. We use the same data splits as
those provided in the original papers, thus performing standard
hold-out model selection and assessment. We also use the

2https://github.com/diningphil/continual_learning_for_graphs
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TABLE 1 | Summary of the datasets statistics.

MNIST CIFAR10 OGBG-PPA

Size 70,000 60,000 158,100

Node attrs. 3 5 0

Edge attrs. 0 0 7

Classes 10 10 37

Avg |Vg| 70.57 117.63 243.4

Avg |Eg| 564.63 941.07 2266.1

Data split 55K/5K/15K 45K/5K/15K 49%/29%/22%

Class split 2+2+2+2+2 2+2+2+2+2 17+5+5+5+5

“Class split” refers to how we group classes in the Split CL experiment.

readily available version of all datasets provided by the Pytorch
Geometric library (Fey and Lenssen, 2019). Table 1 summarizes
some useful dataset statistics.

3.2. Continual Learning Evaluation Protocol
We evaluated each model in the class-incremental scenario,
a popular continual learning setting where new classes arrive
over time (van de Ven and Tolias, 2018). When a new step
arrives, the model is trained on the new data without using
data from the previous steps (except for the replay buffer, when
used). We use single-head models, where the entire output
layer is used at each step. This is one of the most challenging
scenarios for the mitigation of catastrophic forgetting in CL.
Table 1 shows the class splits for each dataset, highlighting how
many new classes are present in each step. We monitor the

metric ACC = 1
T

∑T
t=1 RT,t , introduced in Lopez-Paz and

Ranzato (2017), where RT,t is the accuracy on step t after training
on step T.

We reported the average ACC and its standard deviation
computed over 5 runs. Larger final accuracy corresponds to
a smaller degree of forgetting, sometimes also referred to as
Negative Backward Transfer in the continual learning literature
(Lopez-Paz and Ranzato, 2017). We evaluated the performance
by computing the mean accuracy over all the steps after training
on all steps.

3.3. Catastrophic Forgetting Analysis
The empirical results suggest that Deep Graph Networks trained
continuously are subjected to catastrophic forgetting of previous
knowledge. Table 2 reports the average ACC across all steps
(see also Figure 1 for an intuitive visualization of results). We
also extend the results presented in Lesort et al. (2020) to Deep
Graph Networks: importance-based regularization strategies are
not able to prevent forgetting in class-incremental scenarios. In
fact, in our experiments EWC always performs comparably to the
Naïve strategy.

Interestingly, Deep graph networks do not provide significant
performance improvements with respect to a structure-agnostic
baseline. This is a surprising result, which might have two
complementary explanations. The first is that the neighboring
states’ distribution of different classes varies, thus making the
previously trained graph convolutions inadequate for subsequent

TABLE 2 | Mean accuracy and mean standard deviation among all steps.

Model
Strategy

Naïve EWC Replay LWF

M
N
IS
T Baseline 19.56±0.1 19.39±0.1 86.13±4.5 33.16±13.1

DGN 19.19±0.1 18.95±0.3 79.52±1.9 32.64±5.0

DGN+reg 19.31±0.1 — 81.42±2.4 —

C
IF
A
R
1
0 Baseline 17.49±0.1 17.49±0.1 42.87±3.7 26.77±5.1

DGN 17.11±0.2 17.10±0.2 39.55±2.3 24.13±4.1

DGN+reg 17.13±0.1 — 46.61±3.5 —

O
G
B
G
-P

P
A Baseline 14.53±0.5 13.90±0.8 55.96±3.0 20.83±6.1

DGN 14.47±0.3 14.15±0.5 56.34±2.5 18.46±5.4

DGN+reg 15.18±0.8 — 57.27±3.2 —

Smaller accuracy results in larger forgetting of previous knowledge. Replay results are

related to memory size of 1,000. Results are averaged over 5 final runs. We treat the

regularization loss as a separate strategy.

tasks. The second, instead, relates to the nature of the class-
incremental scenario. Since the model sees few classes at a
time, each training task becomes so simple that the model ends
up relying on node features only to discern between the two
classes. This is confirmed by the fact that, when encouraged to
retain structural information via the regularization term, DGN
shows a slight increase in performance with the replay strategy.
We believe that addressing both points in more detail could
constitute interesting future work at the intersection of the two
research fields.

3.3.1. Sensitivity of LwF to Hyperparameters
Not all regularization strategies are, however, subjected to
forgetting. In fact, we show that LwF is able to recover part of
the original knowledge, outperforming both Naïve and EWC.
We also found LwF to be very sensitive to the choice of
the hyperparameters. In particular, the softmax temperature
and the hyperparameter α, which controls the amount of
knowledge distillation heavily influence the final performance.
In order to best show the sensitivity of LwF to the choice of
hyperparameters, we computed the mean ACC and its standard
deviation across all runs of model selection (Figure 2). Then,
we compared the results with the best performance we found
during model assessment. The difference highlights the high
sensitivity of Lwf which could partially limit its applicability in
real world applications, where it may be impossible to perform
appropriate model selection in continual learning scenarios
(Chaudhry et al., 2019a).

3.3.2. Effectiveness of Replay
Replay strategy is considered among the strongest CL strategies
available. In our experiments, replay consistently outperforms all
the other strategies. Supplementary Material shows ACC values
for increasing replay memory sizes. Deep graph networks and
baseline models require a comparable amount of replay to obtain
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FIGURE 1 | Paired plots showing the ACC on each step for different models for LWF and MNIST (left), LWF and CIFAR10 (middle), Replay and OGBG-PPA (right).

Complete plots in the Supplementary Material. Each column refers to a model and it is composed by pairs of connected points. Each pair refers to a specific step.

The leftmost point in the pair represents ACC after training on that specific step. The rightmost point represents ACC after training on all steps. The more vertical the

line connecting the points, the larger the forgetting effect. The dashed horizontal line indicates the performance of a random classifier. The red star represents the

average performance over all steps.

the same level of performance. Therefore, replay seems to behave
as a good model-agnostic strategy even in the domain of graphs.

4. DISCUSSION

Learning from a data stream in a continual fashion is a key
property of many biological systems, including the human brain.
In fact, continual learning is often considered as a necessary
condition for the development of artificial intelligent agents
operating in the real world. Even though there exist continual
learning strategies loosely inspired by neuroscience, most of them
do not take into consideration that we, as humans, act in a world
filled with structured and complex interactions between different
objects. On one side, applying graph representation learning
techniques to continual learning may lead to the acquisition of
durable knowledge, since each piece of information is related
to many others and it may be therefore more difficult to forget
it. On the other side, our results highlighted that before being
able to achieve this objective, it will be necessary to design
ad-hoc continual learning strategies which explicitly take into
consideration the structure and relations present in the data.

Our empirical evaluation of continual learning strategies with
graph-structured data focused on the catastrophic forgetting
phenomenon which affects deep graph networks in class-
incremental scenarios. We evaluated a number of existing CL
approaches and we discussed whether they are able to retain
previous knowledge when applied to deep graph networks.

Interestingly, while graph networks outperform feedforward
baselines during offline training, our results show that this
advantage disappears in continual learning scenarios. This
suggests that structure-preserving regularization techniques may
help DGNs to mitigate catastrophic forgetting. Nonetheless,
the results are still far from the performance achieved in the
offline setting, where all data is available at the beginning of
training. This can be easily seen by looking at the performance
of the replay strategy, which largely improves over all the
other strategies. Since replay approximates the offline training
regime for large replay memory sizes, its performance can
be considered as an upper-bound for the other continual

FIGURE 2 | Comparison of performances between model selection (averaged

across all configurations) and model assessment (averaged across 5 final

training runs). The difference highlights the sensitivity of LwF to the choice of

hyperparameters. Most of the configurations cause larger forgetting effects

with respect to the best configuration found by model selection.

learning strategies. Unfortunately, storing previous patterns is
not always possible in real-world environments (e.g., due to
privacy reasons or memory constraints). The design of ad-hoc
DGNs and regularization techniques constitutes a valid, replay-
free alternative. However, it would be interesting to limit the
disadvantages of replay without sacrificing its performance. For
example, latent replay approaches do not store raw input patterns
to rehearse previous knowledge, but only latent and hidden
activations of the model. In the presence of graph-structured
data, storing few activations may be enough to reconstruct
significant portions of the others. In the future, as supported
by Hayes et al. (2021), latent replay on structured data can be
empowered by better understanding the role played by replay
in biological systems and in the human brain, where partial
stimuli are often sufficient to reconstruct previous experiences
in detail.
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By releasing the code of our experiments, and by providing a
robust evaluation protocol for continual learning on some graph
classification tasks, we hope to contribute to further progresses in
the understanding of how novel continual learning strategies can
be applied to the domain of graphs.
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