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A digital twin is a promising evolving tool for prognostic health monitoring. However,

in rotating machinery, the transfer function between the rotating components and the

sensor distorts the vibration signal, hence, complicating the ability to apply a digital twin to

new systems. This paper demonstrates the importance of estimating the transfer function

for a successful transfer across different machines (TDM). Furthermore, there are few

algorithms in the literature for transfer function estimation. The current algorithms can

estimate the magnitude of the transfer function without its original phase. In this study,

a new approach is presented that enables the estimation of the transfer function with

its phase for a gear signal. The performance of the new algorithm is demonstrated by

measured signals and by a simulated transfer function.

Keywords: zeros and poles, adaptive clutter separation (ACS), transfer function estimation, minimum phase,

autoregressive moving-average (ARMA) model, transfer across different machines (TDM)

INTRODUCTION

Prognostic health monitoring (PHM) by vibration signal analysis is a widespread method for
condition-based maintenance (Carden and Fanning, 2004; Randall, 2004a,b, 2011). The vibration
signals of the machinery are measured via acceleration sensors and are processed and analyzed
by signal processing (Randall et al., 2012; Gousseau et al., 2016; Peeters et al., 2017) and machine
learning algorithms (Abu-Mahfouz, 2005; Lei, 2016; Zhang et al., 2019; Lei et al., 2020). The revival
of neural networks in the last decade via the incarnation of deep learning (Goodfellow et al., 2016)
has boosted the abilities of machine learning algorithms to facilitate PHM by vibration analysis
(Lei, 2016; Lei et al., 2020).

As explained in Lei et al. (2020), two main challenges hamper the ability to apply state-of-the-art
deep models in PHM: (1) the shortcomings in signal examples with faults in real machinery and (2)
the ability to generalize across different machinery. A digital twin is an important novel tool (Kenett
and Bortman, 2021) that can mitigate the first challenge: it enables the behavior of fault signals to
be learned by several examples and it can generate many synthetic new examples. As explained in
Kenett and Bortman (2021), the digital twin can learn from a wide source of inputs (as illustrated
in Figure 1), and it generates more accurate synthetic data as it accumulates more data.

Several real-world examples have proved the concept and the utility of digital twins: in Xia et al.
(2021), a sparse de-noising auto-encoder was trained using data generated from a digital twin,
enabling diagnosis of a fault in a triplex pump; in Xu et al. (2019), data generated from a digital
twin helped to train a deep neural network to diagnose faults in a car body-side production line;
and in Jain et al. (2020), data generated from a digital twin was used to diagnose faults in distributed
photovoltaic systems. There are many other real-world examples in which data generated from
a digital twin was used to train a learner to automatically diagnose faults; more examples and
information can be found in Kenett and Bortman (2021).
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FIGURE 1 | Representation of the behavior of a digital twin and the use of emulators of the physical system. The picture was reproduced from Kenett and Bortman

(2021).

The second challenge—the ability to generalize across
different machinery—can prevent successful application of a
digital twin if there are shortcomings in fault signal examples
from the new machine. As explained by Lei et al. (2020), some
machine learning algorithms (including algorithms for gear
diagnostics) obtain satisfactory results on some problems, but
these are mostly based on the impractical assumption (Yang et al.,
2019) that the labeled data are large enough and contain faulty
data besides healthy data, thus, adequately representing the data
distribution under different fault conditions (Guo et al., 2019).
As stated in Lei et al. (2020), this assumption is not practical as
it is difficult to collect labeled faulty data for two reasons: (1)
machines workmost of the time under a healthy state, while faults
are rare; hence, healthy data are much more common than faulty
data. (2) It is hard to label data because it is very expensive to
stop a machine to inspect its rotating component status (perhaps
requiring a long and expensive dismantling of the machine and
its components) and label the data. One possibility to circumvent
this challenge is to learn from one machinery and generalize the
data to a new one by transfer across different machines (TDM)
(Lei et al., 2020). A major challenge of TDM in the current study
was to mitigate the effects of the transfer function on the signal
resulting from the transfer across different machines.

The main and inherited variation across different machines
or across different sensors in the same machine is the transfer
function between the rotating components and the sensor
(Randall, 2011; Madar et al., 2019; Dadon et al., 2020). Because
the transfer function distorts the signal’s shape, this complicates
the ability to generalize across different machines.

Abbreviations: ACS, adaptive clutter separation; AR, autoregressive; ARMA,

autoregressive moving-average; CNN, convolutional neural network; FTFF, full

tooth face fault; MSE, mean squared error; PCHIP, piecewise cubic Hermite

interpolating polynomial; PHM, prognostic health monitoring; ReLU, rectified

linear unit; RPS, revolutions per second; SGD, stochastic gradient decent; TDM,

transfer across different machines.

The spectrum of rotating machinery contains discrete
frequencies of its rotating components (such as bearings,
gears, etc.) and the background spectrum, associated with the
magnitude of the transfer function, as depicted in Figure 2

(Randall, 2011; Borghesani et al., 2013; Klein, 2017). As a result
of the wideband noise induced by the surface shape (Dadon et al.,
2020) and the transmission errors of gears (Randall, 2011; Lu
et al., 2022), it can be assumed that the magnitude of the transfer
function of gears can be approximated by the background. As
explained in Matania et al. (2021), the spectrum background of
a vibration signal can be estimated by several techniques such as
an autoregressive (AR) model (Sawalhi and Randall, 2005, 2013;
Randall, 2011), cepstrum liftering (Childers et al., 1977; Peeters
et al., 2016; Smith and Randall, 2016; Randall, 2017; Matania
et al., 2021), and adaptive clutter separation (ACS, Klein, 2017;
Matania et al., 2021, 2022).

Although, for gears, the magnitude of the transfer function
can be approximated by the background, the phase cannot
be approximated directly by the spectrum signal. Currently,
to mitigate this challenge, it is assumed that the transfer
function holds the minimum phase assumption, which states
that besides the poles, the zeros of the transfer function are
inside the unit circle (Oppenheim et al., 1999; Randall, 2011)
(the poles hold this property because the transfer function must
be stable). However, as demonstrated in Section Theoretical
Background, the minimum phase assumption does not hold for
some transfer functions.

This study demonstrates the importance of transfer function
estimation for transfer across different machines (TDM) for
enhancing the generalization abilities of digital twins to new
systems. It presents a new approach for estimating the phase
of transfer functions (without assuming that the phase is a
minimum one) and demonstrates how this new technique
improves the generalization across different machines.

Current methods are described in Section Theoretical
Background. The new approach is presented in Section
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Non-minimum Phase Estimation, and applied in Section
Demonstration on Measured Signals and Simulated Transfer
Function for TDM in order to improve the generalization of
convolutional neural networks (CNNs).

THEORETICAL BACKGROUND

The estimation of the transfer function for TDM
(Figure 6) is composed of four procedures described in the
literature. These procedures are explained in the sections
that follow.

Adaptive Clutter Separation
ACS is an algorithm for background estimation, first presented
in Klein (2017), and widely investigated for stationary cases in

Matania et al. (2021) and for non-stationary cases in Matania
et al. (2022). It estimates the spectrum background by filtering
out extreme deviations. As described in Matania et al. (2021) in
Figure 3, in the first step, the algorithm separates the spectrum
into consecutive segments, and in the second step, it selects
the median in each of them. In the third (and last) step, the
algorithm interpolates the selected values by a piecewise cubic
Hermite interpolating polynomial (PCHIP). An example of an
estimation of background by ACS is presented in Figure 2 by a
black line.

As explained in Matania et al. (2021), ACS and
cepstrum liftering are preferable over AR for background
estimation. In the current study ACS is applied, but
cepstrum liftering can also be applied, as it will show
similar results.

FIGURE 2 | An example of an estimated spectrum background (black) of a spectrum signal (blue).

FIGURE 3 | An example of the poles and zeros of a minimum phase transfer function in a Z-plane (after Z transform).
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FIGURE 4 | An example of a measured transfer function from Matania et al. (2021). The transfer function magnitude and phase are depicted in (A,B), respectively. In

(C), the positive and negative quefrencies of the transfer function are presented on the same axis.

FIGURE 5 | An example of inverse zeros with or without imaginary components. (A) A zero inside the unit circle, (B) the inverse proportion of the zero from (A), (C) a

pair of zeros inside the unit circle, and (D) the inverse proportion of the pair of zeros from (C).

The Minimum Phase Assumption
The poles of every stable transfer function are inside the unit
circle after Z-transform (Oppenheim et al., 1999). Furthermore, if
the inverse transfer function is also stable, its poles are also inside
the unit circle; hence, the zeros of the original transfer function
are also inside the unit circle. In Figure 3, an example of the
positions of the poles and zeros in the Z-plane of a minimum
phase transfer function are depicted.

For the minimum phase transfer function, the phase can
be estimated from the magnitude of the transfer function

in the cepstrum domain. As explained in Oppenheim et al.
(1999) and Randall (2011), for estimation of the transfer
function (magnitude and phase), the negative quefrencies of the
magnitude of the transfer function are set to zero, and the positive
quefrencies are doubled.

There are transfer functions that do not hold the minimum
phase assumption. For example, in Matania et al. (2021), 24
transfer functions were measured by a hammer-tap experimental
analysis on several test rigs (Cunha and Caetano, 2006). Those
measured transfer functions are not minimum phase because
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FIGURE 6 | Block diagram of the new algorithm for estimating the transfer

function phase without the minimum phase assumption.

their negative quefrencies are not equal to zero. An example is
presented in Figure 4C, where the negative quefrencies are not
equal to zero. Themagnitude of the transfer function is presented
in Figure 4A and its phase in Figure 4B.

ARMA Model
The autoregressive moving-average (ARMA) model fits the noise
behavior to Equation (1) (Choi, 1992; Chen et al., 1995). The
ARMA model estimates the coefficients that best explain the
statistical distribution of the noise [minimizing themean squared
error (MSE, Wallach and Goffinet, 1989; Lehmann and Casella,
2006; Shalev-Shwartz and Ben-David, 2013)] between the next
sample and the predicted value based on the former samples.
These coefficients correspond to the poles and zeros of the
transfer function.

any [n] + an − 1y [n − 1] + . . . + an − ky
[

n − k
]

=(1)

bnx [n] + bn − 1x [n − 1] + . . . + bn − kx
[

n − k
]

Possible Positions of the Zeros
When the magnitude of the transfer function is known, but the
phase is not the minimum phase, the phase cannot be estimated
as described in Section The Minimum Phase Assumption.
However, as explained in Oppenheim et al. (1999), the possible
positions of the zeros are limited. For a real value zero (with
an imaginary component equal to 0), its possible positions
are inside the unit circle, as in the case of minimum phase
(Figure 5A), or inverse proportional to that position in the unit
circle (Figure 5B). For a zero with an imaginary component,
its possible positions are inside the unit circle, together with its
conjugate zero in the case of minimum phase (Figure 5C), or
inverse proportional to the unit circle together with its conjugate
zero (Figure 5D).

NON-MINIMUM PHASE ESTIMATION

The new algorithm estimates the transfer function—magnitude
and phase—in four steps, as described in Figure 6.

1. In the first step, the magnitude of the transfer function is
estimated based on the estimated background by ACS. The
segment size can be set based on the selection mechanism

described in Matania et al. (2021), in which the segment size
is set by tuning the trade-off between a too large segment size
causing an insufficient reconstruction of “fast variations” in the
background shape and a too small segment size that fails to
filter sharp picks.

2. In the second step, the estimated magnitude is multiplexed
in the frequency domain with white noise (random Gaussian
noise with a mean of zero and a variance of one), and the result
is converted to the time domain.

3. In the third step, the poles and zeros of the transfer function
are estimated by the ARMA model, as explained in Section
ARMA Model. The number of poles and zeros can be set by
minimizing the MSE between the estimated background by
ACS and the estimatedmagnitude of the transfer function after
the ARMA model. In the current article, we search over the
number of poles of 0, 5, 10, and 15 and the number of zeros of
0, 5, 10, and 15.

4. In the fourth step, the phase is estimated by locating the zeros
in all of their possible positions (i.e., by locating them in all
the optional positions inside and outside the unit circle, as
described in Section Possible Positions of the Zeros), and the
phase that minimizes the MSE between the health signal in the
first system and the healthy signal in the new system is selected.

The pole and zero degrees of the ARMA model can be set by
searching the minimal degrees of the poles and the zeros such
that the estimated magnitude of the transfer function fits the
estimated background. The ACS parameters can be selected as
explained in Matania et al. (2021) and Matania et al. (2022).

DEMONSTRATION ON MEASURED
SIGNALS AND SIMULATED TRANSFER
FUNCTION

In this paper, the dataset was generated by 300 measured signals
with different fault sizes and a simulated transfer function. A
CNN was designed to learn from the measured signals in the
training phase and a healthy signal after the simulated transfer
function, and to generalize in the test phase of measured signals
after the simulated transfer function. In Section Dataset. the
measured signals, the simulated transfer function, and the dataset
are described. In Section Examination of the CNN, the abilities
of the CNN to generalize to the new signals after the transfer
function is examined.

Dataset
The CNN was applied to measurements of a gearbox with several
full tooth face faults (FTFF) on the gear, as depicted in Figure 7.
The gearbox contains a gear with 38 teeth, a pinion with 17 teeth,
module 3, a precision grade of AGMA 10, with revolutions per
second (RPS) of 40Hz and a load of 160N. The sizes of the faults
are presented in Table 1 and explained in Figure 7. The used
signals were measured by an acceleration sensor composed on
the test rig depicted in Figures 10, 11 in Dadon et al. (2020).
The duration of each record was 60s, and six records were
measured for each fault size. More details and descriptions of the
experiment system can be found in Dadon et al. (2020).
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FIGURE 7 | Description of the dataset and explanation of the fault size. (A) Explanation about the definition of the fault size. (B) An example of a FTFF of a gear. (C)

The block diagram of the generation of the dataset. The data augmentation includes a random cyclic rotation of the synchronous average signal because the initial

time of the signal was random.

TABLE 1 | Table of fault sizes.

Number of signals Fault size

60 0

60 0.31

60 0.49

60 0.75

60 0.85

In the current study, each record was divided into 10
consecutive signals with a duration of 10s, and the synchronous
average was calculated for each signal.

An example of an FTFF is presented in Figure 7. The fault
size is the value y =

|CD|
|AB| . The simulated transfer function

is also presented in Figure 8. The training set comprises the

measured signals before the transfer function and a measured
healthy signal with noise added after the transfer function, and
the test set contains the measured signals with noise added after
the transfer function. The noise was white noise with an RMS of
10% of the RMS of a healthymeasured signal. The training set was
augmented by random circular rotations of the vibration signals
to improve generalization abilities (Goodfellow et al., 2016).

Examination of the CNN
A CNN with seven layers was applied on the dataset:

1. The first layer was a convolutional layer with 32 kernels with
length of 3 and ReLU activation.

2. The second layer was a max pool over two values.
3. The third layer was a convolutional layer with 32 kernels with

length of 3 and ReLU activation.
4. The fourth layer was a max pool over two values.
5. The fifth layer was a flatten layer.
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FIGURE 8 | The simulated transfer function and its estimations by the new technique (blue) and using a minimum phase assumption (red). The graph of the estimated

transfer function by the new technique conceals some of the segments of the simulated transfer function. (A) Magnitude of the transfer functions, and (B) phase of the

transfer functions. The ACS segment size was 50 bins. The degrees of the coefficients of the poles and zeros in the ARMA model were 10 and 5, respectively.

6. The sixth layer was a fully connected layer with 20 neurons
and ReLU activation.

7. The seventh layer was a fully connected layer with one neuron
and sigmoid activation.

The loss was the mean absolute error, the optimizer was Adam
with a starting learning rate of 0.001, and the validation set
contained 30% of the samples. The batch size was set to 32,
and the number of epochs was set to 10 (using early stopping
regulation, Goodfellow et al., 2016).

The CNN was applied three times under three different pre-
processing steps:

1. Pre-processing A: the training set was inserted into the CNN
as is.

2. Pre-processing B: the training set was multiplied by
the estimated transfer function under the minimum
phase assumption.

3. Pre-processing C: the training set was multiplied by the
estimated transfer function with the estimated phase by the
new technique.

The transfer function magnitude was estimated, together with its
phase based on the healthy signal in the training set, originally
from the test set. The estimated transfer function is depicted in
Figure 8.

In Figure 9, the results of the CNN over 20 repeated iterations
on the validation and test sets are presented for all three pre-
processing methods A, B, and C. If the CNN is applied on the test
set without mitigating the transfer function effects, the results
are worse than random guessing (under the uniform distribution
of fault sizes, a random Gaussian leads to a 33% error). The
estimation of the transfer function using the minimum phase
assumption significantly reduces this error. The estimation of
the transfer function by the new technique improves the results

by more than a factor of 2, leading to accurate results that
are close to the errors over the validation set. The differences
between the errors over the validation set and the test set
in C can be attributed to the added noise in the generation
process of the test set described in Figure 7. The suppression
of the transfer function effects using the new technique
improves the generalization abilities across the different
machines (different by the transfer function), leading to a
successful TDM.

During the training phase, the CNN learns several features
(Goodfellow et al., 2016) over the vibration signals, enabling
successful prediction of the fault size. As a result of the random
nature of the learning process of the CNN [random initialization
of the weights, random examples of the mini-batch during the
stochastic gradient descent (SGD), etc.] (Goodfellow et al., 2016),
the CNN could learn different weights in each repeated iteration,
leading to different extracted features. Hence, when the transfer
function effects are not suppressed (in methods A & B), different
features lead to different results because, in some of the iterations,
those features are highly affected by the transfer function effects,
and in other cases less. We postulate that this phenomenon
causes a large standard deviation in A and B. The standard
deviation over the test set is smaller in B than in A because
some of the effects of the transfer function are mitigated in B as
opposed to A.

SUMMARY

Deep learning is a promising approach for PHM by vibration
signals. However, twomain challenges complicate the application
of deep learning tools for rotating components: (1) the
shortcomings in examples of fault signals from real machinery
and (2) generalization across different machines (TDM). A digital
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FIGURE 9 | Results of the CNN over three types of pre-processing methods. (A) The mean errors and their standard deviation (black) of the CNN over the validation

and test sets, repeated 20 times. For each pre-processing method – A, B and C – an example of the predicted and real sizes of the test’s signals are presented in

(B–D), respectively.

twin is a promising tool for mitigating the first challenge, while
generalizing to new machinery seems still to be a challenge for
fault diagnostics.

This paper demonstrates the importance of accounting for
the transfer function for TDM, and presents a new approach
for estimating the phase of transfer functions for gear signals.
The contribution of the new approach for generalization abilities
was demonstrated, resulting in an improvement of more than
a factor of 3 over the current technique, assuming a minimum
phase function for the estimation of the transfer function (from
an error of 16.9% in method B in Figure 9A to 5.3% in method C
in Figure 9A).

As demonstrated in Figure 9, the ability of this approach to
significantly reduce the generalization error between the training
and test sets from 13.4% in method B in Figure 9B to 1.5% in
method C in Figure 9C significantly improved the result over

the signal in the test set (after the transfer function) from 16.9%
in method B in Figure 9B to 5.3% in method C in Figure 9C.
This procedure can be applied as part of a TDM procedure and
can enable generalization from a digital twin or other source
of data to new machinery where faulty data are not available.
Hence, while digital twins can help to generate a wide set
of fault examples for the training phase, suppression of the
transfer function effects can help them to generalize better across
different machines.
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