AUTHOR=Bruera Andrea , Poesio Massimo
TITLE=Exploring the Representations of Individual Entities in the Brain Combining EEG and Distributional Semantics
JOURNAL=Frontiers in Artificial Intelligence
VOLUME=5
YEAR=2022
URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2022.796793
DOI=10.3389/frai.2022.796793
ISSN=2624-8212
ABSTRACT=
Semantic knowledge about individual entities (i.e., the referents of proper names such as Jacinta Ardern) is fine-grained, episodic, and strongly social in nature, when compared with knowledge about generic entities (the referents of common nouns such as politician). We investigate the semantic representations of individual entities in the brain; and for the first time we approach this question using both neural data, in the form of newly-acquired EEG data, and distributional models of word meaning, employing them to isolate semantic information regarding individual entities in the brain. We ran two sets of analyses. The first set of analyses is only concerned with the evoked responses to individual entities and their categories. We find that it is possible to classify them according to both their coarse and their fine-grained category at appropriate timepoints, but that it is hard to map representational information learned from individuals to their categories. In the second set of analyses, we learn to decode from evoked responses to distributional word vectors. These results indicate that such a mapping can be learnt successfully: this counts not only as a demonstration that representations of individuals can be discriminated in EEG responses, but also as a first brain-based validation of distributional semantic models as representations of individual entities. Finally, in-depth analyses of the decoder performance provide additional evidence that the referents of proper names and categories have little in common when it comes to their representation in the brain.