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Crowdsourced data are often rife with disagreement, either because of genuine item

ambiguity, overlapping labels, subjectivity, or annotator error. Hence, a variety of methods

have been developed for learning from data containing disagreement. One of the

observations emerging from this work is that different methods appear to work best

depending on characteristics of the dataset such as the level of noise. In this paper, we

investigate the use of an approach developed to estimate noise, temperature scaling,

in learning from data containing disagreements. We find that temperature scaling works

with data in which the disagreements are the result of label overlap, but not with data in

which the disagreements are due to annotator bias, as in, e.g., subjective tasks such as

labeling an item as offensive or not. We also find that disagreements due to ambiguity

do not fit perfectly either category.

Keywords: overlapping labels, annotation disagreement, observer disagreement, temperature scaling, model

calibration, cost-sensitive loss

1. INTRODUCTION

Crowdsourced data are often rife with disagreements between coders. Hence, a variety of methods
have been developed for learning from data containing disagreement. In a previous study, the focus
was on developingmethods for removing items onwhich annotators disagreed (Beigman-Klebanov
and Beigman, 2009), or aggregation methods able to learn “ground truth” from such data (Dawid
and Skene, 1979; Smyth et al., 1994; Carpenter, 2008; Whitehill et al., 2009; Hovy et al., 2013) (see,
e.g., Sheshadri and Lease, 2013; Paun et al., 2018, 2022; Uma et al., 2021b for review). More recent
work however suggests that better results are obtained by methods training directly from data
containing disagreements (Raykar et al., 2010; Rodrigues and Pereira, 2017; Peterson et al., 2019;
Uma et al., 2020; Fornaciari et al., 2021; Uma et al., 2021b). But another finding emerging from
this recent work is that different methods for learning from data containing disagreements work
best depending on the dataset (Uma et al., 2021b). One possible explanation for this difference in
performance is disagreements can be due to a number of causes, ranging from annotator error
to problematic annotation schemes (e.g., with overlapping labels) to genuine item ambiguity to
more general item difficulty. An early proposal regarding distinguishing between different types of
disagreement was made by Reidsma and Carletta (2008), who showed that disagreements due to
(random) noise—random annotator errors—affect model training differently from disagreements
due to bias—annotator-dependent patterns. Such work raises the question of whether it is possible
to distinguish between these two types of disagreement (or other types perhaps) so as to decide
which method for learning from disagreement is more appropriate for a given dataset.
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In early work (Uma et al., 2021b), we considered a number
of approaches to identify the type of disagreement that was
most typical in a dataset. However, the objective of the measures
used in that work is to identify the type of disagreement in
a dataset prior to training a model. In this paper, we report
on an investigation of the use of an approach inspired by the
idea of temperature scaling developed by, e.g., Platt (1999) and
Guo et al. (2017) to allow a model to automatically adapt in
the presence of disagreement in the data. We use a range of
datasets known to contain disagreements arising from different
sources (Uma et al., 2021b) to train models using the state-
of-the-art soft-loss approach for learning from disagreement
(Peterson et al., 2019; Uma et al., 2020, 2021b) and test
whether adding automatic temperature scaling improves model
performance. We find that the datasets used can be divided
into three groups on the basis of the results obtained with the
proposed approach. Automatic temperature scaling works well
with datasets in which disagreement is mostly due to substantial
overlap between the labels such that annotators have to choose
a label more or less randomly. By contrast, the approach does
not work at all with data in which the disagreements are due
to a clear bias, as in, e.g., subjective tasks such as labeling an
item as offensive or not, which is known to be affected by the
annotators’ political views. Finally, with datasets where most
or part of the disagreement arises from linguistic ambiguity lie
in between these extremes, suggesting that ambiguity may not
sit perfectly within a binary distinction such as the distinction
between bias and noise proposed by Reidsma and Carletta
(2008).

2. METHODOLOGY:
TEMPERATURE-SCALED SOFT LOSS

In this section, we introduce the temperature-scaled soft

loss approach, which combines the soft loss approach to
learning from disagreement we developed in previous work
with our own approach to adding temperature scaling in a
deep learning model, which we call automatic temperature

scaling. We first review the soft-loss approach proposed by
Peterson et al. (2019) and Uma et al. (2020) and extend
soft-loss by including exploration of the suitability of various
standard loss functions for soft-loss training. Next, we discuss
the (automatic) temperature-scaled soft-loss methodology which
involves weighting the soft loss for each item by a learned
temperature parameter.

2.1. Soft Loss Learning
The soft-loss functions approach to training from data containing
disagreement combines using a standard loss function with
a probabilistic soft label generated from crowd annotations
(Peterson et al., 2019; Uma et al., 2020). To train a model using
the soft-loss function approach, a standard loss function such as
cross-entropy or squared error is used; but instead of targeting
the ground truth viewed as a one-hot label, a soft label—a
probability distribution over the labels—is generated from the

distribution of crowd labels and used as a target for training the
machine learning model. We discuss each step in turn.

2.1.1. Generating Probabilistic Soft Labels
While experimenting with a variety of datasets standardly used
for learning from disagreement, Uma et al. (2020) showed that for
a soft-loss function, the quality of the predictions is dependent on
the method used in generating the probabilistic soft labels, which
in turn is dependent on the characteristics of the annotation
for the dataset. They evaluated two standard label generation
functions—the softmax function and the standard normalization
function—finding which is best depends on the dataset. Soft
labels obtained through standard normalization were found to
be preferable for datasets like CIFAR-10H (Peterson et al., 2019),
which were annotated by a large number of expert annotations
with high observed agreement among them. Soft labels produced
using softmax proved instead more suitable for datasets that do
not meet these criteria, such as Gimpel et al.’s POS dataset (Plank
et al., 2014a) and the LABELME dataset (Rodrigues and Pereira,
2017). Uma et al. (2021b) further showed that the best soft label
for mixed quality datasets, such as PDIS (Poesio et al., 2019),

were obtained by using the posterior distribution of a
probabilistic aggregation model such as MACE (Hovy et al.,
2013). For our novel misogyny dataset ArMIS (Almanea and
Poesio, 2022), we found that the normalized distribution of the
annotators was the best-performing label.

2.1.2. A Suitable Loss Function
Peterson et al. (2019) only used the cross-entropy loss function,
hypothesizing that it was uniquely suitable for the task. Uma
et al. (2021b) tested a variety of other loss functions, including
Kullback-Leibler (henceforth: KL) and (Summed) Squared Error
(henceforth: SE)1. Malinin and Gales (2019) argued that for
datasets with high noise due to overlapping labels and resulting
in a multi-modal label distribution2 reverse KL-divergence is
most appropriate if the goal is to maximize prediction accuracy.
They tested their hypothesis on synthetic data, comparing reverse
KL-divergence as a loss function with (forward) KL divergence,
and showed that while KL-divergence is a sensible loss function
for datasets with low data uncertainty and target distributions
where “correct” labels are available, reverse KL-divergence is
more suitable when this is not the case.

Thus, as a preliminary experiment, we tested the hypothesis
of Malinin and Gales (2019) with our (non-artificial) data by
training soft-loss functions for each task using the best soft label
and each of the divergence functions. We additionally tested the
other two well-known probability-comparing loss functions—
the cross-entropy loss function (CE) already used in Peterson
et al. (2019) and Uma et al. (2020, 2021b) and the Squared error
function (SE) used in Uma et al. (2021b). Soft-loss functions
using each of the stated functions can be expressed using the
simplified notation:

1After some experimentation, and in keeping with the other loss function, we

decided to use the sum of the squared errors as opposed to the mean.
2Malinin and Gales (2019) use the term data uncertainty for this type of noise, but

as far as we know their notion of data uncertainty is the same as what Reidsma and

Carletta (2008) call random noise.
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• Cross-Entropy Soft loss:

CE(yhum, yθ ) = −

n∑

i=1

yihum log yiθ (1)

• KL Soft loss:

DKL(yhum || yθ ) = −

n∑

i=1

yhum log(
yiθ
yi
hum

) (2)

• Reverse KL Soft loss3:

DRKL(yθ || yhum) =

n∑

i=1

yiθ log(
yi
hum

yiθ
) (3)

• SE Soft loss:

MSE(yhum, yθ ) =

n∑

i=1

(yihum − yiθ )
2 (4)

where yi
hum

is the target label for an item i, the best soft label; yiθ is
the model’s predicted probability distribution for that item; and
n is the number of items in the training set.

We experiment with these variations of the soft loss function
and note the prediction accuracy of the trainedmodels, especially
in reaction to Malinin and Gales’s (2019) hypothesis. The
best soft loss function is used for experiments in automatic
temperature scaling.

2.2. Item Weighting Through Automatic
Temperature Scaling
One of the most widely adopted approaches to learning
from disagreement involves developing methods for identifying
difficult items–items on which there is an unexpected degree
of disagreement among annotators. Such methods typically
use statistical inference to infer the difficulty of an item, and
then use such difficulty to weigh or filter items classified as
intrinsically difficult (refer to, e.g., Carpenter, 2008; Beigman
and Beigman Klebanov, 2009; Whitehill et al., 2009) and the
discussion of item difficulty approaches in Paun et al. (2022). In
the deep learning literature, a number of methods of this type
were developed, for which the term temperature scaling is often
used.

In this paper, we introduce a method of this type, which
we called automatic temperature scaling, and combine ideas
from both temperature scaling and Platt scaling. Platt scaling
was proposed as a way to calibrate a logistic regression model,
i.e., adjust its parameters to reflect uncertainty (Platt, 1999). To
calibrate a model, Platt proposes that two scalar parameters, a
and b ∈ R, be learned by optimizing the negative log-likelihood
function over the validation set while keeping the model’s
parameters fixed. The learned parameters are used to rescale the
logits of the model, zi resulting in outputs, f (xi) = σ (azi + b).

3In reverse KL, the target human-derived soft label and the predicted soft label are

swapped.

Temperature scaling is a single parameter variant of Platt
scaling (Guo et al., 2017), where a single scalar parameter, T,
called the temperature, is used to rescale logit scores for all the
classes, zi, before applying the softmax function. This way, the
model’s recalibrated probabilities are given as:

f (xi) = σ (zi/T) (5)

where σ (·) is the softmax function. When T > 1, the entropy of
the output probabilities increases, hence “softening the softmax”
and evening out the probability distribution. T < 1 hardens
the softmax, resulting in a peakier (more modal) probability
distribution. Finally, T = 1 recovers the unscaled probabilities
(Guo et al., 2017). The value of T is obtained by minimizing the
negative log-likelihood on a held-out validation dataset. Because
T is independent of the class, j, and the item, i, temperature scaling
does not affect which class is predicted and hence does not affect
prediction accuracy.

Automatic temperature scaling, which we propose here,
is a natural extension of temperature scaling. It differs from
standard temperature scaling in three key ways. First, automatic
temperature scaling learns a parameter vector Ti jointly as it
learns to predict the classes. It does this by learning a network
of weights wTi and biases bTi such that

Ti = softplus(WTixi + bTi) (6)

This network of weights is disjoint from the network of weights
for learning to map inputs to targets. By using Softplus as the
squashing the function (as opposed to sigmoid, ReLu, or Tanh)
we apply non-linearity to the network without overly limiting the
bounds of Ti

4.
The reason for moving from a single scalar parameter to a

vectorial parameter, and from a single value for the whole corpus
to an item dependent parameter, is that difficulty is very much
item dependent—e.g., not all images are equally easy or difficult—
and also class dependent: some classes are more easily confused
than others, as discussed in more detail in the next section. The
vectorial expression of temperature is similar to the one used in
matrix scaling, an alternative temperature scaling also proposed
by Guo et al. (2017)5. But unlike in matrix scaling (or Platt
scaling, in which more than one parameter is also learned), the
parameters are not tuned on a held-out validation set; rather,
the model jointly learns classifier and scaling parameters. During
training, the model’s outputs, ŷi = f (xi) are computed as follows:

f (xi) = σ (zi ∗ Ti) (7)

The model’s loss is computed using the appropriate soft loss
function.

The second key difference is practical in nature but has notable
implications. Unlike in temperature scaling, where the logits are
divided by temperature T, in automatic temperature scaling,

4Sigmoid, ReLu, and Tanh outputs are bounded between [0, 1], [0,1], and [–1, 1]

respectively, while Softplus outputs are only lower bounded are zero.
5Guo et al. (2017) propose the use of themax(·) function, rather than softplus(·).
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the logits are multiplied by the temperature; we found this to
work better in practice. The consequence is that in automatic
temperature scaling, a warmer temperature (higher values of
Ti) indicates lower uncertainty resulting in peakier probabilities,
while colder temperatures indicate higher uncertainty resulting
in amore even distribution–the opposite to temperature scaling6.

The third key difference can be observed from the definition
of Ti in Equation (6). Unlike in standard temperature scaling, in
automatic temperature scaling, the model does not have a single
temperature value; rather, the temperature of any given item is
a function of the input vector for the item and the temperature
weights of the model, WTi—the logits for each instance are
scaled to a different temperature, determined by the model and
learned as a function of the input features of the instance. In
this way, if the model is able to identify uncertainty for an input
item, it will respond by producing a lower temperature value for
that item. The converse is also true. Thus, by considering each
instance separately, the model is able to produce temperature
values depending on how much data uncertainty it perceives for
each item.

This third aspect is vital to understanding the anticipated
improvement in predictive accuracy using automatic
temperature scaling. In datasets with overlapping labels,
because the modal class for affected items is arbitrary, models
(much like annotators) are likely to disagree with the modal
class of the target labels, predicting a different (and possibly
equally plausible) modal class for perceived noisy inputs. The
temperature lowering for such items results in a flatter predicted
probability distribution and has the added effect of decreasing the
loss contribution of that item to the overall loss. Consequently,
the model penalizes itself less for such items and reduces the loss
contribution of the item to the total loss. In this way, automatic
temperature scaling can be comparable to cost-sensitive loss
(Plank et al., 2014a).

3. THE EXPERIMENTS

In this section, we present our experimental design and discuss
the datasets and models used for the experiments conducted in
this study.

3.1. Experiment Design
We conducted the experiments in two phases. First, we
experimentally compared the suitability of various standard loss
functions for soft loss training as outlined in Section 2.1.2
on several tasks. Then, we extended the best-performing loss
function into an automatic temperature-scaled soft loss. For
both experiments, we evaluated the models using two evaluation
metrics, one hard and one soft.

3.1.1. Hard Evaluation
As a hard evaluation metric, we used accuracy, as done by
Peterson et al. (2019) and Uma et al. (2020). We calculated the

6As such, it would be more appropriate to name Ti “confidence” or “certainty”—

but we will stick with the original name to acknowledge the intellectual debt of our

proposal to temperature scaling.

accuracy of each model’s prediction with respect to a standard:
the majority vote aggregate of the expert annotators for ArMIS 7

and gold labels for the other datasets.

3.1.2. Soft Evaluation
As noted in previous work (Dumitrache et al., 2018; Peterson
et al., 2019; Uma et al., 2020; Basile et al., 2021; Uma et al.,
2021b), as the realization that gold labels are an idealization
growth, so does the awareness that hard evaluation is not
sufficient to compare machine learning models on tasks in which
disagreements are extensive, and extremely questionable for tasks
in which the labels are subjective and therefore it does not
make sense a “gold label” exists that the disagreements can be
reconciled to. A particularly obvious illustration of this last point
is the misogyny detection task, related to hate speech detection.
In this task, the labels assigned by annotators are very much
dependent on their background, i.e., text found misogynistic by
a female annotator or a more liberal annotator may not be found
misogynistic by a male annotator or an annotator from a more
conservative background.

When evaluating tasks containing disagreements, or in which
disagreements may be intrinsic, it would seem insightful not
to evaluate models against a questionable gold label only, but
also against soft labels in the sense discussed above (probability
distributions over the labels derived from crowd annotations) in
which disagreements are preserved. Consequently, in this paper,
our models are also evaluated using a soft evaluation metric,
cross-entropy. Like Peterson et al. and Uma et al., we compute
the cross-entropy between the probability distribution produced
by each model and the best soft label produced from the crowd
distribution (The label that is most appropriate for that dataset,
as discussed above). This form of evaluation provides insight into
how well the models are able to capture possible disagreements in
labeling resulting from the crowd.

3.2. Data
We used in this study four disagreement-preserving datasets that
have been previously used in research into learning to classify
from disagreement (Jamison and Gurevych, 2015; Plank et al.,
2014a,b; Uma et al., 2020, 2021a; Fornaciari et al., 2021) and
that exemplify different sources of disagreement (An in-depth
analysis of the disagreements in these datasets has been carried
out by Uma et al., 2021b). In addition, we used an entirely
new dataset, ArMIS (Almanea and Poesio, 2022), illustrating a
different type of disagreement not considered by Uma et al.
(2021b): disagreement due to subjectivity.

3.2.1. The Gimpel et al. pos Corpus
The first example of a corpus containing disagreements due to
ambiguity (Plank et al., 2014b) is Gimpel et al.’s (2011) POS

dataset (henceforth, POS), which has been often used in research
into developing disagreement-aware NLP models (Plank et al.,
2014a; Jamison and Gurevych, 2015; Fornaciari et al., 2021; Uma
et al., 2021b). The dataset consists of 14k Twitter posts annotated
with ground truth POS tags collected by Gimpel et al. (2011) from

7Ties were broken by making a random selection.
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expert annotators and crowdsourced tags collected by Plank et al.
(2014b)—at least five crowdsourced labels per token from 177
annotators.

The workers annotating this corpus often disagree with the
ground truth label; the observed agreement (Ao, Artstein and
Poesio, 2008) for the dataset is 0.73, as computed using the
multi-annotator version of Fleiss Kappa (Fleiss et al., 2004).

A typical example of the disagreements found in this corpus is
shown below (the token to be tagged is in bold):

(8)
Noam likes social media
Noun Verb Adj/Noun Noun

in the context, the category Noun would seem to be just as
appropriate as the category Adj for the token social.

Plank et al. (2014b) conducted an analysis of the easy and
hard cases in this dataset, finding that the vast majority of
inter-annotator disagreements are due to genuine linguistic

ambiguity, as in this example, although the POS categories Adj
and Noun are clearly distinct, in some cases, it is not possible
to tell what is the “right” category (Plank et al., 2014b). In
fact, an analysis of the POS dataset carried out by Uma et al.
(2021b) showed that the average observed agreement on an
“easy” category such as nouns (particularly for name tokens like
Twitter handles) is much higher than for other categories.

For experiments using this dataset, we split the 14k tokens into
training (12k) and testing (2k) and use the development dataset
released by Plank et al. (2014a) for validation.

3.2.2. The PDIS Corpus
The second corpus we used contains disagreements in part
due to ambiguity, in part to annotator carelessness. The Phrase
Detectives 2 corpus (Poesio et al., 2019) is a crowdsourced
anaphoric reference corpus collected with the Phrase Detectives
game-with-a-purpose (Poesio et al., 2013)8. Anaphoric reference
is another aspect of linguistic interpretation in which ambiguity
is rife (Poesio et al., 2006; Versley, 2008; Recasens et al., 2011). For
example, Poesio et al. (2006) discussed examples such as (3.2.2).

(9) 3.1 M: can we .. kindly hook up
3.2 : uh
3.3 : engine E2 to the boxcar at ..

Elmira
4.1 S: ok
5.1 M: +and+ send \textcolor{red}

{\textbf{it}} to Corning
5.2 : as soon as possible please
6.1 S: okay

[2sec]
7.1 M: do let me know when it gets

there
8.1 S: okay it’ll /
8.2 : it should get there at 2 AM
9.1 M: great
9.2 : uh can you give the
9.3 : manager at Corning instructions

that
9.4 : as soon as it arrives
9.5 : it should be filled with

8https://github.com/dali-ambiguity

oranges
10.1 S: okay
10.2 : then we can get that filled

In this exchange, it is not clear whether the pronoun it in 5.1 (in
red) refers to the engine E2 that has been hooked up to the boxcar
at Elmira or to the boxcar itself or indeed whether the distinction
matters at all. It is only at utterance 9.5 that we get evidence that it
probably refers to the boxcar at Elmira since only boxcars can be
filled with oranges. The two interpretations are clearly distinct–
the pronoun cannot refer to both–but it is not possible to decide
which is the intended one from the context.

The Phrase Detectives 2 corpus consists of 542 documents, for
a total of 408K tokens and 107K markables, annotated by slightly
less than 2,000 players producing a total of 2.2M judgments—
about 20 judgments per markable on average. In total, 64.3%
of the markables received more than one distinct interpretation
from the players. Some of the disagreements are due to annotator
error/carelessness, others to interface issues; but for about 10%
of markables, disagreement is again due to genuine linguistic

ambiguity.
In this study, we used PDIS, a simplified version of the corpus

containing only binary information status labels: discourse new
(DN) (the entity referred to has never been mentioned before)
and discourse old (DO) (it has been mentioned). PDIS still
consists of 542 documents, for a total of 408K tokens and over
96K markables; an average of 11.87 annotations per markable are
preserved9.

Forty-five of the documents (5.2K markables), collectively
called PDgold, additionally contain expert-adjudicated gold labels.
This subset of PDIS was designated as the test set. The training
and development datasets consist of 473 documents (and 86.9K
markables) and 24 documents (4.2K markables), respectively10.

3.2.3. The LabelMe Corpus
The most widely used corpus for learning to classify images
from crowds is the LabelMe dataset11 (Russell et al., 2008). It
classifies outdoor images according to 8 categories: highway,
inside city, tall building, street, forest, coast, mountain, or open
country. Using Amazon Mechanical Turk, Rodrigues and Pereira
(2017) collected an average of 2.5 annotations per image from 59
annotators for 10K images in this dataset.

The observed agreement for this dataset, also computed using
the multi-annotator version of Fleiss et al.’s (2004) Kappa, is 0.73,
which is the same level of average observed agreement seen in the
POS dataset. However, it can be argued that the source and nature
of the disagreement in this dataset are different, consider Figure 1
for an illustration. The ground truth label for the example image
is inside city, and one annotator chose that label as well, but two
other annotators chose tall building. Notice the difference from
the ambiguity cases in POS and PDIS: there, two interpretations
are possible, but a word can only have one—it is just that it is

9DO judgments with different antecedents are considered identical, and the

judgments other than DN or DO are removed.
10Another example of corpus were the disagreement is due to linguistic ambiguity

is Dumitrache et al. (2019).
11http://labelme.csail.mit.edu/Release3.0
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FIGURE 1 | An example of disagreement from LabelMe Ground truth label:

insidecity, crowd annotations: [insidecity:1, tallbuilding:2].

not possible to know which from the context. Here, both labels
can be applied at the same time. Uma et al. (2021b) carried out
an analysis of this dataset, finding that examples like Figure 1

are prevalent. That is, the disagreement for this dataset is largely
due to an imprecise annotation scheme where label categories
are not necessarily mutually exclusive but may overlap. As a
consequence, an annotator forced to choose one among the
overlapping categories which apply to a particular image will
likely make a random choice.

In our experiments, we randomly split the 10K images into
training and test data (8,882 and 1,118 images respectively) to
allow for ground truth and probabilistic evaluation. A total of
500 images from the dataset with gold labels were used as a
development set.

3.2.4. The CIFAR-10H Corpus
As an example of a crowdsourced corpus containing very little
disagreement and that primarily due to item difficulty, we
used Krizhevsky’s (2009) CIFAR-10H dataset, which consists of
60K tiny images from the web, carefully labeled, and expert-
adjudicated to produce a single gold label for each image
in one of 10 clearly distinct categories: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, and truck. Peterson et al.
(2019) collected crowd annotations for 10K images from this
dataset (the designated test portion) using Amazon Mechanical
Turk, creating the CIFAR-10H dataset12, which we use for
our experiments.

The observed agreement for this dataset is 0.92, the highest
among all the datasets. Clearly, the 2,457 annotators (about 51
annotators per item) found the annotation scheme to be clear
and mostly agree with the expert opinion on what the label for
each item would be. Notice that unlike in LABELME, there is no
overlap: it is not possible for an object to belong to multiple
categories. Cases of disagreement among annotators do occur,

12https://github.com/jcpeterson/cifar-10h

FIGURE 2 | An example of disagreement from CIFAR10H Ground truth label:

deer, crowd annotations: [dog:33, deer:13, horse:4].

but they are primarily of the kind illustrated by Figure 2, which
is because of the poor quality of the image, it is not possible to
decide from the picture which animal is illustrated. Yet, there
is no question that only one category can apply. We consider
such cases as proper examples of difficult to classify items—
items to which only one category from the scheme applies, yet
problematic to classify because of noise.

We used the CIFAR-10H dataset for training and testing using a
70:30 random split, ensuring that the number of images per class
remained balanced as in the original dataset. We also use a subset
of Krizhevsky (2009) CIFAR-10 training dataset (3k images) as our
development set.

3.2.5. The ArMIS Corpus
Finally, to exemplify an important source of disagreement—the
fact that certain judgments are intrinsically subjective—we used
our own ArMIS corpus (Almanea and Poesio, 2022). ArMIS is an
Arabic misogyny dataset. It consists of 1K tweets each annotated
with binary labels: 1 if the tweet expresses a misogynistic behavior
according to the annotator’s subjective point of view, 0 if the
annotator believes that the tweet is not misogynistic. The tweets
were collected using the Twitter API in October 2020, using a
keywords list which was manually created specifically for this
task, including specific slang words, phrases, and hashtags in
order to get the related tweets, such as “Feminist,” “Deficient
mind and religion.” The important aspect of this dataset is
that it was annotated by three experts” annotators, carefully
chosen to reflect different political views: liberal, moderate, and
conservative. The annotators were asked to annotate the tweets
based on their perspective.

The observed agreement of the annotators is 0.77, higher
than the observed agreement of both POS and LABELME datasets
(0.73), lower than the 0.92 observed agreement of CIFAR-10H,
and equal to the observed agreement of PDIS. It is important to
note while PDIS and ArMIS have the same level of disagreement,
the nature and source of the disagreement for the ArMIS dataset
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differs from that of PDIS and indeed from the others. While Uma
et al. (2021b) show that PDIS disagreements can be attributed
to noise from spammers, the ambiguity of labels, or interface
problems, an analysis of the disagreement in ArMIS showed the
nature of the disagreements to be largely due to the subjective

viewpoints of the diverse annotators.
For these experiments, we split the 964 tweets in ArMIS into

674 for training, 145 for validation, and 145 for testing. Gold
labels were not obtained, as is fitting for a task of such as divisive
nature, where annotator background plays a substantial role in
how they label. However, as a compromise, we use majority
voting to produce a hard label for hard evaluation purposes.

3.3. Base Models
The base models used in these experiments are the state-of-the-
art or near state-of-art models used in previous work (Uma et al.,
2020; Almanea and Poesio, 2022), many of which were made
available to the participants to the 2021 SEMEVAL shared task
on learning from disagreement (Uma et al., 2021a). We briefly
summarize these models in this subsection.

3.3.1. The POS Tagging Model
For POS tagging, we used the bi-LSTM model (Plank et al., 2016)
used by Uma et al. (2020). The model we used is improved
from Plank et al. (2016) by using attention over the input
token and character embeddings to learn contextualized token
representations.

3.3.2. The PDIS Information Status Model
The model for this task was also developed by Uma et al.
(2021a). Uma et al. combined the mention representation
component of Lee et al.’s (2018) coreference resolution system
with the mention sorting and non-syntactic feature extraction
components of the IS classification model proposed by Hou
(2016)13 to create a novel IS classificationmodel that outperforms
(Hou, 2016) on the PDIS corpus. The training parameters were set
following Lee et al. (2018).

3.3.3. The LabelMe Image Classification Model
For the LabelMe image classification, we replicated the model
from Rodrigues and Pereira (2017). The images were encoded
using pre-trained CNN layers of the VGG-16 deep neural network
(Simonyan et al., 2013) and passed to a feed-forward neural
network layer with a ReLU activated hidden layer with 128 units.
A 0.2 dropout is applied to this learned representation which
is then passed through a final layer with softmax activation to
produce the model’s predictions.

3.3.4. The CIFAR-10H-10 Image Classification Model
The trained model provided for this task is the ResNet-34A
model (He et al., 2016), one of the best performing systems for
the CIFAR-10 image classification. The publicly available Pytorch
implementation of this ResNet model was used14.

13This model was developed for fine-grained information status classification on

the ISNOTES corpus (Markert et al., 2012; Hou et al., 2013).
14https://github.com/KellerJordan/ResNet-PyTorch-CIFAR10

TABLE 1 | The effect of different loss functions for soft loss training on accuracy.

POS PDIS LABELME CIFAR-10H ArMIS

SE Soft loss 79.20 92.90 84.21 63.49 76.83

CE Soft loss 79.80 92.86 84.66 66.54 77.79

KL Soft loss 79.96 92.86 84.73 66.58 76.41

Reverse KL Soft loss 79.81 92.95 84.92 63.71 75.59

The bold values indicate the best results for each model (indicated in the first column)

using a given metric (indicated in the column header).

TABLE 2 | Results showing the accuracy (higher is better) and cross-entropy

(lower is better) of soft loss models with and without temperature.

Task Model Accuracy↑ Cross-entropy ↓

LABELME Reverse KL soft loss 84.97 1.671

LABELME Reverse KL soft loss + Ti 86.29* 1.656

POS KL soft loss 79.96 1.268*

POS KL soft loss + Ti 80.01 1.547

PDIS Reverse kl soft loss 92.95 0.467

PDIS Reverse kl soft loss + Ti 93.00 0.395*

CIFAR-10H KL soft loss 66.58* 1.109*

CIFAR-10H KL soft loss + Ti 63.89 1.223

ArMIS CE soft loss 77.79 0.586*

ArMIS CE soft loss + Ti 76.83 0.636

An asterisk is used to indicate significantly better results.

The bold values indicate the best results for each model (indicated in the first column)

using a given metric (indicated in the column header).

3.3.5. The ArMIS Arabic Misogyny Classification

Model
For this task and dataset, we fine-tuned the state-of-the-art
AraBERT base model (Antoun et al., 2020) with a maximum
sequence length of 128, learning rate of 1e-5, batch size of 8, and
training for 10 epochs.

4. RESULTS

Table 1 compares the effectiveness of different probability-
comparing loss functions for making gold predictions,
identifying the best soft loss function for each dataset. Table 2
presents the results obtained for each task by models using the
best soft loss function from Table 1 with and without automatic
temperature scaling, evaluated using both hard and soft metrics.

To account for non-deterministic model training effects, each
model was trained and tested several times: (i) 30 times each for
POS and LABELME (ii) 10 times each for PDIS, CIFAR-10H, and
ArMIS owing to the complexity of the base models. We measure
significance via bootstrap sampling, following Berg-Kirkpatrick
et al. (2012) and Søgaard et al. (2014). The rest of this section
discusses the results from these tables, highlighting significant
results. The best result for each dataset is highlighted in bold.

4.1. Choosing the Loss Function
The aim of this preliminary experiment was to investigate
Malinin and Gales’s (2019) hypothesis that Reverse KL divergence
is the most appropriate loss function for training models on
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datasets with high data uncertainty.We found that the Reverse KL
soft loss function outperforms the other soft loss functions by a
noticeable margin (0.19) for one dataset only, LABELME—though
this margin is not significant15. This is the dataset for which we
observe themost disagreement due to an annotation scheme with
overlapping labels, as opposed to linguistic ambiguity (as in POS),
or a combination of linguistic ambiguity and random noise (as in
PDIS), or item difficulty (as in CIFAR-10H), or annotator biases
(as in ArMIS). For CIFAR-10H, the dataset with the least amount
of disagreement (and noise), as discussed by Uma et al. (2021b),
we observe that Reverse KL soft loss falls nearly 3 significance
points below either CE or KL soft loss. The SE loss function also
performs poorly on this dataset, likely because SE optimizes the
loss for non-modal classes, and this is an undesirable trait for
a dataset like CIFAR-10H where the modal class is usually the
gold class.

Following this experiment, we determine the best soft loss
function for each dataset to be used as the starting point for
the automatic temperature-scaled soft loss is as follows: CE for
ArMIS, KL for POS and CIFAR-10H, and reverse KL for PDIS

and LABELME.

4.2. Temperature Scaling Soft-Loss
Learning
The first observation emerging from Table 2 is that automatic
temperature scaling only significantly improves results in one
task: LABELME. In other words, our results would suggest that
automatic temperature scaling only works when a disagreement
arises from overlapping labels, resulting in the arbitrariness of
ground truth.

In the next two datasets, POS and PDIS, the effect of
temperature scaling on the performance of the models are
mediocre or non-existent. These are the datasets for which
we and Plank et al. (2014b) and Poesio et al. (2019) have
shown that although a certain amount of noise is present, the
disagreements are largely due to linguistic ambiguity and/or
interface limitations.

At the other extreme, we have two datasets in which
temperature scaling hurts performance. One of these is CIFAR-
10H. This is a dataset with a very high observed agreement,
0.92. We also showed that the very few disagreements in this
dataset are due to difficulty experienced by annotators when
labeling blurry images. In other words, these disagreements are
not systematic or a result of an imprecise annotation scheme
but are due to the characteristics of the input. The other dataset
for which automatic temperature scaling leads to a reduction
in model performance is ArMIS. In this case, there is lower
agreement than in CIFAR-10H, but this is not a reflection of
systematic noise or data uncertainty, but of annotator uncertainty
due to subjective biases.

5. INTERPRETING TI

Our results show that among the datasets we considered in
this study, automatic temperature scaling is effective for the

15Significance was computed using bootstrap sampling, following

Berg-Kirkpatrick et al. (2012) and Søgaard et al. (2014).

FIGURE 3 | Graph showing the correlation of Ti with observed agreement and

entropy.

one dataset in which disagreements are primarily due to what
we may call label arbitrariness: the randomness in judgments
originating from the fact that annotators have to choose one
between multiple labels all of which could apply to an image and
do so without appealing to any theory (given the vagueness of the
annotation scheme). In this section, we examine the temperature
predictions of the model for this dataset to understand what the
model learns about label arbitrariness.

One way to do this is to measure the correlation
of the temperature values to known measures of item
agreement/uncertainty/difficulty. Figure 3 shows the Pearson
correlation (Pearson, 1896) between the temperature parameter
and two such metrics of uncertainty/difficulty: observed
agreement and normalized entropy. The results show that for
LABELME, the only dataset for which our method produces
a significant improvement over the soft-loss baseline, the
model’s Ti predictions have the strongest positive correlation
to the observed agreement. This means that the model tended
to make higher Ti predictions for items with a high observed
agreement and lower Ti predictions for items with a low observed
agreement. The model also has the strongest negative correlation
to entropy. These two results suggest that for this dataset (but
not for others), Ti is a moderately good predictor of uncertainty
for this dataset as measured by observed agreement and entropy.
What is it about the type of disagreement due to annotation
schemes in which labels overlap that explains why temperature
scaling improves performance with this kind of dataset, but not
with others?

As mentioned earlier, in the one study of the differences
between types of disagreement we are aware of, Reidsma and
Carletta (2008) proposed a distinction between two types of
disagreement between annotators and argued that they affect the
performance of machine learning models in different ways. One
kind is disagreements due to random noise, not conforming
to any theorizable pattern. A second type is disagreements
due to bias, which are identifiable through the occurrence of
patterns of disagreement. The fact that automatic temperature
scaling works best for disagreement due to overlap, which is
the type of disagreement among those we studied that most
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resemble random noise because the annotators have to choose
randomly; and it works worst for the clearest case of bias among
our datasets, the misogyny data might suggest that automatic
temperature scaling is a good method for adjusting model
weights when the disagreements are due to random noise, but not
when disagreement is due to bias. The mediocre results with PDIS

and POS suggest that disagreements due to linguistic ambiguity
sit somewhere in the middle, or do not fit this distinction at all.
Of course, more research is needed to verify if this hypothesis also
holds with other datasets in which disagreement is due to noise.

An alternative explanation can be found in the experiments
conducted by Malinin and Gales (2019), who posit that
overlapping labels (due to imprecise annotation schemes)
introduce data uncertainty, resulting in multi-modal
distributions16. The key characteristic of data uncertainty
disagreement is that it is fully observable given the inputs and
targets, without the need to appeal to linguistic theory (as in
linguistic ambiguity) or annotator background (as in subjectivity
disagreement). As such, a network of weights and biases (a
machine annotator if you will), given the inputs and label
distribution would also experience uncertainty predicting the
targets for such images as human annotators do. In fact, an
examination of the model’s output distribution for the instances
with the lowest temperature predictions shows that the model
assigned the lowest temperatures (= highest uncertainty) to
images belonging to the categories tall building, street, or inside
city, the categories for which the annotators most disagree with
the gold (Figure 4 shows the class proportions of images 1st
quartile range of temperature while Figure 5 shows the confusion
matrix between the majority and the gold). By calibrating its
predictions by its level of certainty for each item, the model was
able to fine-tune and improve its performance. Again, more
research with other datasets characterized by data uncertainty
will be required.

6. CONCLUSION AND FUTURE WORK

Not all disagreements are the same, and it has been shown that
not all approaches for learning from disagreement work equally
well with datasets containing different types of disagreement
(Uma et al., 2021b). In this paper, we reported on experiments
on the use of automatic temperature scaling in a learning-
from-disagreements setting as a way for automatically adjusting
a model to take into account the peculiarities of a particular
dataset. Our results show that model calibration via automatic
temperature scaling can be a simple yet effective approach to
improvingmodel performance, particularly with learning ground
truth predictions, but only with high disagreement datasets
where the disagreements are due to overlapping labels.

We analyzed the temperature values of the successful model
in a dataset of this type, to find that the temperature values
have some correlation with two known measures of item
disagreement/uncertainty—a positive correlation of about 0.3
with an observed agreement and a negative correlation of about

16The results from Table 1 while not significant do suggest that of the datasets

examined in this work, LABELME has the most data uncertainty.

FIGURE 4 | Bar chart showing the gold label distribution of the images with

the lowest temperature (images in the 1st quartile range of temperature), i.e.,

the lowest certainty.

FIGURE 5 | Confusion matrix between gold labels and majority voting

consensus for LabelMe.

0.3 with entropy. We also observed that the model assigns the
lowest temperature to instances with one of the three categories
inside city, street, tall building shown by Uma et al. to be
overlapping. We also found, however, that in datasets where
disagreement is due to different reasons, the approach does not
work so well.

We provide two possible explanations: automatic
temperature scaling provides a good model of uncertainty
when disagreements are due to random noise, but not when
they are due to biases and automatic temperature scaling is a
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good indicator of data uncertainty. Further research is however
needed to test these explanations with other datasets with the
same characteristics.
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